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Abstract: Primary cilia are sensory antennae located at the cell surface which mediate a variety of
extracellular signals involved in development, tissue homeostasis, stem cells and cancer. Primary cilia
are found in an extensive array of vertebrae cells but can only be generated when cells become quies-
cent. The small intestinal epithelium is a rapidly self-renewing tissue organized into a functional unit
called the crypt–villus axis, containing progenitor and differentiated cells, respectively. Terminally
differentiated villus cells are notoriously devoid of primary cilia. We sought to determine if intestinal
crypts contain a quiescent cell population that could be identified by the presence of primary cilia.
Here we show that primary cilia are detected in a subset of cells located deep in the crypts slightly
above a Paneth cell population. Using a normal epithelial proliferative crypt cell model, we show
that primary cilia assembly and activity correlate with a quiescent state. These results provide further
evidence for the existence of a quiescent cell population in the human small intestine and suggest the
potential for new modes of regulation in stem cell dynamics.

Keywords: primary cilium; Hedgehog pathway; intestinal epithelial cells; stem cells; HIEC-6 cell
line; tubulin; GLI; patched; BMI1

1. Introduction

The primary cilium is a microtubule-based structure found at the surface of almost
all mammalian cells. Over the past two decades, intense research has catapulted this tiny,
previously ignored organelle into the spotlight of such fields as development, stem cells
and cancer. Primary cilia are sensory organelles that monitor a growing list of extracel-
lular signals under various conditions [1–4]. The first evidence of this was identified in
renal epithelial cells, which use primary cilia as a mechanosensor to monitor fluid flow,
i.e., shear stress [5]. Sensory organs, such as the retina and olfactory neurons use cilia
to mediate chemosensation by targeting G-coupled photoreceptors [6,7] and odor recep-
tors [8,9], respectively. These discoveries were quickly eclipsed by new studies identifying
roles for primary cilia in critically mediating the regulation of the cell cycle and several
developmental signalling pathways, most notably the Hedgehog pathway (HH) [10–12],
but also including PDGF [13], Wnt [14,15], Notch [16] and Hippo [17,18] as well as being a
regulator of cell size via mTOR [19] and involved the integration of cellular response to
mitochondrial stress [20].

The list of cells displaying primary cilia was so extensive that the website dedicated to
it was shut down, as it was easier to catalogue tissues in which cells did not have primary
cilia, such as blood-borne cells that grow in suspension [21]. The mucosal epithelium of
the gut is an even more puzzling exception, since most other epithelial cell types display
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primary cilia [22]. The functional unit of the small intestine, the crypt–villus axis, is com-
posed of two functionally and physically distinct regions. The villus contains functionally
differentiated cells, mostly absorptive cells that display brush borders composed of actin-
based microvilli, and goblet cells that secrete mucins which are constantly renewed by the
transit-amplifying cells of the crypts. These latter cells are highly proliferative and undif-
ferentiated and are replenished by a robust stem cell population residing in the crypt [23].
While the primary cilium has been generally reported in quiescent cells [24], since the basal
body from which the cilium grows needs to be converted into the centrosome required for
the mitotic spindle in proliferative cells [25], it seems in fact that only cells directly under
the mitotic process cannot grow a primary cilium [1,4,26]. Nevertheless, in the intestinal
epithelium, the transit-amplifying crypt cells and the primordial stem cells from which
they are derived appear not to be able to assemble primary cilia. Rare reports from detailed
electron microscopy (EM) observations of mouse intestine have clearly established that the
terminally differentiated intestinal epithelial cells of the villus, which are quiescent, do not
generate primary cilia [27]. The lack of primary cilia in the normal intestinal epithelium
was further confirmed by various reports [26,28–30] albeit their ubiquitous presence in the
stroma and muscle cells of the intestinal wall [26,28,29,31].

Interestingly, the observation of functional primary cilia was reported in the small bowel
and colon adenocarcinoma as well as some of their derived cancer cell lines [26,28,32,33],
indicating that intestinal epithelial cells can display primary cilia at least under certain
conditions. The presence of a primary cilium in colorectal cancer cells was correlated
with the increased expression of the HH effector GLI1 and the recruitment of the SMO
receptor [26], suggesting the potential for an autocrine pathway. As mentioned above,
primordial stem cells, also identified as leucine-rich repeat-containing G-protein-coupled
receptor 5-positive (LGR5+) cells, from which most intestinal adenocarcinomas are thought
to be derived [34], do not possess a primary cilium as they are cycling. However, the in-
testinal crypt contains another stem cell type called reserve stem cells, tentatively identified
as B-cell-specific Moloney murine leukemia virus interaction site 1-positive (BMI1+) cells,
which are mostly quiescent and resistant to stress but have the capacity to regenerate the
LGR5+ stem cell population after tissue injury, such as radiation [35–37]. In vitro, BMI1+
crypts as well as BMI1+ spheroids can be induced to upregulate LGR5 expression [38,39].
As recently reviewed, there is a certain complexity to the functional plasticity of these
reserve stem cells for intestinal regeneration vs. that of primordial stem cells, but evidence
supports the existence of stem cells with nonequivalent proliferation profiles that co-exist
in the intestinal crypt [40,41]. In support of this, it is noteworthy that BMI1+ cells appear
independent of the Wnt pathway for their proliferation in contrast to LGR5+ cells [39,42],
while BMI1+ and LGR5+ cells have been shown to represent distinct populations of cancer
stem cells in intestinal neoplasms [43]. In this context, we hypothesized that intestinal
BMI1+ quiescent stem cells may bear functional primary cilia.

