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Abstract: Background: Women with polycystic ovary syndrome (PCOS) often change their metabolic
profile over time to decrease levels of androgens while often gaining a propensity for the development
of the metabolic syndrome. Recent discoveries indicate that microRNAs (miRNAs) play a role in the
development of PCOS and constitute potential biomarkers for PCOS. We aimed to identify miRNAs
associated with the development of an impaired metabolic profile in women with PCOS, in a follow-
up study, compared with women without PCOS. Methods and materials: Clinical measurements
of PCOS status and metabolic disease were obtained twice 6 years apart in a cohort of 46 women
with PCOS and nine controls. All participants were evaluated for degree of metabolic disease
(hypertension, dyslipidemia, central obesity, and impaired glucose tolerance). MiRNA levels were
measured using Taqman® Array cards of 96 pre-selected miRNAs associated with PCOS and/or
metabolic disease. Results: Women with PCOS decreased their levels of androgens during follow-
up. Twenty-six of the miRNAs were significantly changed in circulation in women with PCOS
during the follow-up, and twenty-four of them had decreased, while levels did not change in the
control group. Four miRNAs were significantly different at baseline between healthy controls and
women with PCOS; miR-103-3p, miR-139-5p, miR-28-3p, and miR-376a-3p, which were decreased
in PCOS. After follow-up, miR-28-3p, miR-139-5p, and miR-376a-3p increased in PCOS women
to the levels observed in healthy controls. Of these, miR-139-5p correlated with total testosterone
levels (rho = 0.50, padj = 0.013), while miR-376-3p correlated significantly with the waist-hip ratio at
follow-up (rho = 0.43, padj = 0.01). Predicted targets of miR-103-3p, miR-139-5p, miR-28-3p, and miR-
376a-3p were enriched in pathways associated with Insulin/IGF signaling, interleukin signaling, the
GNRH receptor pathways, and other signaling pathways. MiRNAs altered during follow-up in PCOS
patients were enriched in pathways related to immune regulation, gonadotropin-releasing hormone
signaling, tyrosine kinase signaling, and WNT signaling. Conclusions: These studies indicate that
miRNAs associated with PCOS and androgen metabolism overall decrease during a 6-year follow-up,
reflecting the phenotypic change in PCOS individuals towards a less hyperandrogenic profile.

Keywords: biomarker; metabolic syndrome; microRNA; PCOS; polycystic ovary syndrome; circulation;
ovary; non-coding RNA; clinical trial

1. Introduction

Polycystic Ovary Syndrome (PCOS), defined by hyperandrogenism, oligo- or anovu-
lation, and polycystic ovary morphology according to the Rotterdam criteria [1], is also
characterized by insulin resistance, which is a part of the pathogenesis [2]. The etiology of
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PCOS is not known in detail but is mainly caused by ovarian and endocrine disturbances,
which in younger women primarily manifests as reproductive symptoms including infer-
tility, hyperandrogenism, irregular menstrual cycles, polycystic ovarian morphology, and
an increased risk of pregnancy complications if pregnancy occurs [1]. Over time, these
symptoms become less prominent, and metabolic disturbances, which are closely related
to the pathophysiology of PCOS, become more pronounced. Women with PCOS have an
increased risk of developing metabolic syndrome (MetS) and have a four times higher risk
of presenting with type 2 diabetes (T2D) [3,4].

MicroRNA (miRNA) are small, non-coding RNA molecules that regulate gene expres-
sion by post-transcriptional inhibition of targeted mRNAs [5]. MiRNAs bind to their target
mRNA and either inhibit translation or promote their degradation. As present in all body
compartments and in circulation, miRNAs are suitable as biomarkers [6]. Furthermore,
miRNAs are protected from degradation by Ribonucleases because they are contained in
extracellular vesicles, bound in protein complexes or lipoproteins [6]. Studies have shown
an altered expression of miRNAs in insulin-sensitive tissues from obese or overweight indi-
viduals and patients with T2D, suggesting a potential role of these small RNA molecules in
the complications associated with MetS and T2D [7,8].

Another quality of miRNAs as biomarkers is the ability to reflect the changes in clinical
disease stages. This has been demonstrated in weight-loss studies and studies of miRNA
levels during treatment with insulin sensitizers and bariatric surgery [9–11].

While the correlation between metabolic disease and levels of specific miRNAs is
well described [12,13], the correlation between miRNAs and reproductive hormones and
PCOS is still debated. Several studies have investigated the miRNA profile in women with
PCOS [14,15], investigated miRNA biomarkers in serum or plasma [16–20], or searched
for miRNAs in follicular fluid [16,21,22] to unravel the biological mechanisms behind
hyperandrogenism and anovulation of PCOS. The results of these studies are, however,
of great variability, perhaps because of the complexity and heterogeneity of PCOS, and
only a few studies have been able to validate previous findings, although some miRNAs
have been reported in more than one study. Several studies have reported miR-93 levels
altered in both adipose tissue, serum, and granulosa cells in women with PCOS [23–25].
Likewise, other research groups have shown that miR-21 is altered in serum, granulosa
cells, and follicular fluid [26,27]. Several recent reviews have covered this active field of
research [14,15,28]. However, none of these studies addressed the change in miRNA levels
over time in PCOS patients, and it is not known how the changes in clinical markers and
reproductive hormones of women with PCOS are reflected in the miRNA profile over time;
knowledge which is essential in order for miRNA to serve as biomarkers. Thus, with this
longitudinal study, we aim to assess selected miRNAs in PCOS women before assisted
reproductive therapy and after an average of 6 years of follow-up (FU) to investigate the
relationship between the miRNA profile and metabolic changes over time.

