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Abstract: Long non-coding RNAs (lncRNAs) are a large, heterogeneous class of transcripts and
key regulators of gene expression at both the transcriptional and post-transcriptional levels in
different cellular contexts and biological processes. Understanding the potential mechanisms of
action of lncRNAs and their role in disease onset and development may open up new possibilities for
therapeutic approaches in the future. LncRNAs also play an important role in renal pathogenesis.
However, little is known about lncRNAs that are expressed in the healthy kidney and that are
involved in renal cell homeostasis and development, and even less is known about lncRNAs involved
in human adult renal stem/progenitor cells (ARPC) homeostasis. Here we give a thorough overview
of the biogenesis, degradation, and functions of lncRNAs and highlight our current understanding of
their functional roles in kidney diseases. We also discuss how lncRNAs regulate stem cell biology,
focusing finally on their role in human adult renal stem/progenitor cells, in which the lncRNA
HOTAIR prevents them from becoming senescent and supports these cells to secrete high quantities
of α-Klotho, an anti-aging protein capable of influencing the surrounding tissues and therefore
modulating the renal aging.

Keywords: long non-coding RNAs; renal disease; stem cell biology; adult renal progenitor cells;
lncRNA HOTAIR

1. Introduction

Deep sequencing methods have shown that many non-coding RNAs (ncRNAs) exist
and that the majority of the eukaryotic genome is transcribed. Since RNA molecules
are perfectly suited to selectively recognize other RNAs and DNA by complementary
base pairing, ncRNAs are numerous and highly adapted in their roles in contemporary
organisms. Thousands of ncRNAs with little or no protein-coding ability are part of this
intricate network of transcripts. They serve as post-transcriptional regulatory molecules
that interact with particular mRNAs to control the production of proteins. The ncRNAs
can also interact with proteins or other nucleic acids, affecting secondary and tertiary
structures that are essential for their proper functioning. These most recent discoveries
go beyond Francis Crick’s 1957 DNA-RNA-protein basic dogma [1]. The lncRNAs are a
large, heterogeneous class of transcripts, longer than 200 nucleotides, and key regulators of
gene expression at both the transcriptional and the post-transcriptional level in different
cellular contexts and biological processes [2,3]. This group of transcripts shares features
with coding transcripts (mRNAs). Contrary to their smaller counterparts, lncRNAs exhibit
cell type-specific expression, localization to subcellular compartments, and are significantly
less conserved. It is interesting to note that the majority of lncRNAs are linked to human
disorders, much like miRNAs. In terms of physiological regulation, lncRNAs have been
demonstrated to affect all aspects of gene regulation, including but not limited to promoter
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activity, epigenetics, the effectiveness of translation and transcription, and intracellular
trafficking [4]. The kidney expresses tens of thousands of lncRNA sequences, which are
frequently conserved with coding genes, just like other tissues. Numerous studies have
demonstrated that lncRNAs express at various levels and are implicated in all phases of
renal disorders. Targeting lncRNAs may be a precise treatment approach for developing
kidney illnesses. LncRNAs have been identified as diagnostic biomarkers [5–7]. LncRNAs
may be present as persistent biomarkers in serum and urine [8–10]. The key to their utility
as biomarkers is that they exhibit variable levels of expression in various diseases and are
linked to pathways, targets, and events involved in the pathophysiology of kidney disease.

Here we give a thorough overview of the biogenesis, degradation, and functions
of lncRNAs and highlight our current understanding of their functional roles in kidney
diseases, such as chronic kidney disease (CKD), membranous nephropathy (MN), im-
munoglobulin A nephropathy (IgAN), lupus nephritis (LN), diabetic nephropathy (DN),
and acute kidney injury (AKI). We also discuss how lncRNAs regulate stem cell biology,
focusing finally on their role in human adult renal stem/progenitor cells.

2. Biogenesis, Structure, and Functions of Long Non-Coding RNAs (LncRNAs)

The biogenesis of lncRNAs is cell-type and stage-specific [11], and different classes of
lncRNA transcripts can be identified depending on the transcription locus, i.e., promoter
upstream regions (PROMPTs), enhancers (eRNAs), intervening/intergenic regions (lincR-
NAs), and the opposite strand of protein-coding genes (NATs), respectively [12]. Briefly,
PROMPTs are antisense transcripts of 0.5–2.5 kb, upstream of the active transcription start
sites (TSSs) of mammalian protein-coding genes [13]. The PROMPTs function is still un-
known, but their expression levels are strongly affected by stressful conditions and are
largely retained in the nucleus [14]. The eRNAs are bidirectional transcripts generated from
enhancer sequences by Pol II and are usually less than 2000 nucleotides in length [14]. This
group of lncRNAs has enhancer-like functions in gene regulatory networks by controlling
promoter and enhancer interactions [15,16]. LincRNAs are the most-studied lncRNAs,
contain multiple exons, and have typical mRNA-like features. They are produced by Pol II
activity on intergenic regions between two genes [17], and their structural similarity with
the mRNAs suggests that the function is also analogous.

The functions of lncRNAs in the cellular context are closely associated with their
subcellular localization and compartmentalization. In fact, lncRNAs actively influence the
transcription process and chromatin organization when they carry out their bioactivity
in the nucleus, while they can affect the stability and post-translational modifications of
the mRNAs in the cytoplasm (Figure 1). In detail, the lncRNAs are largely retained in
the nucleus mainly due to the presence of elements in cis and short C-rich sequences,
primate-specific short interspersed nuclear elements (SINEs), which interact with nuclear
proteins [18,19]. In the nucleus, lncRNAs can modulate inter- and intrachromosomal inter-
actions [20,21]. Moreover, some lncRNAs are able to prevent or promote the recruitment
of chromatin modifiers by influencing chromatin remodeling either in cis (near their tran-
scription sites) or in trans (at sites distant from their transcription sites), mediating histone
methylation or histone ubiquination [22], and facilitating the recruitment of chromatin
regulatory complexes [23–25].