2. Materials and Methods
2.1. Human Intestinal Tissue Samples

Normal adult ileal samples were obtained from Québec Transplant (Montréal, QC,
Canada) in accordance with protocols approved by the Institutional Human Subject Review
Board of the Centre Hospitalier Universitaire de Sherbrooke for the use of human material.
The average age of the donors was 49.5 ± 21.0 (21–82). A total of 46% of the donors were
female and 54% were male. The preparation and embedding of tissues for cryosectioning
were as described previously [44,45].

2.2. Cell Culture

The HIEC-6 cell line is a human intestinal crypt cell model. The cells are available from
the American Type Culture Collection (CRL-3266, ATCC, Manassas, VA, USA). HIEC-6
cells are normal non-transformed/non-immortalized cells that were generated and grown
as described previously [46,47]. HIEC-6 cells have been characterized as exhibiting mor-
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phological and functional characteristics of normal human proliferative crypt cells and are
considered to be undifferentiated crypt-like progenitor cells [38,48–51].

In some experiments, cell synchronization was performed as follows: 5 × 104 HIEC-6
cells were plated on serum-coated glass coverslips and allowed to adhere for 24 h. Cells
were then serum-starved for 72 h to impede cell growth. Complete media were then added,
and cell cultures were monitored with anti-acetylated tubulin (as described below in 2.3) at
different time points over a period of 48 h. The number of cells in M-phase (prophase to
telophase) or the number of ciliated cells were counted and expressed as a percentage of
total cells. Representative results from one of three independent experiments are shown.

The HH pathway was also investigated using the SMO agonist Purmorphamine
at 2 µM (#483367-10-8 Cayman Chemical, Ann Arbor, MI, USA) and the GLI1 inhibitor
GANT-61 at 5µM (#3191, Tocris via Cedarlane Corp., Burlington, ON, Canada).

2.3. Indirect Immunofluorescence Staining and Confocal Imaging

Tissue cryosections embedded in OCT and cells were fixed in methanol at −20 ◦C or
in paraformaldehyde 4% and processed as previously described [49,51–53]. The primary
antibodies were anti-acetylated α-tubulin (6-11B-1, 1/2000, Sigma Aldrich, Oakville, ON,
Canada), anti-polyglutamylated tubulin (GT335, 1/2000, AdipoGen Life Sciences, San
Diego, CA, USA), anti-ARL13B (17711-1-AP, 1/1000, Proteintech, Rosemont, IL, USA and
90413h, 1/150, BiCell Scientific, Maryland Heights, MO, USA), anti-alpha6 integrin subunit
(G0H3, 1/5000, BD Pharmingen, Mississauga, ON, Canada), anti-GLI1 (ab49314, 1/500,
Abcam Inc, Cambridge, MA, USA), anti-GLI3C (1/500, kind gift from F J de Sauvage,
Genentech, San Francisco, CA, USA [54]), anti-BMI1 (sc390443 clone F9, 1/20, Santa Cruz
Biotechnology, Dallas, TX, USA and D20B7, 1/600, Cell Signaling Technology, Danvers, MA,
USA), anti-E-cadherin (polyclonal, 1/50, Santa Cruz Biotechnology, Dallas, TX, USA), anti-
group II phospholipase A2 (1/1000; kind gift from TJ Nevalainen, [55]), anti-pericentrin
(ab4448, 1/200, Abcam) and anti MKLP1 (ab174304, 1/200, Abcam). Secondary antibodies
used were anti-mouse, rat and rabbit Alexa 594 or 488 (Invitrogen Molecular Probes, Ther-
moFisher, Mississauga, ON, Canada). Nuclei were stained with DAPI (Molecular Probe).
Images were acquired using a DFC300FX color camera or an RTE/CCD Y/Hz-1300 camera
controlled using MetaMorph software (Universal Imaging Corporation, Downingtown, PA,
USA). In some cases, selected acquired stacked images were submitted to deconvolution
(Volocity, Quorum Technology, Puslinch, ON, Canada) and used to generate a 3D recon-
structed image (Imaris, Oxford Instruments, Concord MA, USA). Stained tissues and cells
were also viewed with an inverted confocal laser scanning microscope (FV1000; Olympus,
Tokyo, Japan) equipped with a PlanApo 60×/1.42 oil immersion objective and Olympus
FluoView version 1.6a to acquire and analyze the images, or with a Leica TCS SP8 STED
DMI8 scanning confocal microscope (Leica Microsystems, Toronto, ON, Canada) equipped
with a 63×/1.4 oil-immersion objective and a tunable white light laser (470 to 670 nm).
LAS AF Lite software (Leica) was used for image acquisition and analysis. The images
were further processed using Adobe Photoshop (Adobe Systems, San Jose, CA, USA).

2.4. RNA Extraction, Reverse Transcriptase and Quantitative RT-PCR

RiboZol (AMRESCO, Solon, OH, USA) was used for cell lysing. RNA extraction, reverse
transcription and quantitative polymerase chain reaction (qPCR) assays were performed as
described previously for both cells and tissues [56]. SYBR Green Power PCR Master Mix
(Bio Basic, Markham, ON, Canada) was used for qRT-PCR. The primers used for qPCR in-
cluded the following: GLI1: forward 5′-ACATCAACTCCGGCCAATAG-3′ and reverse 5′-
GAGGATGCTCCATTCTCTGG-3′; SMO: forward 5′-CCCAGCATGTCACCAAGATG-3′ and re-
verse 5′-GCACACCTCCTTCTTCCTCT-3′; PTCH1: forward 5′-ACATCAACTCCGGCCAATAG-
3′ and reverse 5′-GCCAGAATGCCCTTCAGTAG-3′; and BMI1: forward 5′-TGTTCGTTACCTG
GAGACC-3′ and reverse 5′-CAGCATCAGCAGAAGGATG-3′.

