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Abstract: Cancer remains a leading cause of death worldwide, partly owing to late detection which
entails limited and often ineffective therapeutic options. Most cancers lack validated screening
procedures, and the ones available disclose several drawbacks, leading to low patient compliance
and unnecessary workups, adding up the costs to healthcare systems. Hence, there is a great need for
innovative, accurate, and minimally invasive tools for early cancer detection. In recent years, multi-
cancer early detection (MCED) tests emerged as a promising screening tool, combining molecular
analysis of tumor-related markers present in body fluids with artificial intelligence to simultaneously
detect a variety of cancers and further discriminate the underlying cancer type. Herein, we aim to
provide a highlight of the variety of strategies currently under development concerning MCED, as
well as the major factors which are preventing clinical implementation. Although MCED tests depict
great potential for clinical application, large-scale clinical validation studies are still lacking.
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1. Introduction

Cancer represents a major public health concern, being the leading cause of death in
most countries. Indeed, 10 million deaths and 19.3 million new cancer cases were estimated
worldwide in 2020 [1]. This high mortality rate is mostly due to late detection, finding can-
cer when it has already progressed and metastasized, which significantly reduces effective
treatment options. It is estimated that at least 15% of cancer-related deaths within 5 years
could be avoided by early disease detection [2]. Hence, cancer screening and early detection
should be prioritized, preventing cancer development by removing pre-cancerous lesions
and avoiding its progression by effective treatment of localized disease [3,4]. Nonetheless,
only a handful of cancer types have recommended screening procedures. The United States
Preventive Services Task Force (USPSTF) recommends population-based screening for lung
(in high-risk individuals), colorectal, breast, and cervical cancer, while in European coun-
tries, only the latter three tumor types have approved screening programs [5,6]. In addition,
prostate cancer screening is available in the US, although on an individual basis [7]. Thus,
more than 60% of cancer-related deaths are caused by malignancies for which there is no
screening test available [1].
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Although the adoption of screening programs has indeed contributed to increased
survival rates in those cancer types, many factors are hampering screening from reaching
higher level efficacy. For instance, lung and breast cancers are detected by low-dose CT and
mammography, respectively, which, besides exposing individuals to radiation, eventually
lead to some overdiagnosis and false positive results [8,9]. The same applies to cervical
and prostate cancer screening, based on cytology/HPV and serum PSA testing, respec-
tively. [10,11]. Contrarily, colonoscopy allows for a very accurate detection of colorectal
cancer, as well as its precursor lesions and their subsequent removal. However, it is a rather
invasive and uncomfortable procedure, requiring prior preparation, which results in low
patient compliance [12] (Figure 1).
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At present, following an abnormal finding in a screening procedure, a tissue biopsy
must be conducted for histopathological evaluation and eventual cancer diagnosis. In fact,
tissue sampling has been the gold standard approach for cancer diagnosis and prognosti-
cation, but several disadvantages can be pointed out to the use of this biological material:
(1) it requires an invasive collection procedure; (2) some tumors are not easily accessible
due to their anatomical location; (3) it has limited ability to be used as an early detection
tool; (4) it has limitations in the evaluation of treatment efficacy and monitoring of tumor
progression; and (5) it does not fully represent tumor heterogeneity [13,14]. Thus, minimally
invasive techniques allowing for improved disease detection and monitoring are desirable.
Recently, liquid biopsies have emerged as tools to overcome these challenges. Consisting
in the analysis of disease-related markers from body fluids, such as blood or urine, liquid
biopsies comprise a variety of analytes, namely, circulating cell-free DNA (cfDNA), cell-free
RNA (cfRNA), circulating tumor cells (CTCs), extracellular vesicles (EVs), tumor-educated
platelets (TEPs), proteins and metabolites [15,16]. The analysis of these biomarkers enables
the identification of tumor-related information and, consequently, tumor burden real-time
monitoring, thereby having great potential to improve routine clinical practice [17]. Further-
more, because tumors shed these analytes into the circulation early in their development,
liquid biopsies have the capacity to detect cancer even when symptoms are not present or
tumor masses are not detectable by imaging techniques [18,19]. Considering the hurdles
faced by current cancer screening paradigms, a blood-based test that might simultaneously
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detect multiple cancer types, at early stages, and even be applied to high-risk population-
based screening, constitutes an exciting and clinically valuable tool. Moreover, a pan-cancer
approach might be the only cost-effective option for screening of low prevalent cancers [20].
Ideally, such a multi-cancer early detection (MCED) test should have high sensitivity for
early-stage disease detection, high specificity to avoid false-positive results, and the ability
to discriminate the tissue of origin (TOO) of the detected cancer [20].