2. Materials and Methods
2.1. Study Design and Participants

The present study consists of a FU study of 46 women with PCOS and nine controls.
Women were diagnosed according to the Rotterdam 2003 consensus criteria [29]. This
study was based on the PICOLO cohort of 186 women with PCOS and 38 healthy controls
recruited between 2010 and 2013 from three Danish hospitals: Herlev, Hvidovre, and
Holbaek Hospital [30]. A flow chart of the participants is shown in Figure 1. Descriptions
of the PICOLO cohort can be found in [21,31,32]. The control group and the PCOS group
were not matched at baseline (BL) but were similar regarding BMI and age in the FU study.
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Figure 1. Flowchart of included women with PCOS and controls at BL and at FU.

In the FU study, all participants of the PICOLO study from Holbaek Hospital were
invited for FU re-examination at Holbaek Fertility Clinic 6 years after the first visit (Baseline;
BL). Exclusion criteria: Oral contraceptives within 8 weeks of examination, endocrine
disease, endometriosis, premature ovarian insufficiency, breastfeeding, and pregnancy
(Figure 1). Serums from BL and FU were used for miRNA analysis. This study followed
the Declaration of Helsinki II, was approved by the Danish Data Protection Agency (REG-
31-2016) and the Danish Scientific Ethical committee of region Zealand (Journal no. SJ-525),
and was registered at Clinicaltrials.gov (NCT03142633). All subjects gave informed written
consent prior to inclusion.

2.2. Anthropometric and Clinical Characteristics at FU

Clinical examination at FU included anthropometric measurements (height, weight,
blood pressure (BP)), vaginal ultrasound, blood sampling, and an oral glucose tolerance
test (OGTT).

An OGTT was performed after an overnight fast (>8 h). We collected venous blood
samples and measured glucose, serum insulin, and C-peptide at −5, 0, 30, and 120 min
after a 75 g glucose load. HOMA-IR was calculated as (fasting insulin (µU/mL) * fasting
glucose (mmol/l))/22.5 [33]. Clinical hirsutism was evaluated with Ferriman-Gallwey
score (FG-score). Total testosterone (T) was measured using liquid chromatography mass
spectrometry (Xevo TQD, Waters, Milford, MA, USA). Sex hormone binding globulin
(SHBG), plasma C-peptide, serum insulin, and dehydroepiandrosterone sulfate (DHEAS)
were measured on ADVIA Centaur® XP (Siemens Healthcare, Oxford, UK). Free T was
calculated from total T and sex hormone binding globulin (SHBG) described by Vermeulen
et al. [34]. Plasma total cholesterol, high-density lipoprotein (HDL) cholesterol and triglyc-
erides, luteinizing hormone (LH), follicle-stimulating hormone (FSH), and androstenedione
were measured according to standard laboratory procedures at Holbaek Hospital.



Cells 2023, 12, 983 4 of 16

2.3. Serum MiRNA Isolation and Analysis

MiRNA analyses were conducted using serum from venous blood samples collected in
a procoagulant drying tube. Serum and cellular fractions were separated by centrifugation
at 2000 rpm for 20 min. Serum was carefully removed, leaving 0.5 mL in order to avoid
disturbance of the interface. The serum was stored at −80 ◦C until analysis. Total RNA
was extracted from serum with TriReagent LS (Sigma-Aldrich Denmark, Copenhagen,
Denmark), according to manufacturer’s protocol. RNA concentration and purity were
determined using NanoDrop ND-1000 (ThermoFisher Scientific, Hvidovre, Denmark).

RNA was reverse transcribed using a 96 miRNA custom-designed TaqMan Reverse
Transcription Kit (ThermoFisher Scientific, Hvidovre, Denmark) according to the manufac-
turer’s protocol. The RT-product was pre-amplified with TaqMan® PreAmp Master Mix
and miRNA PreAmp Custom Primer Pools. MiRNA levels were measured by quantita-
tive PCR using human TaqMan low density array (TLDA) cards containing 96 miRNAs
(ThermoFisher Scientific, Hvidovre, Denmark) (Table S1). The custom array card was
designed with miRNAs from the literature associated with PCOS, metabolic syndrome,
insulin resistance or features of the metabolic syndrome, and in some cases circulating
miRNAs associated with ovarian cancer along with three miRNAs selected based on an
in-house study [32]. Expression data were obtained using the ViiA 7 real-time PCR system
and analyzed using QuantStudio software.