Gene expression was calculated according to the Pfaffl equation [57] using RPLPO as
a validated normalizer [56] relative to control groups as specified in the text.
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2.5. 5-Bromo-2′-Deoxyuridine (BrdU) Incorporation Assay

BrdU incorporation and staining were performed according to the manufacturer’s
(ThermoFisher Scientific, Ottawa, ON, Canada) instructions. Briefly, cells were plated
on serum-coated glass coverslips and allowed to adhere for 24 h. At the time of experi-
mentation, cells were incubated with normal medium containing the BrdU solution for
4 h. Cells were then washed and processed for anti-BrdU and DAPI staining as described
previously [50].

2.6. Statistical Analysis

Data preparation and statistical analyses, which included two-tailed Student’s t-test
and ANOVA, were performed with Graph Pad Prism 8.3 (Graph Pad Software, San Diego,
CA, USA). A p value < 0.05 was considered significant in all analyses. All experiments were
repeated at least three times, independently.

3. Results
3.1. Search for Primary Cilia in the Reserve Stem Cells of the Human Intestinal Crypt

Previous studies from various laboratories, including our own, have failed to consis-
tently identify primary cilia in the normal intestinal epithelium although their transformed
counterparts exhibit primary cilia both in situ and in cellulo [26,28,29,32,33]. However,
because quiescent reserve stem cells are likely to be relatively rare in the intestinal crypt
in light of the complexity of the various cell populations that can contribute to epithelial
regeneration [40,41], we hypothesized that the detection of epithelial crypt cells bearing a
primary cilium should be a relatively infrequent event. Indeed, several crypts had to be
examined to identify primary cilia in specimens of normal adult small intestinal sections
stained for acetylated-α-tubulin, a marker for primary cilia which are readily identifiable
by their overall intensity, shape and location using indirect immunofluorescence [58–60].
As confirmed by co-staining for E-cadherin, positive staining for acetylated-α-tubulin was
found in the apical domain of some epithelial cells of the crypt, where a primary cilium can
be distinguished from other neighboring structures by its size, intensity and localization
in the lower third of the crypt (Figure 1A, arrow vs. arrowheads). The frequency of pri-
mary cilia was evaluated to be approximately one per crypt based on the examination of
hundreds of crypts (i.e., one cilium detected per 25–30 crypts on 3 µm thick cryosections,
with the average crypt being 50 µm). To confirm that the cells bearing the primary cilia
were not Paneth cells, specimens of normal small intestine were double-labelled for the
detection of acetylated-α-tubulin and group II phospholipase A2, a Paneth cell marker [55].
Indirect co-immunofluorescence confirmed that primary cilia were detected in cells near
the crypt bottom but always above the Paneth cell population (Figure 1B,B’). As suggested
by [1] and also considering the greater difficulty in identifying primary cilia components in
tissues compared with cells in culture [61], we used the small GTPase ARL13b as a second
marker for the primary cilium [62,63] to validate our observations.

As shown in Figure 2, confocal images for dual acetylated-α-tubulin and ARL13b
detection confirmed the presence of a primary cilium at the base of the small intestinal
crypt but also showed that the anti-ARL13B 17711-1-AP antibody identified extra dots in
intestinal crypt cells more weakly or not at all stained for acetylated-α-tubulin.
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Figure 1. Primary cilia in the human small intestine. (A) Schematic of the crypt–villus axis showing
the crypt region depicted in B and C. (B) Representative immunodetection of primary cilia using anti-
acetylated-α-tubulin (A-α-tub; arrow, green staining) in the epithelial cells (E-cadherin, E-cad; red
staining) of a crypt in the human adult small intestine (L, lumen). Nuclei were stained with DAPI (blue
staining). Smaller structures that could be related to either midbody remnants [64] or centrosomes
(see below) were also detected (arrowheads). (C) 3D reconstruction of double immunostaining of
anti-α-acetylated-tubulin (green), showing primary cilia (arrow) and smaller structures (arrowheads)
as well as anti-phospholipase A2 (red), a Paneth cell marker (L, lumen; P, Paneth cell). Nuclei were
stained with DAPI (blue) and are out of focus because they are present on a lower plane of focus.
Scale bars are equal to 10 µm. (B’) Higher magnification of the primary cilium seen in B (arrow).
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Figure 2. Primary cilia in the lower half of the crypts of the human small intestine. Representative
confocal imaging for the detection of primary cilia using anti-acetylated-α-tubulin (A-α-tub; green
staining, arrow in (A,D)) and anti-ARL13B antibody (red staining, arrow in (B,D)) in epithelial cells
of the human adult small intestine (L, lumen of the crypt). Nuclei were stained with DAPI (blue)
(C,D). Note that anti-acetylated-α-tubulin and anti-ARL13B stained smaller dots that were co-stained
(white arrowheads) or not stained (green and orange arrowheads) in (A,B,D). Scale bar is equal to
10 µm.