Having this in mind, we conducted a literature review aiming to explore the diversity
of strategies currently under development for multi-cancer early detection. Thus, a PubMed
search was performed with the query (pan-cancer OR multi-cancer) AND (detection OR
screening OR diagnosis) with no time interval restrictions. In total, 675 results were
retrieved and imported to Rayyan, an intuitive website for title and abstract screening [21].
Additionally, 42 articles found from other sources were included. All abstracts were
critically evaluated to select only those providing relevant information related to the
topic of interest. Furthermore, only articles written in English, presenting original data
and reporting biomarker performance metrics (AUC, sensitivity, specificity, etc.) were
considered. A summary of the methodology is shown in Figure 2. The information gathered
from the included studies is displayed in Tables 1 and 2, showing multi-cancer detection
strategies validated in human clinical specimens or based on data mining, respectively.
Finally, a search was conducted on the ClinicalTrials.gov webpage to look for relevant
clinical studies evaluating MCED tests, and the respective results are shown in Table 3.

Cells 2023, 12, x FOR PEER REVIEW 3 of 38 
 

 

free DNA (cfDNA), cell-free RNA (cfRNA), circulating tumor cells (CTCs), extracellular 
vesicles (EVs), tumor-educated platelets (TEPs), proteins and metabolites [15,16]. The 
analysis of these biomarkers enables the identification of tumor-related information and, 
consequently, tumor burden real-time monitoring, thereby having great potential to 
improve routine clinical practice [17]. Furthermore, because tumors shed these analytes 
into the circulation early in their development, liquid biopsies have the capacity to detect 
cancer even when symptoms are not present or tumor masses are not detectable by 
imaging techniques [18,19]. Considering the hurdles faced by current cancer screening 
paradigms, a blood-based test that might simultaneously detect multiple cancer types, at 
early stages, and even be applied to high-risk population-based screening, constitutes an 
exciting and clinically valuable tool. Moreover, a pan-cancer approach might be the only 
cost-effective option for screening of low prevalent cancers [20]. Ideally, such a multi-
cancer early detection (MCED) test should have high sensitivity for early-stage disease 
detection, high specificity to avoid false-positive results, and the ability to discriminate 
the tissue of origin (TOO) of the detected cancer [20]. 

Having this in mind, we conducted a literature review aiming to explore the diversity 
of strategies currently under development for multi-cancer early detection. Thus, a 
PubMed search was performed with the query (pan-cancer OR multi-cancer) AND 
(detection OR screening OR diagnosis) with no time interval restrictions. In total, 675 
results were retrieved and imported to Rayyan, an intuitive website for title and abstract 
screening [21]. Additionally, 42 articles found from other sources were included. All 
abstracts were critically evaluated to select only those providing relevant information 
related to the topic of interest. Furthermore, only articles written in English, presenting 
original data and reporting biomarker performance metrics (AUC, sensitivity, specificity, 
etc.) were considered. A summary of the methodology is shown in Figure 2. The 
information gathered from the included studies is displayed in Tables 1 and 2, showing 
multi-cancer detection strategies validated in human clinical specimens or based on data 
mining, respectively. Finally, a search was conducted on the ClinicalTrials.gov webpage 
to look for relevant clinical studies evaluating MCED tests, and the respective results are 
shown in Table 3. 

 
Figure 2. Flow diagram of the conducted search methodology for this review. Figure 2. Flow diagram of the conducted search methodology for this review.