Furthermore, the lncRNAs can also directly regulate gene transcription using two
different mechanisms. The first known molecular mechanism is the formation of R-loop
structures, which are triple-stranded nucleic acid structures with RNA hybridized. The
second mechanism of gene expression control is interference with Pol II transcription
machinery (Figure 1) [26–29].
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Figure 1. Classification of lncRNA functions. LncRNAs act as regulators of gene expression: (a,h) they
can influence chromatin architecture by interacting with different protein components of the remodel-
ing complex and modifying chromatin organizational patterns. (b) They activate the transcription
of certain genes by driving transcription factors to their promoters and by targeting transcriptional
modulators such as RNA polymerase (RNAP) II; (c) however, they are also capable of suppressing
transcription by sequestering transcription factors and keeping them away from their promoters.
LncRNAs also control various aspects of post-transcriptional mRNA processing, including: (d) they
perform scaffolding roles by providing docking sites for proteins that function together in the same
biological pathway; (e) through binding to protein interactors, including classical RNA-binding
proteins (RBPs), they are able to modulate mRNA functioning by also subjecting them to degrada-
tive pathways; (f) they act like “sponges” by base pairing with their complementary miRNAs and
reducing their effects; (g) they alter their splicing patterns.

As previously said, lncRNAs perform important functions in the cell cytoplasm as well.
In particular, lncRNAs in the cytoplasm can stabilize mRNAs, influence translation, and
modulate post-translational modification (Figure 1). In particular, lncRNAs can influence
mRNA turnover through several mechanisms. The first of these is the ability to recruit
proteins for mRNA degradation. The mRNAs regulated by this mechanism contain Alu
elements within their 3′-UTRs that are complementary to Alu present in the lncRNAs
sequence. The complementarity leads to the formation of structures, double-stranded
RNAs (dsRNAs), that are recognized by Staufen 1 (STAU1), leading to mRNA decay [30,31].
The second mechanism is constituted by the recalling of RNA-binding proteins (RBPs)
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involved in mRNA degradation (Figure 1). One of these regulatory lncRNAs is noncoding
RNA activated by DNA damage (NORAD), which stimulates mRNA deadenylation and
decapping, resulting in accelerated turnover [32,33]. Finally, lncRNAs can function as
sponges for miRNAs, competing for miRNA binding and decreasing their availability for
molecular targets [32–34] (Figure 1). This class of lncRNAs is identified as competitive
endogenous RNAs (ceRNAs), and the molecular mechanisms are still not completely
elucidated. It is also important to point out that the same lncRNA can have more gene
targets [35], but also that different lncRNAs could have the same gene target. Recent studies
devised a “chromatin-RNA reverse transcription in situ sequencing” (CRIST-seq) approach
to profile the lncRNA interaction network in gene regulatory elements, uncovering a
true lncRNA interaction network specific for the pluripotency in the Sox2 and Pou5f1
promoters [36]. The regulatory role of differentially expressed HOX-interacting lncRNAs in
various biological processes and cancer hallmark events has been demonstrated by building
interaction networks of lncRNA [37].

Although the functions of most lncRNAs are largely unknown, the impressive ad-
vances in a short time in the knowledge of lncRNAs underline the enormous potential of
these RNAs as potential non-protein biomarkers. In this regard, cell-free nucleic acids or
circulating nucleic acids (CNAs) have recently been proposed as a new class of potential
biomarkers that could improve the diagnosis, especially in the oncologic field [38]. The
stability of lncRNAs in the bloodstream, thanks to the presence of extensive secondary struc-
tures and transport by protective exosomes [39,40], and the ease of detection designate these
RNAs as very reliable potential biomarkers. Numerous studies have reported the imbalance
of lncRNA expression in cancer [41–43]. HULC, H19, HOTAIR, and GACAT2 (for “gastric
cancer-associated transcript 2”) were found to be significantly increased in the plasma of
gastric cancer (GC) patients compared to healthy individuals [44–46]. Moreover, a high
level of HOTAIR has also been detected in samples from colorectal cancer patients [47].

Given the important regulatory role of lncRNAs at the cellular level, thinking of them
as passive biomolecules for the detection of diseases only would be extremely limiting. In
fact, they may also represent very innovative and effective therapeutic approaches or targets
for several types of diseases, starting with cancer, in which they have been extensively
studied [48–50]. However, many studies will still be needed to elucidate whether targeting
circulating lncRNAs will be sufficient for tumor treatment. Indeed, one limit can be
represented by the nucleic acids’ inability to cross the cell membrane due to their negative
charge due to the phosphate groups. This certainly could limit the penetrability of lncRNAs
to cells and tissues. At the same time, the transport by lipid-based extracellular vesicles
could guarantee greater efficiency of the treatment. LncRNAs represent 3.36% of the
RNA content of the exosomes, which are known carriers of biomolecules that cells exploit
for paracrine, endocrine, and autocrine communication throughout the whole body [51].
The complex exosome-based delivery system could therefore be used to provide specific
oncosuppressor lncRNAs, normally downregulated in cancer, ensuring their spread and
diffusion in tumor-affected tissues. However, other lncRNAs may be transported from the
systemic circulation in complexes with other proteins (Argonaute-Ago or nucleophosmin
1-NPM1) [52] or even in unhybridized forms. These classes of lncRNAs could be targeted
with interference [53].

All these future application perspectives of lncRNAs could be transferred from the
oncological field to other clinical fields as well, given the involvement of lncRNAs in
numerous other biological processes, both physiological and pathological.