The presence of the primary cilium in intestinal crypt cells was also confirmed by dual
polyglutamylated tubulin [65,66] and ARL13b detection (Figure 3).
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Figure 3. Primary cilia in the lower part of the crypts of the human small intestine. Representative
confocal imaging for the detection of primary cilia using anti-glutamylated tubulin (Pglu-tub; green
staining, arrow in (A,D)) and anti-ARL13B antibody (red staining, arrow in (B,D)) in epithelial cells
of the human adult small intestine (L, lumen of the crypt). (A’,B’,D’) are higher magnifications of the
(A,B,D) panels. Nuclei were stained with DAPI (C,D). As observed above, the 17711-1-AP antibody
(B,D) identified dots that were only weakly stained or not stained with the anti-Pglu-tub antibody.
Scale bar is equal to 10 µm.

As mentioned above, BMI1 has been recognized as one potential marker for identifying
reserve stem cells in the intestinal crypt. Using tissue sections from various donors, BMI1-
positive clusters of two to five cells were observed in the lower parts of the small intestinal
crypts, while some of these cells were consistently also stained for ARL13b detection
in co-staining (Figure 4), suggesting that the crypt cells bearing a primary cilium also
expressed higher levels of BMI1. As indicated in Figures 2 and 3, it is noteworthy that
some of the structures stained with the 17711-1-AP antibody were not always identified as
a primary cilium, consistent with the finding that ARL13B has non-cilia functions, such
as reported in epithelial cells [67]. Based on our previous observations, one should expect
only one primary cilium per crypt on average. The nature of the other 17711-1-AP-positive
structures (arrowheads in Figure 4A,B,E) could be related to midbody remnants, a type
of structure reported in polarized cells and proposed to be involved in the formation of
primary cilia [64]. Interestingly, the model proposed would imply that only cells with a
midbody remnant can assemble primary cilia [64], supporting the idea that at least some
intestinal BMI1-positive cells can become ciliated. On the other hand, some of the other
positive structures were observed all along the luminal aspect of the epithelium (Figure 4F),
suggesting that they may be related to the centrosome according to a pattern similar to that
reported in mouse intestine for centrin2 expression [30].
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Figure 4. Primary cilia in BMI1-positive cells of the crypts of the human small intestine. (A) Repre-
sentative immunodetection of primary cilia using the anti-ARL13b 17711-1-AP antibody (arrow, red
staining) and positive BMI1 nuclei (green staining, stars) in epithelial crypt cells of the human adult
small intestine (L, lumen of the crypts). Nuclei were stained with DAPI (blue). The square delimits the
portion of the lower crypt shown in panels (B–E) and the rectangle delimits the portion of the luminal
crypt epithelium shown in panel (F). (B–E) Higher magnification of the lower crypt region showing a
cluster of positive 17711-1-AP structures in the luminal aspect of lower crypt cells (arrows in B,E)
and positive nuclei for BMI1 staining (stars in C,E). Arrowheads in the (A,B,E,F) panels identify
smaller 17711-1-AP-stained dots that do not seem to be related to the primary cilium. (G,H) Another
region showing the expression of 17711-1-AP-stained structures (arrows) in cells displaying positive
BMI-1-stained nuclei (stars). Nuclei were stained with DAPI (A,D,E,I). Scale bar is equal to 10 µm.
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To further investigate the expression of the primary cilium in the human intestinal
crypts in relation to midbody remnants and centrosomes, another antibody raised against
the C-terminal sequence of ARL13B (hereafter called the 90413h antibody) was tested in
double staining for the detection of pericentrin, a centrosome marker [68], and MKLP1, also
referred to as KIF23, a marker for midbody remnants [69], a post-mitotic midbody-related
structure thought to deliver material to the centrosome preceding cilia formation [64]. As
shown in Figure 5, the 90413h antibody was found to label a single dot in approximately
1 out of 25–30 crypts, in agreement with the observed rarity of the primary cilium in the
intestinal epithelium.
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Figure 5. Primary cilia in the lower third of a crypt of the human small intestine. A, Representative
immunodetection of primary cilia using the anti-ARL13b 90413h antibody (green staining) (arrow) in
one of the crypts (C). Nuclei were stained with DAPI (blue staining). Scale bar is equal to 10 µm.

As expected for polarized epithelial cells, the centrosomes were detected in the apical
region of every cell while ARL13B stained with the 90413h antibody was generally detected
under a single instance in the few crypts identified as being positive (Figure 6A, arrow).
Interestingly, in most cases, ARL13B was detected adjacent to, but never superposed on,
pericentrin-stained dots, as illustrated in Figure 6B–E and shown at a higher magnification
in Figure 6E’. It is noteworthy that in the stroma, where most cell types exhibit a primary
cilium, a similar pattern for ARL13B and pericentrin detection is observed (Figure 6F,G).