2. Multi-Cancer Early Detection (MCED) Tests: State of the Art
2.1. Mutation-Based MCED Tests

Molecular profiling of driver mutations in tumor tissue has been the main strategy to
assess cancer prognosis, treatment response monitoring, and resistance detection, as well
as to detect disease recurrence. Accordingly, the current major clinical application of liquid
biopsies is the detection of these mutations in tumor-derived cfDNA, i.e., circulating tumor
DNA (ctDNA), to replace multiple puncturing with multiple blood draws [22,23]. Not
surprisingly, MCED strategies have also relied on the detection of tumor-specific genetic
variants in body fluids. As early as 2009, Zou et al. performed targeted mutation analysis
in stool from several gastrointestinal cancer patients and showed that pan-gastrointestinal
cancer detection was feasible with 68% sensitivity and 100% specificity [24]. In fact, stool
is also a non-invasive source of cancer biomarkers but mostly limited to tumors of the
digestive system. Interestingly, a study evaluating patients’ perceptions about stool-based
multi-cancer detection reported that 98% of participants would use such a test, preferring it
over conventional colorectal cancer screening, and highlighted its pan-cancer feature as the
most relevant [25]. Subsequently, Quantgene Inc. developed DEEPGENTM, a blood test
based on next-generation sequencing (NGS) that detects low-frequency genetic abnormali-
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ties at a variant allele frequency of 0.09% [26,27]. When applied to the detection of seven
cancer types, this assay displayed 43% sensitivity at 99% specificity with an area under
ROC curve (AUC) of 0.90. Remarkably, an AUC of 0.88 was obtained for stage I cancer
detection [28]. Cohen et al. also reported another blood test, CancerSEEK, for detecting
eight common cancers (lung, breast, colorectal, pancreatic, gastric, hepatic, esophageal,
and ovarian) based on the analysis of mutations in 16 genes combined with the circulating
levels of eight proteins. Methodologically, this test consists of a multiplex PCR and a single
immunoassay, constituting a simple workflow, easily applicable to clinical practice, with an
estimated price of around USD 500. When applied to 1005 cancer patients and 812 healthy
controls, CancerSEEK disclosed 62% sensitivity at a specificity greater than 99% for discrim-
inating cancer from healthy samples. Concerning early-stage detection, a median sensitivity
of 43% was observed for stage I, 73% for stage II, and 78% for stage III. Additionally, TOO
discrimination was accomplished with 63% accuracy [29]. However, it is noteworthy that
protein biomarkers were the major contributors to cancer type identification following a
positive test result. A refined version of CancerSEEK was then developed in combination
with PET-CT imaging to evaluate the test performance for prospectively detecting cancer
in a study (DETECT-A) involving 10,006 women not known to harbor cancer. For that
purpose, participants were blood tested, and, if abnormal, a second blood collection was
conducted for confirmation and, if confirmed positive, a full body PET-CT was performed.
Test results were considered positive for 134 participants, out of which 127 were further
evaluated by PET. Sixty-four depicted suspicious imaging findings and 26 were proven to
have cancer. This resulted in 27.1% sensitivity and 98.9% specificity for blood testing alone,
while sensitivity decreased to 15.6% and specificity increased to 99.6% for blood testing
combined with PET-CT imaging [30].

Therefore, although mutation-based MCED tests have demonstrated great capacity
for cancer detection, even in early stages, these might not be the ideal standalone approach,
since accurate TOO identification is difficult, due to a lack of tissue-specific gene driver
mutations [31]. In fact, TOO discrimination is an essential feature of a MCED test, otherwise,
individuals with a positive test would have to undergo additional costly exams for full
body examination, instead of a confirmatory localized search [32,33]. Contrarily, epigenetic
signatures are unique to each differentiated cell type, regulating its gene expression profile,
thereby constituting a cell- and tissue-specific trait [34]. Indeed, DNA methylation patterns
have demonstrated the capacity to distinguish tumor types in tissue samples [35] and
also body fluids [36,37], as cfDNA fragments carry the methylation patterns of their cell
of origin.

2.2. DNA Methylation-Based MCED Tests

DNA methylation, the most well studied epigenetic mechanism, consists in the addi-
tion of a methyl group to the 5-carbon of cytosines within CpG dinucleotides. While most
CpG dinucleotides are scattered across gene coding regions and repetitive sequences, CpG
clusters can be found in the so-called CpG islands, which are mostly present in gene pro-
moters and first exons. In normal cells, CpG islands tend to be unmethylated, while coding
and repetitive sequences are methylated. However, this methylation pattern is reversed
in cancer cells, with promoters becoming hypermethylated, leading to tumor suppressor
genes silencing, along with global hypomethylation, entailing genomic instability [38–40].
This aberrant methylation is thought to occur very early in the carcinogenic process, ren-
dering DNA methylation an attractive biomarker for early cancer detection, alongside its
TOO discrimination capacity and easy access through liquid biopsies [41]. Remarkably,
about 50% of the studies selected for this review (Table 1) used DNA methylation as their
approach for MCED.