Amplification plots were manually inspected, and assays with absent or poor ampli-
fication or low fluorescent intensity were excluded for further analysis. Cycle threshold
(Ct) >32 was considered undetectable following manufacturer’s guidelines and excluded
from the analysis. A miRNA had to be present in a minimum of ten subjects to be in-
cluded in further analysis steps. Thirteen (n = 13) miRNA at FU and nine (n = 9) miRNA
at BL did not fulfill these criteria. Data were normalized against the geometric mean of
two references, the endogenous small nuclear U6 and miR-484 using the delta-delta Ct
method and log-transformed for further analysis.

2.4. Statistical Analysis

All data were analyzed with Statistical Packages for Social Sciences (SPSS, vers. 27,
IBM, USA) and GraphPad Prism (Version 9.1.2, GraphPad Inc., La Jolla, CA, USA). All data
are presented as means (SD) or medians (IQR) if not normally distributed. Categorical vari-
ables are presented as numbers (percentages). All data were tested with the Shapiro-Wilk
test for normal distribution. The following variables did not follow normal distributions
and were log-transformed: Free T, total T, SHBG, FG-score, FSH, LH, androstenedione, total
cholesterol, HDL- and LDL-cholesterol, triglycerides, glucose, insulin, C-peptide, HOMA-
IR and miRNAs. For statistical analysis, grouped data were compared with a students’
t-test for unpaired and paired samples or one-way ANOVA with a Tukey post-hoc test.
Visualization of data was made using RStudio (v. 1.3.1093, RStudio, PBC Boston, MA, USA,
http://www.rstudio.com (accessed on 20 February 2023)). Heatmaps were made with the
R-package ‘pheatmap’ (vers. 1.0.12 [35]). Correlations were assessed with Pearson’s test
and visualized using the R-package ‘corrplot’ (vers. 0.89 [36]). Binary logistic regression
was used to predict dichotomous outcomes using correction for BMI and age as well in
order to create receiver operating characteristic curves (ROC) analysis. The discriminating
power of ROC analysis is presented in the form of an AUC (R package ´cutpointr´, vers.
1.1.1 [37]). Missing data were handled with pairwise deletion. A p-value of <0.05 was
considered statistically significant.

3. Results
3.1. Clinical Phenotype at FU in Control and PCOS Subjects

The median FU time was 6.1 years (range 4.0–7.1 years). The women with and without
PCOS were comparable both at BL and at FU (Table 1), except for a higher w/h-ratio at BL
in the PCOS group (p = 0.03). BMI increased during the study period in both groups (PCOS:
p = 0.02, controls: p = 0.02), the w/h-ratio increased in the control group only (p = 0.03),

http://www.rstudio.com
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and the diastolic BP decreased in the PCOS only (p = 0.02) (Table 1). The PCOS group
presented, as expected, with significantly higher measures of androgen parameters (total
T, free T, androstenedione, and FG-score) at BL. These differences persisted at FU, except
for free T. Comparing BL with FU, the PCOS group demonstrated a significant decrease in
all androgen parameters, whereas the control group only showed a significant decrease in
total T and androstenedione (Table 1).

Table 1. BL and FU characteristics of the study participants. Data are represented as means (SD) or as
medians (interquartile range) if not normally distributed. * p < 0.05, ** p < 0.01, *** p < 0.001.

BL FU BL vs. FU

Control PCOS p Control PCOS p Control
p

PCOS
p

Age (years) 30.2 (4.9) 28.5(4.2) 36.0 (5.7) 34.3 (4.3) - -
Weight (kg) 74.6(13.5) 77.2 (19.9) 79.8 (12.1) 78.2 (17.7) - -
Height (cm) 169.8 (3.6) 168.0 (6.8) 170.1 (5.3) 168.1 (6.7) - -

BMI (kg/m2) 25.6 (4.7) 26.8 (5.5) 27.7 (4.4) 27.7 (6.1) * *
Waist-Hip ratio 0.78 (0.1) 0.83 (0.1) * 0.85 (0.6) 0.84 (0.1) * -

Systolic Blood pressure
(mmHg) 124.1 (16.1) 122.4 (10.9) 116.2 (18.6) 120.7 (13.5) - -

Diastolic Blood pressure
(mmHg) 78.9 (14.1) 76.3 (10.3) 72.7 (16.4) 72.3 (11.2) - *

Metabolic Characteristics
F-p-Glucose (mmol/L) 5.3 (4.7–6.0) 5.2 (5.0–5.4) 4.7 (4.6–5.2) 4.8 (4.6–5.1) - **

F-s-Insulin (pmol/L) 61.8 (44.9–75.9) 45.8 (30.4–104.1) 48.1
(37.0–67.0)

70.0
(37.8–108.9) - **

F-s-C-peptide (nmol/L) 0.6 (0.6–0.7) 0.6 (0.4–0.8) 0.6 (0.6–0.7) 0.7 (0.5–1.1) - ***
HOMA-IR (mU*mmol/L2) 2.1 (1.5–2.6) 1.5 (1.0–3.3) 1.5 (1.1–1.9) 1.9 (1.1–3.6) - *
HDL cholesterol (mmol/L) 1.5 (1.3–1.6) 1.5 (1.2–1.8) 1.4 (1.3–1.4) 1.4 (1.2–1.6) - -
LDL cholesterol (mmol/L) 3.1 (2.6–3.5) 2.6 (2.1–3.1) 2.9 (2.1–3.1) 2.4 (2.1–3.0) - -
Total cholesterol (mmol/L) 4.9 (4.3–5.1) 4.5 (4.1–5.0) 4.6 (3.8–4.8) 4.4 (4.0–5.0) - -