3. The Role of LncRNA in Kidney Disease

Altered expression of lncRNAs has been increasingly closely related to the onset
and development of many diseases due to their role in gene regulation processes at the
transcriptional, post-transcriptional, translational, post-translational, and epigenetic levels.
Therefore, increasing attention is being paid to their role as diagnostic and prognostic
biomarkers and therapeutic targets in several human diseases. Regarding kidney diseases,
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there are numerous studies that have analyzed and demonstrated the role of lncRNAs
mainly in DN and AKI, and to a lesser extent in CKD, focal segmental glomerulosclerosis
(FSGs), and IgAN (Table 1).

3.1. Diabetic Nephropathy

Diabetic nephropathy (DN) is a chronic kidney disease that results from diabetes
mellitus and is characterized by albuminuria, a decline in the glomerular filtration rate,
and arterial hypertension. If left untreated, it can progress to end-stage renal disease
(ESRD) [54,55]. Plasmacytoma variant translocation 1 (PVT1) was one of the first lncRNAs
associated with DN. Through genome-wide SNP genotyping analyses, PVT1 was indicated
as a susceptibility locus for the onset of DN and the development of ESRD [56]. High
glucose content upregulated the expression of PVT1 in mesangial cells, causing increased
expression of proteins that composed the extracellular matrix (ECM). Conversely, silencing
of PVT1 led to a significant decrease in mRNA and major ECM proteins, such as fibronectin
and collagen type IV alpha 1, as well as their transcriptional regulators, such as trans-
forming growth factor beta 1 (TGFB1) and plasminogen activator inhibitor (PAI-1). These
findings suggest that PVT1 may mediate the development and progression of DN through
mechanisms involving ECM protein accumulation [57,58]. One of the mechanisms underly-
ing the pathogenesis of DN is the disruption of mitochondrial homeostasis. Long and et al.
linked the modulation of mitochondrial metabolism to the lncRNA TUG1 [59]. Specifically,
they observed that TUG1 was linked to mitochondrial bioenergetics by recruitment of
PGC-1α (Peroxisome proliferator-activated receptor-γ Coactivator-1 α) to its promoter.
Transgenic mice that overexpressed TUG1 in podocytes were protected from diabetes-
induced CKD, while glomerular TUG1 levels were reduced in both mice and renal biopsies
from diabetic patients. Moreover, specific overexpression of TUG1 in podocytes from this
mouse model improved the glomerular phenotype with regard to both albuminuria and
histological changes. This suggests that this lncRNA may be a possible therapeutic target to
treat kidney disease and/or diabetes [59,60]. Yang et al. observed that 45 and 813 lncRNAs
were up- and downregulated, respectively, in the serum of DN patients compared with
diabetic patients [61]. Among them, lncRNA-ARAP1-AS2 and lncRNA-ARAP1-AS1 are
the ones involved in the pathogenesis of DN. LncRNA-ARAP1-AS2 gradually increases
during the progression of diabetes and diabetic nephropathy, while lncRNA-ARAP1-AS1
gradually decreases. Both enhance the mRNA expression of ARAP1, a member of the
renin-angiotensin system (RAS) [61,62]. Several studies indicate a functionally important
involvement of NEAT1 lncRNA in diabetic nephropathy. Increased expression of NEAT1
contributes to proliferation and fibrosis in the progression of DN through activation of
Akt/mTOR signaling, whereas expression of TGF-β1, FN, and COL-IV is repressed by
NEAT1 in vitro [63].

3.2. Acute Kidney Injury

Acute kidney injury is a complex renal disorder characterized by an abrupt decline
in renal function. The main triggers of AKI are sepsis, nephrotoxic insults, and ischemia-
reperfusion. Despite considerable progress, the AKI pathophysiological mechanisms have
not been fully explored. Numerous pieces of evidence have accumulated showing that non-
coding RNAs are involved in the pathophysiology of AKI and the regulation of numerous
genes, showing significant potential for the development of diagnostic and therapeutic
strategies. Most studies conducted to examine lncRNAs in AKI have been performed
in vivo in mice or rats by induction of urine-derived sepsis [64,65], ischemia-reperfusion
injury (IRI) [66–68], and lipopolysaccharide (LPS)-stimulated inflammation [69,70], while
the human tubular epithelial cell line HK-2, treated with LPS [64,65], or grown under
hypoxic conditions [67,68,71], has been used in vitro (Table 1).

In a microarray study, it was observed that 5361 lncRNAs were upregulated and
5928 were downregulated in patients with septicemia-induced AKI. Among the various
lncRNAs studied, MALAT1 and TUG1 also occur. MALAT1 expression is increased in
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the serum of patients with sepsis, in the kidney tissue of experimental animals, and in
LPS-treated kidney cells. MALAT1 promotes renal damage by activating nuclear factor-κB
(NF-κB). Accordingly, silencing of MALAT1 showed a significant renal protective effect [69].
In contrast to the above-mentioned lncRNA MALAT1, overexpression of TUG1 showed a
protective effect in LPS-treated HK-2 cells by modulating the NF-kB gene [72] and through
the interaction with the nuclear factor erythroid 2-related factor 2 (Nrf2) transcription
factor [73]. In addition, HOXA-AS2 lncRNA showed protection in sepsis-caused AKI
by hindering Wnt/β-catenin and NF-κB pathways [74]. In addition, overexpression of
lncRNA6406 attenuates cellular inflammation, oxidative stress, and apoptosis through
modulation of miR-687/PTEN signaling [75,76]. XLOC-032768 and LRNA9884 lncRNAs
were studied in AKI induced by nephrotoxic agents in vivo and in vitro. Zhou et al. demon-
strated that overexpression of lncRNA XLOC-032768 reduced apoptosis and TNF-mediated
inflammation in mice and cells exposed to cisplatin [77], while Zhang et al. showed that
LRNA9884 was markedly upregulated in the nucleus of the renal tubular epithelium in
mice with AKI and promoted inflammatory cytokine production via NF-κB [78].