The co-distribution of the primary cilium with the midbody remnants was also in-
vestigated. As reported in kidney polarized epithelial cells, it is hypothesized that only
cells with a midbody remnant can become ciliated [64]. Using MKLP1 as a marker for
midbody remnants [69], we investigated whether midbody remnants are detected in the
intestinal crypt and their potential relation with the presence of the primary cilia in crypt
intestinal cells. MKLP1-positive structures were found at a relatively low frequency in
crypt cells. As shown in Figures 7 and 8, MKLP1 staining was found in close juxtaposition
with the primary cilium. For dual staining using the ARL13B 90413h and anti-MKLP1
antibodies, most of our observations identified the two structures side by side (Figure 7).
Additionally, we note that MKLP1 was not regularly identified in the stroma. Similarly, the
double staining of acetylated-α-tubulin with MKLP1 showed a similar co-distribution with
the primary cilium and midbody remnants in positive crypts (Figure 8).
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Figure 6. Primary cilia and centrosomes in the lower third of the crypts of the human small intestine.
(A–E) Representative immunodetection of primary cilia using the anti-ARL13b 90413h antibody
(green staining, arrow) and of centrosomes using an anti-pericentrin antibody (red staining) in
various crypts. In most cases of positive crypts, the 90413h antibody stained one predominant
dot (A–E) that was localized adjacent to a positive pericentrin-labeled dot, as in (B–E). (E’) Higher
magnification of the section delimited by the square in (E) showing adjacent dots stained by ARL13B
and pericentrin. (F,G) are high magnifications of the stroma around the crypts showing a similar
distribution of ARL13B and pericentrin in ciliated fibroblasts. Nuclei were stained with DAPI (blue
staining). Scale bars are equal to 10 µm.
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Figure 7. Primary cilia and midbody remnants in the lower third of the crypts of the human small
intestine. (A–E) Representative immunodetection of primary cilia using anti-ARL13b 90413h antibody
(green staining, arrow) and of midbody remnants using an anti-MKLP1 antibody (red staining) in
various crypts. In most cases of positive crypts, the 90413h antibody stained one predominant dot
(A–F) that was localized adjacent to a positive MKLP1-labeled dot. (A’,B’) Higher magnification of
the section delimited by the squares in (A,B) showing adjacent dots stained by ARL13B and MKLP1.
Nuclei were stained with DAPI (blue staining). Scale bars are equal to 10 µm.
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observation that cells displaying a primary cilium are generally those expressing more 

intense levels of BMI1 (Figure 9). However, it is noteworthy that not all strongly BMI1-
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top of a single (Figure 9A,B) or a cluster of BMI1-positive cells (Figure 9C,D), but the ma-
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Figure 8. Primary cilia and midbody remnants in the lower third of the crypts of the human small
intestine. Representative immunodetection of primary cilia using anti-acetylated tubulin antibody
(green staining) and midbody remnants using an anti-MKLP1 antibody (red staining) in the lower
portion of a crypt. The 90413h antibody stained one predominant structure that was localized adjacent
to a positive MKLP1-labeled dot. Insert in the upper right corner, higher magnification of the section
delimited by the square showing the co-staining. Nuclei were stained with DAPI (blue staining).
Scale bar is equal to 10 µm.

The co-distribution of the ARL13b-positive structures with the +4 reserve stem cell
marker BMI1 was then revisited using the ARL13b 90413h antibody. In contrast to the
detection of ARL13b with the 17711-1-AP antibody, which appeared to cross-react with
non-cilia structures under the immunofluorescence conditions used for tissue sections,
the 90413h antibody detected only one cilium per positive crypt on average as mentioned
above. While the odds of detecting a positive crypt displaying a primary cilium are low, the
detection of a primary cilium at the luminal aspect of the same cell for which the nucleus
is visible at the base in the same plane of the section must be even lower. Nevertheless,
by examining a large number of tissue sections, we were able to confirm the previous
observation that cells displaying a primary cilium are generally those expressing more
intense levels of BMI1 (Figure 9). However, it is noteworthy that not all strongly BMI1-
positive cells exhibited a primary cilium. In some cases, the primary cilium was seen on top
of a single (Figure 9A,B) or a cluster of BMI1-positive cells (Figure 9C,D), but the majority
of BMI1-positive crypt cells did not display an ARL13b-positive component.
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Figure 9. Primary cilia in association with BMI1-positive cells of the crypts of the human small
intestine. (A) Representative immunodetection of primary cilia using the anti-ARL13b 90413h
antibody (arrows, green staining) and positive BMI1 nuclei (red staining, stars) in epithelial crypt
cells of the human adult small intestine. In some instances, single nuclei staining was observed to
be more intensive for BMI1 in relation to the detection of cilia (A,B) while in other cases, a cluster
of BMI1-positive nuclei coinciding with ARL13b-positive structures was noted (C,D). Nuclei were
stained with DAPI (blue). Scale bars are equal to 10 µm.
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3.2. BMI1 and the Primary Cilia Are Detected by Human Intestinal Normal Crypt HIEC-6 Cells

The HIEC-6 cell line was generated to investigate human intestinal crypt functions and
is the only normal crypt cell model currently available for this purpose [46,47]. Interestingly,
HIEC-6 cells grow as undifferentiated cells in culture but can be induced toward a differen-
tiated phenotype by the forced expression of pro-differentiation transcription factors [51] or
toward LGR5+ primordial stem cells upon the activation of the WNT pathway [38]. Here,
using normal non-stimulated cell culture conditions under which the HIEC-6 cells have
no ability to differentiate [46,48], indirect immunofluorescence experiments have revealed
that newly confluent cells constitutively expressed BMI1 nuclear staining while primary
cilia were detected in most cells by anti-acetylated-α-tubulin (Figure 10D). BMI1 transcripts
were also detected in HIEC-6 cells at all stages (Figure 10C).
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Figure 10. Constitutive expression of BMI1 and assembly of the primary cilia in HIEC-6 cells.
(A,B): Representative immunodetection of BMI1 (A) and DAPI nuclear co-staining (B) in newly
confluent HIEC cells. (C): BMI1 transcript expression in subconfluent (SC) and 5-, 10- and 15-day
post-confluent (5PC, 10PC and 15PC) HIEC-6 cells. (D): Immunodetection of acetylated-α-tubulin
(A-α-tub) in newly confluent HIEC-6 (green) cells. Scale bars are equal to 25 µm.