Triglyceride (mmol/L) 0.7 (0.7–0.8) 0.7 (0.6–1.2) 0.9 (0.8–1.1) 0.8 (0.7–1.5) - **

Androgen Markers
DHEAS (Umol/L) 5.29 (1.86) 6.27 (2.24) 4.33 (2.41) 4.81 (2.13) - **

SHBG (nmol/L) 71.0
(47.0–75.0)

59.5
(36.0–89.0)

53.0
(32.0–66.0)

46.0
(35.0–82.0) - **

Total testosterone (nmol/L) 1.0 (0.8–1.5) 1.9 (1.5–2.6) *** 0.9 (0.4–0.9) 1.4 (0.9–2.0) ** * ***

Free testosterone (nmol/L) 0.017
(0.013–0.02)

0.032
(0.019–0.05) ** 0.014

(0.010–0.015)
0.023

(0.012–0.05) - **

Androstenedione (nmol/L) 4.2 (3.4–5.2) 6.9 (4.7–9.0) ** 2.6 (2.2–3.2) 5.8 (4.2–8.9) *** *** *
LH/FSH ratio 0.9 (0.6–1.2) 1.7 (1.2–2.4) *** 0.8 (0.8–1.1) 1.5 (1.0–2.2) * - *

Ferriman-Gallwey score 2.0 (2.0–3.0) 5.0 (3.0–9.5) ** 1.00 (0.0–5.0) 6.0 (3.0–9.0) ** - -

Lifestyle characteristics
Metformin use

(current/previous/no) 9/22/14

ART outcome successful
(yes/no) 7/2 38/8

Smoking
(current, previous, no) 3/2/4 9/11/26

Alcohol consumption
(yes, no) 3/6 10/36

Regarding metabolic parameters, the groups were comparable at BL and at FU. How-
ever, when comparing BL with FU using paired samples analysis, the PCOS group sig-
nificantly increased their serum-insulin, C-peptide and HOMA-IR over time. The fasting
glucose declined during this study in both groups but only significantly in the PCOS
group. Control and PCOS women were comparable with regard to the success of assisted
reproductive therapy (ART) and the degree of smoking and alcohol consumption, while
metformin use was frequent (Table 1).
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3.2. Longitudinal Changes in MiRNA Levels

The longitudinal design enabled an evaluation of the changes in miRNA levels over
time. Out of the 96 tested miRNAs, levels of thirty miRNAs were significantly different in
PCOS women from BL to FU (Table 2). The majority (22) of these miRNAs were decreased
in levels. These miRNAs were present in at minimum half of the PCOS women and with
absolute fold changes greater than two. None of the tested miRNAs changed over time
within the control women (Table S2).

Table 2. Thirty miRNAs change over time in PCOS women. Shown are the mean fold change ± standard
deviation as well as the number of women included. Changes in expression levels were evaluated
with a paired student t-test. p values were corrected for multiple testing using Bonferroni corrections.
MiRNAs are human miRNAs (hsa-miR) unless otherwise specified. Some assays were designed for
murine miRNAs, but in these cases, the miRNA was completely homologous. PCOS (FF): Levels in
follicular fluid associated with PCOS, PCOS (circulating): Levels in circulation associated with PCOS.
NAFLD: Non-alcoholic fatty liver disease.

miRNA Reported Association Difference in
dCt ± SD Direction n p padj

miR-451a PCOS (circulating) 6.3 ± 3.2 Decreased 34 5.7 × 10−13 5.5 × 10−11

miR-24-3p PCOS (FF) 5.8 ± 5.2 Decreased 42 8.4 × 10−9 8.1 × 10−7

miR-16-5p PCOS 5.3 ± 3.1 Decreased 39 4.8 × 10−13 4.6 × 10−11

miR-21-5p PCOS (circulating) 4.6 ± 3 Decreased 27 2.2 × 10−8 2.1 × 10−6

miR-142-3p Dysregulated in PCOS
granulosa cells 4.5 ± 3.3 Decreased 24 8.4 × 10−7 8.1 × 10−5

miR-223-3p PCOS (circulating 4.5 ± 3.2 Decreased 43 1.4 × 10−11 1.3 × 10−9

miR-720 PCOS (FF) 4.1 ± 3.2 Decreased 44 1.1 × 10−10 1.1 × 10−8

miR-19b-3p PCOS (circulating) 4 ± 3 Decreased 38 7.3 × 10−10 7.0 × 10−8

miR-151-3p PCOS (FF) 3.8 ± 2 Decreased 36 2.2 × 10−13 2.1 × 10−11

miR-342-3p Circulating levels associated
with insulin resistance 3.7 ± 2.7 Decreased 35 2.3 × 10−9 2.2 × 10−7