Another important cause of AKI is ischemia/reperfusion (IR). XIST, NEAT1, MALAT1,
and H19 lncRNAs have been found upregulated in human biopsies of AKI, in experimental
models of IR, and in cultured hypoxic endothelial and tubular cells [79–82] (Table 1).
Increased lncRNA XIST (X inactive specific transcript) in IR-damaged kidneys and renal
cells induces apoptosis and inflammation [79]. NEAT1 induces apoptosis of renal tubular
epithelial cells through downregulation of miR-27a-3p, identifying this miRNA as a target
of NEAT1 [82]. Overexpression of H19 lncRNA improved renal function and angiogenesis
and decreased inflammation and apoptosis through upregulation of miR-30a-5p [80]. The
upregulation of MALAT1 was activated by hypoxia-inducible factor 1-α (HIF-1α) and
negatively regulated the expression of IL-6, TNF-α, and NF-kB [81]. The lncRNA PRINS is
involved in the AKI process by regulating the production of RANTES, a major inflammatory
mediator of AKI following IR injury. Increased levels of RANTES in renal tubular cells
further aggravated renal injury through recruitment of inflammatory cells and led to loss
of renal function after IR injury [83].

3.3. Chronic Kidney Disease

CKD is a disease characterized by hypoperfusion-induced tubular ischemia, interstitial
fibrosis, and impaired renal function [84,85]. Additionally, in this case, several lncRNAs
that can regulate the expression of some CKD-related genes and proteins, such as collagen,
smooth muscle α-actinin, and fibronectin, have been identified (Table 1). For example, the
lncRNAs TCONS_00088786 [86] and TCONS_01496394 [87], which are regulated by TGF-β
stimulation, can influence the expression of some fibrosis-related genes through a feedback
loop. Similarly, lncRNA Erbb4-immunoreactivity (Erbb4-IR) is induced by TGF-β1 and
highly upregulated in fibrotic kidneys. The silencing of Erbb4-IR blocks TGF-β1–induced
collagen I and α–smooth muscle actin expression in vitro [88] and up-regulates Smad7
in the kidneys, thereby attenuating TGF-β1/Smad3-induced renal fibrosis in vivo and
in vitro [89,90].

PVT1 lncRNA is mainly regulated by the miR-181a-5p/TGF-βR1 signaling pathway.
The expression of PVT1 lncRNA is significantly upregulated in renal fibrosis. Knockdown of
lncRNA PVT1 inhibited the progression of renal fibrosis via regulation of TGF-β signaling,
downregulation of the expression of α-SMA, upregulation of the expression of E-cadherin,
and via miR-181a-5p [91]. H19 lncRNA, together with miR-17 and fibronectin, forms a
regulatory network involved in renal fibrosis [92]. Its expression has been significantly
correlated with oxidative stress and inflammatory markers such as tumor necrosis factor-α
(TNF-α) and interleukin (IL)-6 in patients with CKD [93,94].

Other lncRNAs may influence the expression of some inflammatory factors and are
associated with the production of and defense against reactive oxygen species (ROS). The
lncRNA XIST (X inactive specific transcript) attenuates renal inflammation, and ROS pro-
duction induces oxidative damage in renal calcinosis [95]. In addition, lncRNAs can drive
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renal fibrosis by regulating several biological processes, such as apoptosis, cell prolifera-
tion, autophagy, and epithelial-mesenchymal transition (EMT). One example is LINC00667
lncRNA, which reduces the proliferation and invasion of CKD cells while increasing the
rate of apoptosis [96,97]. LncRNA 74.1 was significantly downregulated in clinical samples
of renal fibrosis and promoted ROS defense by activating prosurvival autophagy, then
reducing ECM-bound proteins fibronectin and collagen I involved in renal fibrosis [98].

LncRNAs are also involved in another important mechanism of pathological damage
in CKD called pyroptosis. This process is a particular type of programmed cell death that
includes some features of apoptosis and necrosis. The lncRNAs MALAT1 (metastasis-
associated lung adenocarcinoma transcript 1) promote pyroptosis through downregulation
of miR-23c, while GAS5 (growth arrest-specific 5) has anti-pyroptotic properties [79,99].

3.4. Glomerulonephritis

LncRNAs have been involved in different kinds of glomerulonephritis (Table 1). Focal
segmental glomerulosclerosis is a common kidney disease resulting from the dysfunction
and apoptosis of podocytes in the glomerulus of the kidney. Compared with DN, little is
known about the contribution of lncRNAs to this glomerular disease. One of the lncRNAs
associated with FSGS is lncRNA LOC105375913 [100], whose increased expression promotes
snail overexpression and tubulointerstitial fibrosis. Upregulation of lncRNA LOC105374325,
related to activation of the P38/C/EBPβ pathway in podocytes of individuals with FSGD,
increases the level of Bax and Bak genes and causes cell apoptosis [101].