3.3. The Primary Cilia and GLI1 Are Detected in Quiescent HIEC-6 Cells

Post-confluent HIEC-6 cells stop their expansion after five to ten days. However,
HIEC-6 cells grow slowly and a significant proportion of the cells are not actively cycling,
as illustrated by the detection of ciliated cells even before confluence. To better document
the relation between cycling and the expression of the primary cilium, HIEC-6 cells were
synchronized before they were investigated for primary cilium detection and BrdU incor-
poration. Under these conditions, the primary cilium was only detected in post-confluent
cells using a combination of anti-ARL13b 17711-1-AP and anti-polyglutamylated tubulin
antibodies (Figure 11A,B) at times when cell cycling is minimal, as evaluated by BrdU
incorporation (Figure 11C). It is noteworthy that the 17711-1-AP antibody appeared to be
specific for the primary cilium in these cells in contrast to the above observations on tissue
sections in which non-cilia components were detected (as in Figures 1–3).
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Figure 11. Expression of the primary cilia in quiescent HIEC cells. (A,B): Representative indirect
immunofluorescence for the detection of ARL13b with 17711-1-AP (green staining) and polyglutamy-
lated tubulin (Pglu-tub; red) in subconfluent (A) and postconfluent (B) HIEC cells. (C). Representative
experiment showing primary cilium (PC) and BrdU counts in percentage of total DAPI stained cells
in synchronized cells at 24 h intervals after passage. PC and BrdU counts were performed in separate
dishes. The experiment was repeated three times. Bars are equal to 10 µm.

Quiescent HIEC-6 cells were also investigated for the expression of GLI1, the major
mediator of the HH pathway. An indirect immunofluorescence analysis showed that most
HIEC-6 cells display predominantly nuclear staining for immunoreactive GLI1 and primary
cilia as detected by anti-acetylated-α-tubulin antibody (Figure 12A–D). Incidentally, GLI1
mRNA was detected in HIEC-6 at all stages but at much higher levels in post-confluent
cells (Figure 12E).

3.4. The Primary Cilium Activates the Canonical HH Pathway in HIEC-6 Cells

To further investigate the involvement of the primary cilium in the regulation of the
HH pathway in HIEC-6 cells, we have targeted the SMO receptor and GLI1 effector with
pharmacological approaches.

In the first approach, confluent HIEC-6 cells were treated with 2 µM purmorphamine,
an SMO agonist shown to activate the HH pathway [70]. We first analyzed the accumu-
lation of full-length GLI3 at the tip of the primary cilia as an indicator of HH pathway
activation [71]. As shown in Figure 13, a 24 h treatment with purmorphamine signifi-
cantly increased the proportion of cilia stained with an anti-GLI3C antibody at their tips
(Figure 13A–C). The expression of the HH downstream target genes GLI1 and PTCH1
was then investigated by qPCR and the expressions of both were found to have increased
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(Figure 13D,E). Variations in the GLI1 and PTCH1 levels were consistent with those ob-
served between the various colorectal cancer cell lines [26].
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Figure 12. Accumulation of GLI1 expression in quiescent HIEC cells. (A–D): Representative indirect
immunofluorescence for the detection of GLI1 (A,D, red staining) and acetylated-α-tubulin (A-α-
tub; B,D, green staining) in post-confluent HIEC cells. Nuclei were stained with DAPI (C,D). Scale
bar is equal to 10 µm. (E): GLI1 transcript expression in subconfluent (SC) and 5-, 10- and 15-day
post-confluent (5PC, 10PC and 15PC) HIEC-6 cells. **, p < 0.01; ***, p < 0.0005.
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genes GLI1 (D) and PTCH1 (E). Primary cilia were detected using an anti-acetylated--tubulin (A-

Figure 13. Stimulation of the HH pathway in response to purmorphamine in HIEC cells. Quiescent
post-confluent HIEC cells were untreated (A) or treated with 2µM purmorphamine (Purmo) (B) for 24
h and analyzed for the HH activity marker GLI3C (A–C) and expression of downstream target genes
GLI1 (D) and PTCH1 (E). Primary cilia were detected using an anti-acetylated-α-tubulin (A-α-tub;
red staining) in most post-confluent HIEC cells (A,B). Accumulation of GLI3C expression at the tip
of primary cilia with an anti-GLI3C (green staining) was found in ~10% of control cells (A,C, Ctrl)
while it was detected in more than 50% of the Purmo-treated cells (B,C, Purmo). Bars in (A,B) are
equal to 10 µm. (D,E): Expression of GLI1 and PTC1 transcripts was also significantly increased in
Purmo-treated cells. *, p < 0.05; ***, p < 0.001.