miR-146a-5p PCOS (circulating) 3.6 ± 2.5 Decreased 39 7.4 × 10−11 7.1 × 10−9

miR-126-3p PCOS (circulating) 3.4 ± 2.6 Decreased 37 3.6 × 10−9 3.4 × 10−7

miR-93-5p PCOS (circulating) 3.2 ± 2.5 Decreased 35 9.9 × 10−9 9.5 × 10−7

miR-145-5p PCOS (circulating) 3.2 ± 2.1 Decreased 32 1.5 × 10−9 1.5 × 10−7

miR-1305 Circulating biomarkers of
ovarian cancer 3.1 ± 5.9 Decreased 24 1.6 × 10−2 1.0

miR-320a-3p PCOS (FF) 3.1 ± 1.8 Decreased 42 3.2 × 10−14 3.1 × 10−12

miR-151-5p PCOS (FF) 2.7 ± 4.2 Decreased 29 1.8 × 10−3 0.17

miR-17-5p Circulating biomarkers of
metabolic syndrome 2.7 ± 2.6 Decreased 41 9.8 × 10−8 9.4 × 10−6

miR-423-5p Dysregulated in PCOS
granulosa cells 2.5 ± 1.8 Decreased 33 4.0 × 10−9 3.8 × 10−7

miR-139-5p PCOS (circulating) 2.5 ± 2.0 Decreased 30 2.4 × 10−7 2.3 × 10−5

miR-28-3p Granulosa cell proliferation 2.3 ± 1.8 Decreased 25 7.9 × 10−7 7.6 × 10−5

miR-30b-5p Associated with NAFLD 2.2 ± 2.4 Decreased 33 6.8 × 10−6 6.6 × 10−4

miR-30c-5p PCOS (circulating) 2.2 ± 2.3 Decreased 37 1.2 × 10−6 1.2 × 10−4

miR-20a-5p PCOS (circulating) 1.9 ± 2.9 Decreased 33 5.4 × 10−4 0.052
miR-222-3p PCOS (circulating) 1.8 ± 2.5 Decreased 35 2.1 × 10−4 0.020
miR-221-3p Associated with inflammation 1.7 ± 2.5 Decreased 26 1.4 × 10−3 0.130

miR-1233-3p Circulating biomarkers of
ovarian cancer 5.5 ± 7.1 Increased 28 3.2 × 10−4 0.031

miR-518f-3p PCOS (FF) 6.6 ± 6.3 Increased 34 7.9 × 10−7 7.6 × 10−5

miR-520c-3p PCOS (FF) 8.4 ± 8.1 Increased 30 3.7 × 10−6 3.6 × 10−4

miR-618 Not previously published 10.3 ± 7.5 Increased 29 5.1 × 10−8 4.9 × 10−6
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3.3. MiRNA Profile Associated with a Shift in Metabolic Profile

When comparing the levels of the 96 selected miRNAs, lower levels of four miRNAs
(miR-28-3p (p < 0.045), miR-103a-3p (p < 0.009), miR-139-5p (p < 0.005) and miR-376a-3p
(p < 0.017)) were observed in women with PCOS already at BL compared with controls
(Figure 2). At FU, women with PCOS presented with miRNA levels similar to those
observed in the controls. Subsequently, these miRNAs changed significantly over time
within the PCOS group (miR-28-3p (p < 0.003), miR-139-5p (p < 0.00001), and miR-376a-3p
(p < 0.005)), except for miR-103-3p (Figure 2). Interestingly, we found no differences in
the 96 pre-selected miRNAs, including the aforementioned four miRNAs at FU, when
comparing the two groups.

Figure 2. Relative expression of miRNAs which were significantly different at BL between healthy
controls and women with PCOS. Levels of the individual miRNAs were normalized against the geo-
metric mean of miR-484 and U6. The comparison of BL or FU levels was made with an independent
student t-test, while a paired t-test was used for comparing BL vs. FU levels. *: p < 0.05, **: p < 0.001,
**** p < 0.00001.

3.4. BL Circulating MiRNAs Are Associated with PCOS

Given the heterogeneous nature of PCOS, we investigated whether miRNAs, which
were significantly different at BL, could be used to discriminate between women with PCOS
and healthy controls using ROC-curve analysis. Using logistic regression to include age
and BMI at BL, both circulating miR-139-5p (area under the curve (AUC) = 0.857, p = 0.01),
miR-376a-3p (AUC = 0.838, p = 0.02) and miR-28-3p (AUC = 0.807, p = 0.02) showed high
discriminatory power with a specificity of a 100% based on an optimal threshold value
(the Youden index) (Figure 3). Sensitivities ranged from 78% to 59% (order from highest to
lowest; miR-376a-3p, -139-5p, and -28-5p). When combining free T with age and BMI at
BL, the ROC-curve analysis yields a lower discriminatory power (AUC = 0.788, p = 0.01,
Figure S1); the discriminatory power of single miRNAs is therefore comparable to, or even
better than, free T.
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Figure 3. ROC curves of the four miRNAs measured at BL. The optimal cut-off point (Youden index)
is marked with a black circle. AUC: Area under the curve. miR-103-3p: n = 25; miR-139-5p: n = 40;
miR-28-3p: n = 38, miR-376a-3p: n = 31.