IgA nephropathy is one of the most common primary glomerulonephritis and is
characterized by immune complexes (IC) formed mainly by IgA that are deposited in the
mesangial area of the glomerulus, causing glomerular inflammation and further renal
damage [102]. About 217 lncRNAs differentially expressed in peripheral blood monocyte
cells (PBMCs) have been suggested as potential factors involved in the pathophysiology of
IgA nephropathy [103]. Among them, HOTAIR has been the most important lncRNA in the
regulation of differentially expressed genes/miRNAs in IgA nephropathy [103]. In another
study, the lncRNA-G21551 was observed to be significantly down-regulated in IgAN
patients and could play an important role in the pathogenesis of IgAN by regulating the
expression of FCGR3B, a gene that encodes for the low affinity receptor (FcgR3B receptor)
of the Fc segment of immunoglobulin G (IgG) [104]. Moreover, the lncRNA PTTG3P levels
have been found higher in IgAN samples than in healthy subjects. Overexpression of
PTTG3P induced B-cell growth, increased the expression of cyclin D1 and Ki-67 genes,
and induced the production of IL-1β and IL-8, which play key roles in the onset and
development of IgAN [105]. Some lncRNAs may be used as disease biomarkers. The
expression of the lncRNA MYEF2-1.1 was 85-fold lower in IgAN patients than healthy
controls, while that of ALOX15P1-ncNR045985 was 5.15-fold higher [106]. Wen et al.
have observed a significant increase in intercellular adhesion molecule-1 (ICAM-1)-related
lncRNA (ICR) levels in kidney tissue from patients with IgAN. This lncRNA is involved
in the renal fibrotic processes; indeed, its inhibition attenuated the fibrotic changes in
TGF-β1-induced renal proximal tubular cells through reduction of phosphorylation and
consequent inhibition of the Akt/mTOR signaling pathway [107].

lncRNA XIST has been linked to membranous nephropathy [108,109], a kidney-specific
autoimmune disease [110]. Its upregulation in a mouse model of MN and in human sam-
ples [109] has been associated with a proapoptotic effect on podocytes through upregulation
of Toll-like receptor 4 and negative regulation of miR-217 [108]. Upregulation of NEAT1,
on the other hand, promotes MN development by inhibiting the anti-apoptotic activity
mediated by Noxa (a Bcl-2 homolog 3 protein) to induce apoptosis [111]. Finally, the
lncRNA RP11-2B6.2 was found to be increased in the renal tissue of patients with lupus
nephritis compared with healthy controls. Overexpression of RP11-2B6.2 led to inhibition
of SOCS1, resulting in hyperactivation of the IFN-I signaling pathway in renal cells [112].
Among the many pathogenic signaling pathways identified in LN, hyperactivation of the
IFN-I response is closely associated with disease progression and prognosis [113].
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As noted so far, numerous studies have been conducted and knowledge gained on
lncRNAs in the renal field in recent years, not only for their involvement in the pathophysi-
ology of renal diseases but also for their potential as diagnostic and prognostic biomarkers
and therapeutic targets. In addition, it is noteworthy that by analyzing lncRNA studies
performed on renal diseases (Table 1), we can identify six lncRNAs involved in more than
one type of renal disease, in particular PVT1, TUG1, NEAT1, MALAT1, XIST, and H19.
Among these, PVT1 and XIST have a common mechanism on multiple kidney diseases,
the first increasing the expression of extracellular matrix proteins through the TGFB and
the second inducing apoptosis. The other four lncRNAs may have different mechanisms
for each disease. Instead, this may be due to the type of study performed or the choice of
the authors to study only a specific mechanism. Moreover, several lncRNAs have been
found to be expressed only in one kind of renal disease. Additionally, in this case, it may
depend on the type of study and on the experimental setting performed. However, despite
considerable progress, there are still many unclear mechanisms and countless puzzles to be
solved before study results can be promoted to the clinical level.

HK-2: Human Kidney 2; DN: Diabetic Nephropathy; TECs: Tubular Epithelial
Cells; CKD: Chronic Kidney Disease; ECs: Endothelial Cells; AKI: Acute Kidney In-
jury; I/R: Ischemia/Reperfusion; PBMCs: Peripheral Blood Monocytes cells; IgAN: IgA
Nephropathy; EMT: Epithelial-Mesenchymal Transition; PTEC: Proximal Tubular Epithelial
Cells; FSGS: Focal Segmental Glomerulosclerosis; MN: Membranous Nephropathy; LN:
Lupus Nephritis.

Table 1. Long non-coding RNAs in renal disease.

lncRNA Tissue/Cells Disease Mechanism

ARAP1-AS1 and ARAP1-AS2 HK-2 DN Both enhance the mRNA expression of ARAP1, a member of
the renin-angiotensin system [62,63]

ENST-00000453774.1 HK-2 CKD Reduces ECM-bound proteins fibronectin and collagen I [99]

Erbb4 –Immunoreactivity TECs and elongated,
fibroblast-like cells CKD Regulates the expression of collagen I, α–smooth muscle

actin, and Smad7 [89]

GAS5 Kidney cells CKD Has anti-pyroptotic properties [100]

H19
ECs, TECs AKI due to renal

I/R injury Upregulates miR-30a-5p [81]

HK-2 CKD Affects TNF-α and IL-6 expression [93,95]

HOTAIR PBMCs IgAN Possible involvement in the NGF signaling pathway and
Toll-like receptor pathways [104]

HOXA-AS2 HK-2 AKI Hinders the Wnt/β-catenin and NF-κB pathways [75]

ICR Renal Proximal Tubular Cells IgAN Is involved in the Akt/mTOR signaling pathway [108]

LINC00667 Renal Tubular Epithelial Cell CKD Regulates apoptosis, cell proliferation,
autophagy, and EMT [97]

lncRNA 9884 HK-2 AKI induced by
nephrotoxic agents

Promotes the production of inflammatory
cytokines via NF-κB [79]

lncRN A6406 PTEC AKI Modulates miR-687/PTEN signaling [76,77]

lncRNA G21551 Exosomes IgAN Regulates the expression of FCGR3B [105]

lncRNA PTTG3P Peripheral B cells IgAN Promotes B-cell growth, IL-1β, and IL-8 production by
regulating miR-383 [106]