In the second approach, confluent HIEC-6 cells were treated for 48 h with 5 µM GANT-
61, an inhibitor of GLI-induced transcription [72]. The GANT-61 treatment inhibited the
transcript expression of both GLI1 and PTCH1 in HIEC-6 cells (Figure 14A). Taken together,
these observations indicate that the HH pathway is active in HIEC-6 cells and that the
primary cilium is mediating its activity in intestinal crypt cells.
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Figure 14. Quiescence of post-confluent HIEC cells is reversible and is regulated by the HH pathway.
(A): In post-confluent HIEC-6 cells, the GLI1 inhibitor GANT-61 (GT) reduced the expression of both
GLI1 and PTCH1 transcripts, the main HH downstream target genes, after 48 h treatment. (B): In
contrast to sub-confluent (SC) cells, HIEC-6 cells that maintained up to 30 days of post-confluent
(30PC) culture did not synthesize DNA as evaluated by the lack of BrdU staining. However, BrdU
staining was restored to basal levels after 3 passages. (C): 20+ day-post-confluent HIEC-6 cells were
treated for 48 h with GT before being passed and allowed to recover for 48 h then processed for BrdU
staining and cell counting. *, p < 0.05; ***, p < 0.001.

3.5. The HH Pathway Is Linked to a Quiescent State in HIEC-6 Cells

One interesting characteristic of post-confluent HIEC-6 cells is their ability to resume
cell proliferation even after a prolonged quiescent period (Figure 14B). To verify the relation
between the activity of the HH pathway and quiescence, 25- to 30-day-post-confluent HIEC-
6 cells were treated for 48 h with GANT-61 or a control before being passed and allowed
to recover for a 48 h period for BrdU staining. As shown in Figure 14C, the inhibition of
GLI1 resulted in an acceleration in cell cycling, suggesting that the HH pathway regulates
quiescence in human intestinal crypt cells.

4. Discussion

In this study, we discovered a small subset of crypt epithelial cells located just above
the Paneth cells that bear a primary cilium, as deduced from immuno-labeling studies for
the detection of primary cilia-associated components, such as acetylated-α-tubulin [59,60],
polyglutamylated tubulin [65,66] and ARL13b [62,63]. In agreement with previous studies,
all main cell types comprising the intestinal epithelium were found to be devoid of primary
cilia [26–30]. This included most cells of the crypts that are cycling, such as primordial stem
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cells and transit-amplifying cells, as well as differentiated Paneth cells, another exocrine
cell type that, like the acinar cell of the pancreas, does not exhibit primary cilia [73] and the
terminally differentiated cells of the villus, such as goblet or absorptive cells. Incidentally,
while most colorectal adenocarcinoma cell lines were found to display a primary cilium,
the Caco-2 cell line, which can polarize and form a typical brush border similar to that of
absorptive cells of the villus epithelium, was an exception [26], suggesting that luminal
specialization may interfere with primary cilium formation in quiescent cells. The intestinal
epithelium was thus considered to be an exception in comparison with most other tissues
which display primary cilia, although primary cilia are present in intestinal tumors and
adenocarcinoma cell lines [26,28,32,33]. The puzzling issue resulting from this observation
is not the fact that the primary cilia are detected in intestinal cancer cells, considering the
growing indications that the primary cilia are functionally involved in a variety of other
neoplasms [1,74], but the expression of primary cilia in tumor cells that lack them in their
normal counterparts [25]. While it is too early to speculate about a possible relation between
the primary cilia in intestinal adenocarcinoma cells and our discovery of a small subset of
ciliated cells in the normal intestinal crypt which may be considered stem cells, this latter
observation at least provides the first piece of evidence that some normal intestinal cells
can express a primary cilium under specific circumstances.

The fact that cells bearing a primary cilium were predominantly observed near the
bottom of the crypt but always above the Paneth cells is noteworthy. In mouse, this cell
location corresponds to the position of +4 label retained cells described several years ago
by Potten et al., as reviewed in [75] and further characterized as BMI-1 expressing cells
able to restore the intestinal epithelium after the loss of the primordial LGR5+ stem cell
population [35,36]. Further studies have confirmed the concept that rare damage-resistant
and quiescent +4 reserve intestinal stem cells can re-activate the primordial stem cell pool
and facilitate regeneration as summarized by Bankaitis et al. [40]. One important issue
that remains about these +4 reserve stem cells is their identification. Several markers
have been reported to identify the +4 reserve stem cells in mouse, including BMI1, leucin-
rich repeat and immunoglobulin-like domain-1 (LRIG1), HOP homeobox (HOPX) and
mouse telomerase reverse transcriptase (MTERT); additionally, lineage-tracing studies have
confirmed that cells expressing them behave as reserve stem cells [40,41]. However, the
absolute specificity of these markers for the +4 reserve stem cells has been criticized based
on the broader expression of their transcripts and some lineage-tracing experiments while
there is more and more evidence that many quiescent cell types are present in the intestinal
epithelium, such as some secretory progenitors [76] which also participate in regenerative
responses following injury [40,41]. In the light of this complexity, it is interesting to note
that the primary cilium appeared to be restricted to rare cells corresponding to quiescent
+4 reserve stem cells of the human intestinal crypt. Furthermore, the adjacent location
of the primary cilium with midbody remnants in these rare cells supports the model
proposed by Labat-de-Hoz et al., in which only cells with a midbody remnant can become
ciliated [64]. Co-staining for the detection of the primary cilium and nuclear BMI1 identified
corresponding cells or cell clusters, suggesting that at least some of the BMI1 expressing
cells are related to the quiescent +4 reserve stem cells in the human intestinal crypt, although
it is clear that not all BMI1-positive cells display a primary cilium. It is noteworthy that
the identification of BMI1 as a marker for the +4 reserve stem cells was obtained through
various strategies such as the use of a reported gene expression system in experimental
animal models [35,42,77], while in human models, the BMI1 protein was mainly detected
in gastrointestinal cancer cells in which it is overexpressed but not or only weakly in their
normal counterparts [78–80]. In this study, the immunodetection of the BMI1 protein in the
human intestine showed discrete cells or cell clusters in the lower crypt region that were
stained more intensively than their surroundings showing weak but consistent positive
staining, an observation in agreement with the fact that BMI1, while mainly expressed by
+4 reserve stem cells, also displays a broader expression pattern in other intestinal epithelial
cells [77,81,82].
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The ability of human intestinal stem cells to produce a functional primary cilium
when maintained under a quiescence state was further investigated using the HIEC-6 cell
line. Being normal and non-transformed, HIEC-6 cells exhibit typical crypt cell prolifera-
tive and undifferentiated characteristics and have been proven to be useful for studying
human crypt cell functions, such as proliferation, cell survival, cell–matrix interactions,
metabolism and the inflammatory response [46,48]. Interestingly, the ectopic expression
of pro-differentiation factors, such as CDX2 and HNF1α, and the abolition of polycomb
repressive complex 2 epigenetic regulation [51,83] demonstrated that HIEC-6 cells main-
tain the ability to undertake a differentiation program. It is also pertinent to note that
normal HIEC-6 expresses a variety of intestinal stem/progenitor cell markers, such as
BMI1, doublecortin-like kinase 1 (DCAMKL1), Mushashi-1 (MSI1), epithelial cell adhesion
molecule (EPCAM), and CD44, while expressing very low levels of LGR5 and WNT/β-
catenin activity, suggesting that HIEC-6 cells behave as reserve stem cells. Interestingly, the
activation of the WNT pathway by normal ligands in HIEC-6 triggered a robust expression
of primordial stem cell markers, such as LGR5 and pleckstrin homology-like domain family
member-1 (PHLDA1) at both the transcript and protein levels, confirming the potential of
HIEC-6 cells to acquire a primordial stem cell phenotype [38]. Another interesting feature
that was revealed in the present study is the ability of HIEC-6 cells to fully, but reversibly,
stop proliferation when maintained at confluence for a prolonged period and express a
primary cilium.