Whether analyzing a single gene [42] or gene panels [43,44], cfDNA methylation levels
have demonstrated the feasibility of using minimally invasive procedures to detect multiple
cancers and further identify their anatomical location. Nonetheless, these approaches fall
short regarding sensitivity values. Moreover, sequencing-based methylation profiling of
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cfDNA has shown more promising results, through the use of machine learning algorithms
that convert the complex data acquired into classifiers that discriminate cancer from healthy
individuals and further identify its origin. For instance, Kandimalla et al. reported Epi-
PanGI Dx, an assay that simultaneously detected gastrointestinal cancers with an AUC of
0.88 and 85–95% accuracy for TOO prediction [45]. Focusing on four major cancers (lung,
breast, colorectal, and liver), the IvyGeneCORE® Test developed by the Laboratory for
Advanced Medicine demonstrated that methylation analysis of target genes discovered
by data mining could detect these cancers with 84% sensitivity and 90% specificity [46,47].
Similarly, the PanSeer assay developed by Singlera Genomics [48] uses semi-targeted
PCR libraries followed by sequencing for analyzing 477 differentially methylated regions
(DMRs). This blood test was evaluated using samples from the Taizhou Longitudinal Study,
in which healthy individuals provided plasma samples and were monitored for cancer
development, allowing for a retrospective take on early detection viability. Concerning five
tumor types (lung, colorectal, gastric, liver, and esophageal), 87.6% sensitivity and 96.1%
specificity were observed, with similar sensitivity between early- and late-stage disease.
Remarkably, using pre-diagnostic samples, PanSeer showed that cancer may be detected
up to 4 years before medical diagnosis with 95.7% sensitivity [49]. Nevertheless, no results
regarding TOO prediction were reported. At the time of writing, a clinical trial sponsored
by Singlera Genomics (NCT05159544) was recruiting for a prospective study aiming to
evaluate a multi-omics blood test for pan-cancer screening (Table 3).

A company that revolutionized the cancer screening paradigm and emphasized the
wide variety of cancers that can be simultaneously detected through liquid biopsy is GRAIL,
a spin-off of Illumina, that received around USD 1 billion in funding for the sole goal of
developing a blood test for early cancer detection [50,51]. For such purpose, the Circulating
Cell-free Genome Atlas Study (CCGA) (NCT02889978), divided into three sub-studies,
was conducted and recruited over 15000 participants with and without cancer that were
longitudinally followed up. In the first CCGA sub-study, three different sequencing as-
says were evaluated and, ultimately, whole-genome bisulfite sequencing outperformed
whole-genome sequencing and targeted mutation analysis, demonstrating, once more, the
superiority of DNA methylation analysis for early cancer detection [52,53]. Therefore, in
the second sub-study, a targeted methylation assay was developed, trained, and validated
using 6689 participants, for simultaneous detection and TOO discrimination of more than
50 cancer types. In this study, 54.9% sensitivity and 99.3% specificity were disclosed for
all cancer stages, whereas 43.9% sensitivity was observed in early stages. Furthermore,
when focusing on a set of 12 high-signal cancers (based on Surveillance, Epidemiology,
and End Results (SEER) mortality data) sensitivity was 67.3%. Notably, 93% accuracy was
displayed for TOO localization [54]. In the third and final sub-study, carried out to further
validate an improved test version specific for screening purposes, an independent valida-
tion set of 5309 participants was used and resulted in 51.5% sensitivity, 99.5% specificity,
and 88.7% accuracy for TOO prediction [55]. Considering the prospective nature of CCGA,
the prognostic value of this blood test was also assessed. By following-up cancer patients
from the second sub-study for 3 years, it was observed that cancers not detected by the
test had significantly better overall survival (OS) than those detected by the MCED test.
Additionally, detection sensitivity was higher for participants who died than in those who
were alive, indicating that this test may improve the detection of aggressive cancers, thus
being less prone to overdiagnosis [56]. Currently, this blood test is commercially available
as Galleri® at the price of USD 949, upon request to health care providers [57]. In addition
to CCGA, other clinical trials are being conducted by GRAIL to ripen the tests’ potential as
a screening tool (Table 3): STRIVE (NCT03085888) is evaluating the test performance to
detect breast and other invasive cancers in women undergoing screening mammography;
SUMMIT (NCT03934866) is evaluating the test performance to detect invasive cancers in
individuals at high risk of lung and other cancers due to a significant smoking history;
PATHFINDER (NCT04241796, NCT05155605) is assessing the implementation of the test
in clinical practice; REFLECTION (NCT05205967) aims to understand the performance of
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the test in specific clinical settings and its impact on patients and healthcare professionals.
Some results from the PATHFINDER study have already been reported. Aiming to eval-
uate the time and number of additional procedures required to achieve a final diagnosis
following a positive test result, it was observed that a cancer signal was detected in 1.5% of
participants, of which 65% reached a diagnostic resolution. The median time for diagnosis
was 78 days, with 93% of participants undergoing imaging tests and 72% being submitted
to an invasive diagnostic procedure. Remarkably, only 18% of participants with a final
non-cancer diagnosis had to go through an invasive diagnostic procedure [58,59].