LOC105375913 Renal tubular cells FSGS Increases the level of snail and tubulointerstitial fibrosis [101]

LOC105374325 Podocytes FSGS Increases the level of Bax and Bak genes and
causes cell apoptosis [102]

MALAT1

HK-2 AKI Activates NF-κB [70]

ECs, TECs AKI due to
renal I/R injury

Negatively regulates the expression of IL-6,
TNF-α, and NF-kB [82]

Kidney cells CKD Promotes pyroptosis by downregulating miR-23c [100]

NEAT1

Mesangial cells DN Activates Akt/mTOR signaling, and represses TGF-β1, FN,
and COL-IV expression [64]

ECs, TECs AKI due to
renal I/R injury Downregulates miR-27a-3p [83]

Renal Tubular Epithelial Cell MN Inhibits Noxa-mediated anti-apoptotic activity [112]

PRINS Renal tubular cells AKI due to
renal I/R injury Regulates the production of RANTES [84]
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Table 1. Cont.

lncRNA Tissue/Cells Disease Mechanism

PVT1
Mesangial cells DN Increased expression of extracellular matrix proteins [57,58]

HK-2 CKD Is involved in the TGF-β signaling pathway [92]

RP11-2B6.2 Renal cells LN Intervenes in the IFN-I pathway through epigenetic inhibition
of SOCS1 [113]

TCONS_00088786,
TCONS_01496394 Kidney tissue Tubular ischemia and

CKD Affect the expression of genes related to renal fibrosis [87,88]

TUG1
Podocytes DN Modulates mitochondrial bioenergetics [59]

HK-2 AKI Interacts with Nrf2 [60]

XIST
ECs, TECs AKI due to renal I/R7

injury Induces apoptosis and inflammation [80]

HK-2 Renal calcinosis Influence the expression of some inflammatory factors [96]
Kidney tissues and cultured

podocytes MN Proapoptotic effect through upregulation of Toll-like receptor
4 and downregulation of miR-217 [109,110]

XLOC-032768 HK-2 AKI induced by
nephrotoxic agents Regulates tumor necrosis factor TNF-α [78]

4. The Impact of LncRNAs on Stem Cells in Disease

Human adult stem/progenitor cells promote tissue regeneration and play crucial
functions in the growth and homeostasis of various tissues. Dynamic interactions between
environmental signals, epigenetic factors, and chemicals that control gene expression
control stem cell function. LncRNAs are among the highly regarded regulators of stem
cell function. In addition to regulating the stemness properties (Figure 2), lncRNAs can
also regulate the tissue stem/progenitor cells in response to an insult. Markus Kretz et al.,
using transcriptome sequencing and tiling arrays, identified transcripts altered during
the transition from epidermal progenitors to a differentiated cell population and found
that lncRNA ANCR is an important regulator of gene expression required for maintaining
the undifferentiated cellular state within the epidermis. In order to influence stem cells’
ability to differentiate into osteoblasts, lncRNAs, such as MALAT1, NEAT1, DANCR,
SNHG1, MIR22HG, and LINC00314 may play a role in the development or management of
osteoporosis. Most of these lncRNAs’ effects on this process come from their regulation
of the PTEN/AKT [114], MAPK [115], and STAT [116] pathways. Cui, Y. et al. instead
demonstrated that the lncRNA Neat1 plays an important role in regulating neuronal
differentiation, apoptosis, and spinal cord progenitor cell migration by regulating the
Wnt/B-catenin signaling pathway activated by miR-124 [117]. The canonical Wnt signaling
pathway controls the physiology of stem cells in many other tissues, such as bone, in
which the lncRNA AK137033 has been shown in vitro and in vivo to inhibit the osteogenic
potential of adipose-derived stem cells in patients with diabetic osteoporosis. The non-
coding transcript acts as an epigenetic regulator by modulating the Wnt signaling pathway
via DNA methylation in the sFrp2 promoter region [118].

The self-renewal and differentiation capacity of stem cells can be diverted, in some
cases, towards a tumorigenic fate. Considering that the regulation of critical signaling
pathways, such as polycomb, SOX2, and KLF4 signaling, has been shown to be activated
in cancer stem cells and that these involve feedback loops with lncRNAs, it seems likely
that lncRNAs could also be involved in promoting the maintenance of cancer stem cells
(CSCs) [119–121]. For example, HOTAIR was discovered by Gupta et al. as an impor-
tant lncRNA, whose overexpression is a predictive index of breast cancer metastasis [122]
(Figure 2). Future studies on lncRNAs involved in CSC metabolism could lead to consid-
ering lncRNAs as clinical biomarkers, indicating which are the best candidates for future
therapeutic strategies.
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Figure 2. Regulatory mechanisms of lncRNAs in stem cells. (a) Several lncRNAs interact in the
canonical Wnt signaling cascade and influence the expression of genes by inducing or inhibiting
cell differentiation. (b) The p53-regulated, long non-coding PRESS1 physically interacts with SIRT6
and inhibits its attachment to chromatin, controlling a gene network that promotes the pluripotency
of hESCs (human embryonic stem cells) by maintaining high levels of histone H3K56 and H3K9
acetylation in the promoters of pluripotency genes such as OCT4 and NANOG. (c) The lncRNA
Gm15055, whose expression is influenced by OCT4, represses HoxA gene expression by recruiting
PRC2 to the cluster and maintaining the H3K27me3 modification on HoxA promoters in mESCs
(mouse embryonic stem cells); (d) The nuclear lncRNA HOTAIRm1 also regulates HoxA expression,
leading to trimethylation of histone H3K27 and epigenetic silencing of the gene; furthermore, it
promotes the acetylation of H3K27 in the enhancer site of the NANOG gene by upregulating its
expression and inhibiting HoxA, which creates a reciprocal regulatory loop that increases the stemness
effect. (e) Some lncRNAs enhance epigenetic reprogramming by coordinating intrachromosomal
looping and by recruiting the TET2 demethylase, promoting DNA demethylation at the OCT4 and
SOX2 promoters.