3.5. Androgen Levels and LH/FSH Ratio Correlate with MiRNA Levels at BL

We investigated which of the clinical and biochemical markers correlated with the
four miRNAs at either BL or FU within the PCOS women (Table 3 and Supplementary
Figure S2). At BL, both miR-139-5p (ρ = 0.50, p = 0.002) and miR-28-3p (ρ = 0.37, p = 0.043)
correlated with total T and miR-139-5p also correlates with free T (ρ = 0.47, p = 0.005)
within PCOS women (Table 3). Likewise, LH/FSH ratio correlated positively with both
miR-139-5p (ρ = 0.36, p = 0.038) and miR-28-3p (ρ = 0.40, p = 0.028) (Table 3). The women
with PCOS did not alter their waist-hip ratio significantly from BL to FU. However, at FU,
their miR-376a-3p levels had increased and presented with a positive correlation be the
two (ρ = 0.43, p = 0.042). Of interest, total T still correlated with miR-28-3p at FU (ρ = 0.40,
p = 0.016). Both the association between miR-376a-3p and waist-hip ratio and between total
T and miR-28-3p remained significant upon controlling for the effects of age and BMI at the
individual time points (Table 3).

Table 3. Correlation between clinical and biochemical markers with the four selected miRNA within
the PCOS women. The individual time points (BL or FU) are kept separate. Spearman rho is displayed,
as well as the number of women included. Padj (two-tailed, partial correlations): correlations between
the selected variable controlling for age and BMI at the respective time points. N: number of PCOS
women included in the analysis.

Time
Point

Clinical/Biochemical
Marker MiRNA N Spearman

Rho (ρ) p padj.

BL Total T
miR-139-5p 34 0.50 0.002 0.013
miR-28-3p 31 0.37 0.043 0.090

Free T miR-139-5p 34 0.47 0.005 0.051
Waist-hip ratio miR-376a-3p 23 0.43 0.042 0.010

FU Total T miR-28-3p 35 0.40 0.016 0.031

3.6. Pathway Enrichment Analysis for the Four MiRNAs Different between PCOS and Control
Women during FU

To gain insight into possible miRNA functionality, predicted target genes of the
four miRNAs were used to construct a pathway enrichment analysis (Figure 4). A total of
1470 unique predicted targets was identified (Figure 4A) with limited overlaps between pre-
dicted targets of all four miRNAs. The 3′ untranslated region of the MAX gene-associated
protein (MGA) was common among all of the four miRNAs. Genes targeted by miR-103-3p
were enriched within the fibroblast growth factor (FGF) signaling pathway-a pathway
relevant for both proliferation of granulosa cells as well as steroidogenesis (Figure 4B).
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Figure 4. Overview of predicted targets and pathway enrichment analysis of each of the four
miRNAs, which change differentially over time in PCOS women compared with controls, as well
as a combination hereof. (A) Venn diagram of predicted targets identified through TargetScan v.7.2.
(human). (B) Enrichment analysis of predicted targets. The color of the circles corresponds to the
degree of positive fold enrichment, while the size of the circle corresponds to the false discovery rate
(FDR) adjusted p-values.

One of the most highly enriched pathways was the p53 pathway by glucose depri-
vation, which contains genes predicted to be targeted by mIR-28-3p. Furthermore, genes
belonging to the insulin/IGF pathway and apoptosis signaling pathway were predicted to
be targeted by miR-28-3p (Figure 4B). Three pathways associated with either angiogene-
sis, Wnt signaling, or Cadherin signaling were enriched by genes targeted by miR-139-5p.
Lastly, miR-376-3p targeted genes within either pyrimidine de novo biosynthesis, glutamate
receptor pathways, or genes associated with axon guidance mediated by netrin (Figure 4B).
Furthermore, using a combination of all of the predicted targets demonstrated, besides
the already mentioned pathways, that pathways associated with hormonal regulation and
insulin resistance were also among the enriched ones (Figure 4B).

3.7. Pathway Enrichment Analysis for the MiRNAs Significantly Changed in PCOS Women
during FU

To obtain information regarding possible miRNA functional actions, we analyzed
the enriched pathways of predicted target genes of either the upregulated or the down-
regulated miRNAs in PCOS patients during the 6-yr FU (Figure 5). A general observation
was that immune-regulation and inflammatory pathways were depleted among the target
mRNAs of miRNAs increased in PCOS patients during the FU, while cadherin signaling,
growth factor receptor signaling, and tyrosine kinase receptor signaling were enriched
among target mRNAs of miRNAs increased in PCOS patients. MiRNAs decreased in PCOS
patients during FU had mRNA targets enriched in membrane trafficking, nervous system
development, angiogenesis, and post-translational modifications, while these miRNAs had
mRNA targets depleted in pathways of antimicrobial peptides and binding and uptake of
scavenger receptors.
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Figure 5. Overview of predicted pathway enrichments of the mRNA targets of the miRNAs signifi-
cantly changed during FU, either upregulated or downregulated in PCOS patients. The color of the
circles corresponds to the degree of positive fold enrichment, while the size of the circle corresponds
to the false discovery rate (FDR) adjusted p-values.