Most PCR- and sequencing-based methods for methylation analysis rely on sodium-
bisulfite modification and it has been proven that this chemical treatment causes DNA
degradation and fragmentation, hindering the analysis of large CpG islands, especially
in cfDNA which is already highly fragmented [60]. As an alternative, immunoprecipita-
tion of methylated DNA (MeDIP), i.e., the use of antibodies that target 5-methylcytosine
(5mC) for the enrichment of methylated DNA fragments, followed by sequencing can be
used [61]. Following such reasoning, Adela Inc. is developing a sensitive technology for
the enrichment of methylated fragments from low input samples, like cfDNA, followed
by sequencing of cancer-related regions (cfMeDIP-seq) [62,63]. When applied to cancer
detection, by combining the above-described assay with machine learning, AUC values
of 0.980, 0.918, 0.971, and 0.969 were depicted for discriminating acute myeloid leukemia,
pancreatic cancer, lung cancer, and healthy individuals, respectively. Moreover, early- and
late-stage cancer detection depicted similar values [64]. Interestingly, the CAMPERR study
(NCT05366881) was, at the time of writing, recruiting patients with any of 20 tumor types,
plus healthy individuals to validate the cfMeDIP-seq assay (Table 3).

Several other methylation-based MCED tests using a variety of methodologies are be-
ing currently developed by different companies (Table 1). Many of them are also conducting
clinical trials for prospective assessment of test performance (Table 3).

Remarkably, methylation analysis showed potential for cancer detection even beyond
its molecular analysis. Aberrant DNA methylation patterns in cancer also modify the
physicochemical properties of DNA, which led Sina et al. to develop simple, fast analysis
and low-input electrochemical and colorimetric assays, achieving AUC values of 0.887
and 0.785 in differentiating breast and colorectal cancer from control plasma samples,
respectively [65]. Nonetheless, as only advanced-stage samples were used, although
promising, these prototypes require validation in early-stage cancer as well as in more
tumor types.

In addition to 5mC, 5-hydroxymethylcytosine (5hmC), another DNA pyrimidine base
resulting from 5mC oxidation catalyzed by Ten-Eleven Translocation (TET) enzymes [66],
was also proposed as a pan-cancer biomarker by Li et al. [67]. Using genome-wide 5hmC
analysis, 67.6% sensitivity and 98.2% specificity were attained for cancer detection and
83.2% accuracy for TOO discrimination in six cancer types [67]. Additionally, BlueStar
Genomics is also conducting a study (NCT03869814) for the development of a 5hmC-based
MCED test and has already reported some promising preliminary results [68,69].

2.3. Fragmentation-Based MCED Tests

The entire population of cfDNA found in the blood of an individual may arise from a
wide variety of cell types and its proportions are also dependent on the physiological status.
The cfDNA of a healthy individual is primarily derived from dead blood cells, whereas a
pathological tissue, such as a tumor tissue, may contribute and release larger amounts of
DNA into the circulation [70]. Furthermore, the mechanisms of cell death causing DNA
shedding are variable, reflecting different fragmentation patterns, which is also a cell- and
tissue-dependent mechanism, reflecting nucleosome positioning in the nucleus [31,70,71].
Thereby, tumor-derived cfDNA fragments carry distinct features that may allow for cancer
detection and further TOO identification.

Indeed, this has been confirmed by Bao et al., who showed that combining machine
learning algorithms with cfDNA fragmentation profiles enabled lung, colorectal, and liver
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cancer detection with 95.5% sensitivity and 95% specificity, as well as 93.1% accuracy for
TOO prediction, with consistent results even for early-stage and small-size tumors [72]. In
this vein, DELFI Diagnostics developed the DELFI assay, which, using genome-wide frag-
mentation analysis in 236 cancer patients (lung, breast, colorectal, pancreatic, gastric, bile
duct, and ovarian) and 245 healthy individuals, displayed 73% sensitivity and 98% speci-
ficity for discriminating cancer from healthy subjects, and 61% accuracy for TOO [73,74].
Notably, when combining mutation analysis with fragmentation, DELFI showed an in-
crease in sensitivity to 91% and of TOO accuracy to 75% [74]. Similarly, Mouliere et al. also
reported that mutation analysis in size-selected cfDNA fragments detected several cancer
types with an AUC over 0.99 [75]. Interestingly, CancerRadar, a multi-omics approach
combining cfDNA fragmentation with methylation, copy number variations, and microbial
composition depicted a remarkable 85.6% sensitivity and 99% specificity for lung, colon,
gastric, and liver cancer detection and 91.5% accuracy for TOO [76].