Understanding the potential actions of lncRNAs and their aberrant expression in
disease states would allow a wide use in regenerative medicine and pave the way for
numerous clinical applications. Current emerging knowledge emphasizes the possibility
of considering them as targets for possible therapeutic interventions and pharmacological
targets, for example by including complementary sequences within lysosomal vesicles
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(an approach that has already led to results in pre-clinical and clinical trials) [123] or by
transferring them via exosomes to stem cells, a method that could suggest a good strategy
to control their differentiation.

5. The LncRNAs in Human Adult Renal Stem/Progenitor Cells

As previously described, lncRNAs also play an important role in renal pathogenesis.
However, little is known about lncRNAs that are expressed in the healthy kidney and that
are involved in renal cell homeostasis and development, and even less is known about lncR-
NAs involved in human adult renal stem/progenitor cells (ARPC) homeostasis. ARPCs
constitute a very promising cell population that has great potential for the development
of future treatments for both acute and chronic kidney injury. The ARPCs can be isolated
from both tubules and glomeruli; they have many similar morphological and transcrip-
tional characteristics but also important differences [124–127]. Due to their multipotent
differentiation capacity, these cells can give rise to adipocytes, osteogenic cells, and tubular
epithelial-like cells. CD133+ CD24+ ARPCs can help with tubular regeneration in mice
with acute renal injury brought on by glycerol, and their administration may lessen renal
injury and hasten renal repair [124,128,129].

By controlling inflammatory processes and managing the immune response in re-
sponse to an insult, like exposure to lipopolysaccharides (LPS), ARPCs can aid in the repair
of injured kidney tissues by blocking the LPS-induced endothelial to mesenchymal transi-
tion through the secretion of the antiseptic molecules CXCL6, SAA4, and BPIFA2 [130,131].
The tARPCs are responsive to insult by chemical agents such as cisplatin, a chemother-
apeutic drug that can have nephrotoxic side effects. Following TLR2 activation, renal
progenitors secreted inhibin-A and decorin directly as proteins and as mRNA transported
in microvesicles, encouraging the proliferation of the remaining cells and preventing the
chemotherapic toxicity on the proximal renal tubule epithelial cells (RPTEC) [125].

Additionally, current research has shown that ARPCs can control the immune response
by triggering immune system Treg cells and modifying double-negative T-cells (T DN),
which are crucial for maintaining the proper balance between immune tolerance and
autoimmune disease [132,133].

Renal senescence, which can impact renal progenitors by both inducing renal aging
and the inability to repair renal damages, can invalidate all of these regenerative qualities
of ARPCs [134]. Several studies have identified long non-coding RNAs as key players in
the molecular mechanisms that drive gene regulation, demonstrating that lncRNAs are
involved in cellular reprogramming processes [135]. It became very important, therefore,
to understand what the lncRNAs role is in the biology of ARPCs.

Very recently, a whole-genome lncRNA expression screening was performed for the
first time in ARPCs. About 611 lncRNAs that were differently regulated and capable of
discriminating the ARPCs from the RPTECs were discovered. According to the pathway
analysis, several lncRNA, exclusively expressed in ARPCs, were shown to be involved in
the biological processes regulating the cell cycle. Among differentially modulated lncRNAs,
HOTAIR was found to be a crucial component controlling these pathways. By creating
HOTAIR knock-out ARPC lines, it was demonstrated how this lncRNA controls ARPC
apoptosis and maintains their proliferative and self-renewal abilities.

Exploiting the CRISPR/CAS9 genome editing method, the HOTAIR fundamental
function in maintaining the self-renewal and proliferation of ARPCs has been demonstrated.
HOTAIR prevents ARPCs from becoming senescent in the short term by modulating the
expression of the CD133 stemness marker. The renal progenitors, thanks to the high
expression of HOTAIR, are able to secrete high quantities of α-Klotho, an anti-aging protein
capable of influencing the surrounding tissues and therefore modulating renal aging [136]
(Figure 3). Emerging data have shown that certain aging-related characteristics in α-
Klotho deficient mice may result from stem cell depletion or stem cell differentiation to
promote fibrosis; therefore, the dysfunction and depletion of stem cells and progenitor cells
contribute to aging [137]. The lncRNA HOTAIR prevents premature depletion of the renal
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progenitor population in the kidney thanks also to its role in constraining the expression
of the cellular inhibitor p15, helping to keep the cell cycle of these progenitor cells active;
this action is carried out by methylation of histone H3K27me3 on the promoter of the p15
gene [136]. Through the trimethylation of lysine 27 in histone H3 in the p15 promoter,
HOTAIR suppresses the production of the protein p15 in normal ARPCs, favoring growth
and self-renewal (Figure 3). Leukemia-causing stem cells have also been identified to use
a similar approach [138]. Epidermal stem cells, during the re-epithelialization process of
tissues damaged by injury, showed an overexpression of the lncRNA HOTAIR. It plays an
important role in the regulation of epidermal stem cells and in the maintenance of in vitro
stem cell conditions [139].
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Figure 3. HOTAIR regulates ARPC stemness properties. HOTAIR regulates the proliferation and
self-renewal capacity of ARPCs, limits their apoptosis, and regulates CD133 expression, an inverse
marker of senescence and functional marker of stemness in ARPCs. HOTAIR also regulates the
secretion of α-Klotho, which in turn can influence the surrounding tissues and therefore modulate
tissue aging, playing an important role in preventing cells from becoming senescent in the short
term. These mechanisms are regulated through p15 epigenetic silencing by HOTAIR. This lncRNA
acts as a molecular scaffold to link the PRC2 and LSD1 protein complexes and coordinates the
chromatin targeting of these proteins. The complex leads to histone H3K27 trimethylation and H3K4
demethylation in the p15 gene promoter. Trimethylation of H3K27 leads to the silencing of cyclin p15
and helps keep the ARPC cell cycle active, sustaining self-renewal and proliferation. From: Angela
Picerno, Francesca Giannuzzi, Claudia Curci, Giuseppe De Palma, Mariagiovanna Di Chiano, Simona
Simone, Rossana Franzin, Anna Gallone, Vito Francesco Di Lorenzo, Alessandra Stasi, Giovanni
Battista Pertosa, Carlo Sabbà, Loreto Gesualdo, Fabio Sallustio, The Long Non-coding RNA HOTAIR
Controls the Selfrenewal, Cell Senescence, and Secretion of Anti-aging Protein Klotho in Human
Adult Renal Progenitor Cells, Stem Cells, 2022, Page 11, with permission of Oxford University Press.