4. Discussion

With this longitudinal FU study, we aimed to investigate the relationship between
the miRNA profile and metabolic changes over time in women with PCOS. The women
with PCOS changed clinically during the 6-yr FU towards a more impaired metabolic (in
terms of increasing BMI, insulin levels, HOMA-IR, and levels of C-peptide) and less hyper-
androgenic (in terms of decreasing DHEAS, SHBG, total T, free T, and androstenedione).
Meanwhile, only a few parameters changed significantly in the control group.

While the connection between Type 2 diabetes (T2D) and PCOS is well established [4,38],
the progression in cardiometabolic risk over time in women with PCOS is still being
debated. A recent systematic review [39] reports inconsistent findings in longitudinal
studies comparing cardiometabolic risk factors (BMI, waist circumference, blood pressure,
lipid profile, impaired glucose tolerance, and T2D) in women with PCOS with controls.
They conclude that the changes in these risk factors over time are similar in women with
PCOS and controls except for the incidence of T2D and IGT. This is in line with our findings,
except for the change over time in the w/h ratio that was significant in the control group
and not in the PCOS group. This could be caused by the comparatively smaller size of the
control group.

In our study, we observed differences in the androgen profile between the control
group and the PCOS group, as expected at BL, which persisted until FU. Further, all
androgen parameters decreased in both groups, although not all significantly in the control
group, diminishing the difference between the control group and the PCOS group. This
decrease over time in androgen parameters in women with PCOS is also well described in
other studies [40,41].

From BL to FU, thirty miRNAs significantly changed in the group of women with
PCOS, while none changed in the control group, and with twenty-two of the thirty miRNAs
being significantly (following FDR correction) and consistently decreased in circulation.
These measured miRNAs were selected based on previously reported associations between
circulating levels and traits of PCOS (Table S1). It is therefore evident that the decreased
levels of PCOS-associated circulatory miRNAs follow the decreased androgen load of
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the PCOS patients during the 6-yr FU. These observations strengthen the notion that
PCOS-associated miRNAs could be responsive to changes in circulating androgen levels.

Further, of these thirty miRNAs, three miRNAs were also significantly lower in women
with PCOS compared with the control group at BL. A fourth miRNA, miR-103a-3p, was
also significantly lower in the PCOS group compared with the control group at BL but did
not change over time. The change in these four miRNA levels correlated significantly with
the change in clinical parameters in the PCOS group. None of the 96 pre-selected miRNAs
were significantly different at FU in the PCOS group compared with the control group,
but within the PCOS group, a large proportion had decreased. At FU, the PCOS group
had changed towards a more non-PCOS-like phenotype, decreasing androgen parameters,
while the control group changed towards a more metabolic phenotype with increased BMI
and waist-hip ratio. Further, the pre-selected miRNAs were chosen as PCOS-associated
miRNAs. These factors constitute likely explanations of why we did not detect differences
in miRNA levels between controls and PCOS at FU.

Several studies link miR-28-3p to various cancers, and this miRNA is thus involved
in cell proliferation, migration, and invasion [42]. It is located within intron 6 of the LIM
domain containing its preferred translocation partner in the lipoma (LPP) gene, and single
nucleotide polymorphisms (SNPs) in the LPP gene have been associated with PCOS in
a GWAS study [43]. In our study, we found that miR-28-3p was lower in PCOS women
and that the levels of miR-28-3p increased at FU. This is in accordance with a study of
T2D subjects. Here, lower BL levels of plasma miR-28-3p were found in incident T2DM
subjects compared to non-T2D [44]. Using miR-28-3p together with miR-103, miR-29a-3p,
and six other miRNAs could predict the development of T2D [44]. On the other hand,
a modest increase of BL miR-28-3p was found in another study in patients who later
developed T2D [45]. Regardless of the time point, total T consistently correlated positively
with miR-28-3p. It could be speculated if miR-28-3p could contribute to follicular atresia
through apoptosis of granulosa cells mediated partly via the PI3K-Akt (protein kinase B)
pathway or the apoptosis signaling pathway. One of the predicted targets of miR-28-3p is
the transcription factor forkhead box O3 (FoxO3), which can induce pro-apoptotic events in
the granulosa cells. Indeed, levels of FoxO3 have been observed to be increased in women
with PCOS [46], which matches the lower levels of miR-28-3p at BL observed in this study.

Increased BMI has been associated with increased miR-103-3p levels in subcutaneous
adipose tissue biopsies from elderly subjects [47]. Furthermore, miR-103-3p is reported as a
modulator of glucose metabolism, and inhibition of miR-103-3p improved insulin sensi-
tivity [48]. We did not observe any correlations between BMI and miR-103-3p, nor were
markers related to glucose metabolism associated with miR-103-3p. However, predicted
target genes belonging to the fibroblast growth factor (FGF)-signaling pathway was signifi-
cantly enriched. Several FGFs are involved in either promoting granulosa cell proliferation
or atresia in ovarian follicles. Thus, dysregulation hereof, partly mediated by miR-103,
could explain phenotypical characteristics of the syndrome that persist despite the fact that
the six-year FU level of miR-103 did not change significantly within this time frame.