2.4. Gene Expression/Non-Coding RNA-Based MCED Tests

Given their potential as minimally invasive biomarkers for several disorders, the
identification of cfRNAs has attracted significant interest in recent years. Circulating
microRNAs (miRs) have been the primary focus of cfRNA studies, due to their high abun-
dance and stability in body fluids, as they are often protected by protein complexes and/or
within EVs cargo. However, only a small number of miRs exhibit tissue-specificity. Con-
trarily, messenger RNA (mRNA) and long non-coding RNA (lncRNA) disclose numerous
tissue- and disease-specific gene expression patterns and constitute a larger portion of the
transcriptome, being easily assessed through RNA sequencing (RNA-seq) [77–79].

Supporting the evidence for MCED using whole-transcriptome data, Qi et al. per-
formed RNA-seq in blood samples of 45 cancer patients and 30 healthy individuals and
identified 900 differentially expressed genes that were used for constructing a machine
learning classifier, which resulted in 0.77 accuracy and 0.72 precision for detecting seven
tumor types. Interestingly, when considering only very long intergenic non-coding RNAs
(vlincRNAs), the classifier showed 0.86 accuracy and precision, outperforming mRNA-
based cancer detection [80]. Other lncRNAs, such as LOC553103 and BLACAT1, also
showed the capacity for pan-cancer detection with AUC values ranging from 0.826 to 0.966
and 0.833 to 0.967 for individual cancer types, respectively. Furthermore, discriminating
cancer from benign conditions was also achievable in some cases [81,82]. Concerning
microRNAs, circulating miR-93 levels were able to detect a variety of different malignan-
cies with 63% to 100% sensitivity and of 81% to 100% specificity for individual cancer
types [83]. Moreover, miR-1307-3p also showed 98% sensitivity and 85% specificity in
discriminating 13 cancer types from healthy individuals [84]. One advantage of these
single-target approaches is that only a simple quantitative PCR reaction is needed, thus
favoring clinical implementation.

It has been known for a long time that platelets interact with cancer cells and promote
the metastatic cascade at all its phases. Nonetheless, since the interaction between the tumor
and the platelets results in the “education” of these particles (tumor-educated platelets,
TEPs), altering their transcriptional profile, RNA-seq of TEPs might open a window of new
cancer biomarkers [85]. Indeed, Best et al. performed RNA-seq on TEPs from 228 cancer
patients and 55 healthy individuals and identified 2246 differentially expressed mRNAs,
of which 1072 were selected for constructing a machine learning classifier. This classifier
achieved 97% sensitivity, 94% specificity, and 96% accuracy for distinguishing six cancer
types from controls, as well as 71% accuracy for TOO prediction [86].

Another interesting approach to multi-cancer detection was reported by Tripathi et al.,
who developed a scale for scoring individuals as non-cancer, inflammatory, high-risk or
stage I–IV cancer. Such a scale was based on OCT-4A expression, a marker of pluripotency,
thereby targeting cancer stem cells (CSCs). Remarkably, by enriching CSCs from the blood
of 500 cancer patients and 500 non-cancer controls, OCT-4A expression levels detected and
staged 22 tumor types with a perfect sensitivity and specificity [87].
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2.5. Circulating Tumor Cell-Based MCED Tests

CTCs are cells released from the primary tumor into the circulation as a part of the
metastatic process. Although usually scarce, the increasing number of CTCs found in
the blood has been associated with poor patient prognosis, but its diagnostic and early
detection potential remains largely unexplored [88]. Nonetheless, CTCs have been found in
the circulation of patients with localized tumors or even prior to the detection of a primary
tumor by imaging, thus indicating a putative value in early cancer detection if the right
tools are applied [88–91].