Cells 2023, 12, 1115 13 of 20

HOTAIR is a member of the Hox gene family, a group of homeobox genes that
define areas of an embryo’s body plan along the head-to-tail axis of animals. Gene target
modulation results from HOTAIR’s recruitment of the PRC2 and LSD1 complexes, which
act as a link between them [122,140]. Hundreds of additional genes can be activated
or repressed by Hox proteins, a class of transcription factors that can bind to particular
enhancer regions on DNA. It is interesting to note that HOTAIR can control HOXc11 and
that, together with PAX2, they are crucial for controlling the expression of early genes
involved in kidney development [141,142]. This is remarkable since ARPCs are the only
adult cells that express the renal embryonic transcription factor PAX2, which is considered
a unique identifier of these cells together with CD133 and CD24 markers [124,129].

In addition to being a constitutive marker of renal progenitors, CD133 also limits
cellular senescence and functions as a permissive factor for Wnt/beta-catenin signaling,
which controls cell proliferation in response to injury and renal tubular repair [143]. As
a result, in ARPC, CD133 is a marker inversely correlated with the development of stem
cell senescence. In fact, lower Klotho levels, equivalent to those of RPTECs, are produced
in ARPCs by the HOTAIR knockout. Secreted Klotho has been found to be essential
for the retention of normal proliferation and differentiation in numerous types of stem
cells [137]. Proteases break the extracellular domain of this transmembrane protein, which
the kidney then releases into the bloodstream. Then, Klotho expression and circulating
levels slow down the aging process in the cells of other tissues. It controls a number
of aging-related pathways, including insulin signaling, Wnt signaling, and phosphate
homeostasis. Additionally, p53/p21, cAMP, protein kinase C, and TGF-β intracellular
signaling pathways are all impacted by Klotho [144].

Not much else is known about lncRNAs in human ARPCs. In mouse embryonic
kidney cells, among the 17 specific lncRNAs that were identified, Gm29418 had enhancer-
like function on a key metanephric mesenchymal (MM) regulatory gene, Six2. This gene
regulates the lineage commitment to nephrogenesis and is essential for the self-renewal
of MM cells in the developing kidney. It is known that the Hox-Eya-Pax complex and
Tcf/Lef1, a part of the Wnt signaling pathway, control Six2 expression [145].

6. Conclusions

Numerous studies have demonstrated that lncRNAs express at various levels, are
implicated in all phases of renal disorders, and have identified lncRNAs as diagnostic
biomarkers. Effectively, compared to miRNAs, lncRNAs have the advantage of being more
tissue-specific. LncRNAs may be present as persistent biomarkers in serum and urine.
The key to their utility as biomarkers is that they exhibit variable levels of expression in
various diseases and are linked to pathways, targets, and events involved in the patho-
physiology of kidney disease. However, to the best of our knowledge, few studies have
been published in the nephrology field to understand how the lncRNA can mechanisti-
cally affect diseases. Instead, we believe that focusing in the future on the study of their
mechanisms of action may bring innovation to the therapeutic approach. Various solutions
are being studied to target lncRNA, including the delivery of efficient drugs. Aguilar et al.
showed that drugs targeting non-coding RNA can be developed by specifically disrupting
RNA structure and epigenetic function through small molecules; in particular, they elab-
orated a screening strategy and identified the compound X1, which binds the prototype
lncRNA Xist, suppressing histone H3K27 trimethylation, and blocking the initiation of
X-chromosome inactivation [146].

Renal damage progression and LncRNAs are intimately connected, and therapeutic
approaches that target these molecules may be helpful to treat renal diseases. MicroRNAs
and lncRNAs have a significant role in the regulation of a number of kidney diseases,
and the current issue in the field of RNA interference therapy is the creation of novel
treatments. Functional miRNAs have been found to be carried by a number of carriers,
including exosomes, microvesicles, and high-density lipoproteins, in conjunction with other
substances (lipids, proteins, and mRNAs) [147,148]. Specific renal cells can get functional
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lncRNAs from these naturally occurring nanoparticles. It is also possible to use extrinsic
nanotechnology vehicles, such as 13 nm broad gold nanoparticles functionalized with
monolayers of RNA molecules modified with alkylthiols. Another technology that is
helpful in the field of non-coding RNAs is the CRISPR/cas9 system, which may be used
to target specific regions and prevent the long-term expression of RNAs. So, depending
on the conditions, it is possible to transfer lncRNAs, miRNAs, or antisense sequences to
the kidney, and targeting lncRNAs may be a precise treatment approach for developing
kidney illnesses.
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