Upregulation of miR-139-5p lowered blood glucose levels and was able to protect dia-
betic mice from liver damage by oxidative stress [49]. As an additional layer of complexity,
interactions between miRNAs and circular RNAs (circRNAs) can affect the downstream
targets of these miRNAs, thus contributing further to the hormonal imbalance. Using
expression datasets associated with PCOS, five circRNAs were predicted to have the capa-
bilities of sponging miR-139-5p [50]. Thus lower BL miR-139-5p could be due to an indirect
sponging effect of these circRNAs. However, further validation experiments are needed to
confirm this hypothesis. Several transcripts targeted by miR-139-5p were associated with
three pathways: angiogenesis, cadherin, and Wnt signaling pathways (Figure 4). Interest-
ingly, miR-139-5p is shown to both negatively regulate Wnt signaling [51] and be repressed
by the effectors of Wnt signaling, beta-catenin, and TCF4 [52], forming a reciprocal balanced
feedback mechanism. Of note, Wnt signaling is important for the maintenance of ovarian
folliculogenesis [53].
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MiR-376a-3p is predicted to target angiogenesis, de novo pyrimidine synthesis, as
well as several types of glutamatergic signaling. Of possible importance, glutamatergic
signaling is required for the neuroendocrine feedback of gonadal steroid hormones on
GnRH neurons [54]. Pyrimidine synthesis is required during DNA synthesis for cell
division, and in corona radiata, cumulus cells from PCOS patients were found to be
upregulated [55], consistent with lower circulating levels of miR-376-3p in PCOS patients
at BL but not at FU.

ROC analysis for the four miRNAs indicated AUCs of 0.807-0.891, which is comparable
to that of free T (Figure 3 and Figure S1), an important benchmark for PCOS-associated
miRNAs, and should these be deemed suitable for further biomarker development. Of
note, the ROC analyses were performed for each miRNA independently, and it is possible
that in the future, several miRNAs may be combined to form biomarker algorithms.

The four miRNAs upregulated during FU In PCOS patients (Table 2), pathways such
as initial and antibody triggering of complement, activation of C4 and C2, B-cell receptor
regulation, and antimicrobial peptides are depleted for mRNA targets of the upregulated
miRNAs, possibly suggesting a relatively lower impact of the upregulated miRNAs. The
twenty-six miRNAs down-regulated during FU in PCOS patients in total target mRNAs
were significantly enriched in pathways such as membrane trafficking, nervous system
development, axon guidance, GnRH receptor pathways, and post-translational modifica-
tion (Figure 5), suggesting that target gene depression could occur during FU to allow for
increased GnRH signaling and, possibly, improved feedback from gonadal steroids [54].

We determined the change in miRNA levels during follow-up in a period where
the PCOS phenotype decreased. However, it should also be noted that a number of
confounding factors have also been demonstrated to change miRNA levels: Age has been
shown to change circulating miRNA levels, and miR-151-5p was decreased during aging,
similar to our observations (Table 2) [56], while miR-222-3p was increased during aging,
opposite to the direction observed by us [57]. Moreover, metformin was used by some of
the PCOS women in our study and has been shown to increase levels of miR-20a-5p [58]
and decreased levels of miR-151-3p [59], while we observed significantly decreased levels
of miR-20a-5p and miR-151-3p (Table 2). Thus, aging and metformin use change the levels
of specific miRNAs in circulation, and it will be important to adjust for such confounders
should specific miRNAs be developed as biomarkers in the future.

The strength of this study is the longitudinal design and the ability to track changes in
miRNA in women with PCOS over time, which, to our knowledge, has not been conducted
before. However, the major limitation of this study is the limited size of the control group,
but also generally the drop-out rate from BL to FU. The low number of participating
controls was the result of a recruitment issue, but was also caused by the fact that 22.1% of
the former participants were excluded from participation in the FU study due to one of the
listed criteria (Figure 1). Therefore, we have the most power to detect miRNAs that change
over time in the PCOS group, rather than being able to detect differences between controls
and women with PCOS. Interpretations of the differences should therefore be performed
with this in mind.

In this study, we examined a panel of 96 miRNAs previously associated with PCOS and
related phenotypes for their levels in circulation in a 6-yr FU in a small cohort of nine control
and 46 PCOS women examined at BL before ART and re-examined 6 yr later. Thirty of these
miRNAs were significantly changed, with the majority decreasing their levels during FU,
concomitant with PCOS patients experiencing a decrease in androgen status. Four of the
miRNAs (miR-28-3p, miR-103-3p, miR-139-5p, and miR-376a-3p) were regulated differently
over time in controls and PCOS women, their levels correlating with free T or total T, with
pathway analyses indicating enrichment of GnRH and inflammatory pathways.

In conclusion, our data points towards a circulating miRNA profile of PCOS associated
miRNAs that overall decrease over a 6-year FU period to mirror the phenotypic changes in
PCOS patients, which become less burdened by hyperandrogenism.
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