Using EpCAM+/Vimentin+ specific immunomagnetic beads for CTC isolation from
174 cancer patients (118 stage I/II), Huang et al. showed that the mean CTC count in lung,
colorectal, gastric, liver, and esophageal cancers was significantly higher when compared to
healthy individuals and non-cancer patients with high-risk conditions, also discriminating
between the latter two groups of samples [92]. Notably, their technology showed a CTC
capture rate higher than 80%, being superior to that of the FDA-approved CellSearch device,
which is around 70% [92,93]. Moreover, no significant differences were seen in CTC count
between the different cancer types, suggesting a potential multi-cancer detection biomarker,
although TOO identification was not possible. Another strategy that has been followed
is the analysis of circulating ensembles of tumor-associated cells (C-ETACs), defined as
cell clusters with at least 3 cells positive for EpCAM and pan-cytokeratin immunostaining,
regardless of CD45 status. C-ETACs detection discriminated cancer patients (18 cancer
types) from healthy individuals with 89.8% sensitivity and 97% specificity, outperforming
conventional CTCs-based methodologies [94]. Furthermore, the addition of cancer-specific
markers to cell staining allowed for TOO identification with 93.1% accuracy [95].

2.6. Extracellular Vesicle-Based MCED Tests

EVs are a heterogeneous population of lipid membrane vesicles comprising exosomes,
microvesicles and apoptotic bodies, being categorized by size, biogenesis, and release
mechanisms particularities [96]. These small vesicles are secreted by a variety of cell
types, including cancer cells, and play a major role in mediating cell-cell communication,
contributing to the modulation of a cancer-favorable microenvironment. Such a role can
be attributed due to EVs transporting different cargo molecules, including nucleic acids,
proteins, and metabolites, which are also appealing as cancer biomarkers [97,98].

Unlimited proliferation is a cancer hallmark, due to cancer cells expressing significant
levels of telomerase, resulting in the extension of telomeric DNA which hinders cellular
senescence [99]. Thus, Goldvaser et al. hypothesized that the presence of human telomerase
reverse transcriptase (hTERT) mRNA, the catalytical subunit of telomerase, in exosomes
could serve as a minimally invasive pan-cancer biomarker. Interestingly, their results
sustained the theory, disclosing 62% sensitivity and 100% specificity for detecting 15 cancer
types, including solid and hematological ones [100]. Despite the potential of the nucleic
acid content of EVs, most studies on MCED have focused on the protein cargo.

Using the Verita™ platform for EV isolation, an alternative to the conventional ultra-
centrifugation protocols developed by Biological Dynamics, EV-protein profiling combined
with machine learning detected stage I and II pancreatic, ovarian, and bladder cancers with
71.2% sensitivity, 99.5% specificity, corresponding to an AUC of 0.95 [101,102]. Focusing
on the proteome from both extracellular vesicles and particles (EVPs), machine learning
classifiers also discriminated 16 cancer types from healthy controls with 95% sensitivity
and 90% specificity using only 47 proteins, while TOO was accurately predicted using a
30-protein classifier [103]. Interestingly, two studies also focused on EVs’ surface proteins
and used DNA aptamer-based recognition of such proteins. Using a chip targeting CD9+
EVs and aptamer recognition of CD63/EpCAM/MUC1 (epithelial markers), carcinomas
were detected with 100% sensitivity and specificity [104]. When targeting tumor-type-
specific proteins in EVs’ surface, 95% sensitivity and 100% specificity were achieved for
cancer detection and 68% accuracy for TOO discrimination in cancers of the lung, breast,
prostate, liver and ovary, and lymphoma [105].
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2.7. Other Approaches to MCED Tests

Besides CTCs, other circulating cells have demonstrated the ability to signal several
cancer types. Considering that activated monocytes (or macrophages) phagocyte tumor
cells or related structures, thereby presenting tumor material highly concentrated in their
interior, the epitope detection in monocytes (EDIM) technology was developed [106].
Consisting in the analysis of tumor markers intracellularly of monocytes, this strategy can
be easily applied using flow cytometry by targeting CD14+/CD16+ cells extracted from
a whole-blood sample in addition to the markers of interest. In fact, this method can be
applied to a wide range of diseases, since any epitope may be selected [106].