The accumulation of GLI1 at both the transcript and protein levels in ciliated HIEC-6
cells at confluence suggest that the HH pathway is active at quiescence [74], implying an
autocrine mechanism. To confirm this possibility, we stimulated the HH pathway with
purmorphamine, an SMO agonist [70] and found a further activation of the HH pathway,
as evaluated by an increase in the accumulation of full-length GLI3 at the tip of the primary
cilia and in the expression of the two downstream targets genes, GLI1 and PTCH1. From
these data, it appears that HIEC-6 cells spontaneously display a primary cilium when they
become quiescent at confluence and that this primary cilium mediates the HH signals.

Quiescence, likely resulting from a contact inhibition-related mechanism, allows
primary cilium assembly since the basal body and associated components are no longer
required for the mitotic spindle [24,25]. We investigated whether the resulting autocrine
HH signaling in HIEC-6 is simply an outcome of the presence of a functional primary cilium
acquired at quiescence or it also contributes to cell cycle arrest. For this, we exploited the
characteristic of hyper-confluent HIEC-6 cells in which the cell cycle is completely stopped
but normal cell proliferation kinetics can be restored after a few passages. For these
experiments, proliferation was assessed 48 h after the first passage to evaluate the effects of
GLI1 accumulation in confluent cells. The pharmacological inhibition of the transcriptional
activity of GLI accelerated the restoration of normal proliferation kinetics, suggesting that
the HH pathway contributes to the inhibition of the cell cycle in quiescent human intestinal
crypt cells. There are several target genes susceptible to having their expression regulated
by GLI transcription factors, some being pro-proliferative, others anti-proliferative, being
tissue/cell type dependent [4,74,84,85]. Future studies will be needed to characterize the
specific events downstream from the HH pathway that modulate quiescence in human
intestinal reserve stem cells.

5. Conclusions

In this study, as summarized in Figure 15, we have discovered that primary cilia are
present in a subset of cells located in the lower part of the crypts, just above the Paneth
cell population, a position that coincides with the BMI1-positive quiescent +4 reserve stem
cells reported in the intestinal crypt. Using HIEC-6 cells as a normal epithelial proliferative
crypt cell model, we showed that primary cilia assembly correlates with a quiescent state
and that this primary cilium mediates HH signals which in turn appear to contribute to
the inhibition of the cell cycle. These results provide further evidence of the existence of a
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quiescent cell population in the human small intestine and suggest the potential for new
modes of regulation in stem cell dynamics.
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Figure 15. Schematic illustration of the findings of the current study. Primary cilium (PC)-bearing
cells (pink) were found in the lower crypt just above the stem/Paneth cell zone at a frequency
estimated at one cell per crypt in the human small intestine and corresponding to the +4 reserve stem
cells (RSC) described previously. HIEC-6 cells were then used to further investigate the expression of
the PC and signaling. HIEC-6 cells were previously found to be unique in their abilities to undertake
a differentiation program under the influence of pro-differentiation transcription factors, such as
CDX2 and HNF1α [51,83], as well as to be induced to adopt a primordial stem cell (PSC) phenotype
upon activation of the WNT pathway [38]. Herein, we showed that post-confluent HIEC-6 cells
express a PC when becoming quiescent and that this PC mediates the activation of the HH pathway,
which in turn appears to regulate the cell cycle.
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