Combining the natural immune response to cancer with the fact that tumor cells have
an altered metabolism, in 2012, Feyen et al. first reported the EDIM-TKTL1 blood test to
evaluate if the transketolase-like-1 (TKTL1) protein could be detected in monocytes and
allow for cancer detection. This protein was chosen because it is an enzyme involved in the
pentose phosphate pathway and upregulated in tumors, thus promoting aerobic glycolysis.
Using 240 patients with several malignancies and 117 healthy individuals, the EDIM-TKTL1
test showed 95% sensitivity and 88% specificity, depicting a superior ability to detect
small tumors compared to FDG-PET-CT, an imaging technique also relying on cancers’
particular metabolism [107]. Later, Grimm et al. added Apo10, a marker of apoptosis
resistance, and showed that the combined analysis of the 2 epitopes (EDIM-TKTL1/Apo10
blood test) detected oral squamous cell carcinoma, breast, and prostate cancer with 95.8%
sensitivity and 97.3% specificity [108]. More recently, this technology was further tested on
cholangiocellular, pancreatic, and colorectal cancer, showing 100% sensitivity and 96.2%
specificity, with the false-positive results being due to individuals harboring inflammatory
conditions [109]. In a prospective study involving 5114 asymptomatic individuals, this
blood test demonstrated the capacity to be used as a screening tool followed by imaging,
since TOO localization is not possible [110]. The EDIM technology has been developed
by Zyagnum AG and is available for early cancer early detection as the PanTum Detect®

blood test [111].
Pursuing the deregulated metabolism hallmark, metabolite profiling of body fluids

may also give insight into the cancer status of individuals. Using different techniques
for the analysis of serum metabolites, 84% sensitivity and specificity for detection and
85% accuracy for TOO identification were reported for six cancer types [112], whereas
female cancers (breast, endometrial, cervical, and ovarian) could be detected at early stage
with 98% sensitivity and 98.3% specificity as well as over 90% accuracy for TOO [113].
Plasma and urine glycosaminoglycans (GAGs) also showed MCED potential, with AUC
values around 0.80 [114]. In fact, this GAGome approach to early cancer detection is being
tested by Elypta, with two clinical trials currently ongoing (NCT05295017, NCT05235009)
(Table 3) [115].

Other components of body fluids, such as metals, also demonstrated capacity for pan-
cancer detection, showing an AUC of 0.83 for distinguishing cancer patients from healthy
individuals [116]. Remarkably, these elements even disclosed significantly different levels
in cancer patients with a normal reading for classical markers (CEA, CA19-9, CA125, PSA).
The profile of serum resulting from infrared spectroscopy itself allowed for cancer detection
with an AUC of 0.86 [117]. Interestingly, the Dxcover® platform of infrared spectroscopy is
being developed as an MCED test, requiring only a blood drop for analysis [118].

When developing cancer biomarkers, it is inevitable not to focus on endogenous
molecules, but an exogenous source can also shed light on cancer diagnosis. Although
only tested in animal models, non-viral vectors [119] and macrophages [120], engineered
to contain a luminescent reporter coupled to the promotor of a tumor-specific actionable
gene, showed the ability to point out the presence of very small tumors by measuring
luminescence levels in the blood.
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Table 1. Multi-cancer early detection tests validated on human samples.

Biomarker Source Tumor Types Sample Methods Main Findings Test/
Company Ref.

DNA
methylation

Tissue
lung, breast, colorectal,
esophagus, liver, pancreatic,
gastric, cervical, head and neck

120 tumor tissue
123 normal tissue

Bisulfite
pyrosequenc-
ing

TCGA methylation data mining identified HIST1H4F as
hypermethylated in 17 tumor types.
Methylation analysis in tissue samples of 9 cancer types
showed AUCs above 0.87 for all cancers and above 0.90 for
all except pancreatic cancer.

– [121]

Tissue

lung, breast, colorectal, prostate,
pancreas, glioblastoma, and B
cell chronic lymphocytic
leukemia

83 tumor tissue
54 normal tissue

Bisulfite
pyrosequenc-
ing

Methylation levels at 27 CpGs of the GHSR gene showed a
higher average methylation degree in all tumor samples
compared to normal samples.
27 CpG-signature displayed an AUC of 0.8789 for
discriminating cancer from normal tissue.

– [122]

Tissue colorectal, gastric, and
esophageal

229 tumor and
normal-adjacent tissue

Bisulfite
sequencing
PCR

TCGA methylation data mining identified differentially
methylated regions (DMRs) in the SST gene. 7 CpG sites
were shown to be hypermethylated in all 3 cancers.
A combination of 2 CpGs (+18 and +129) displayed the best
AUC of 0.698, with 59.3% sensitivity and 72.8% specificity
for detecting the 3 gastrointestinal cancers.

– [123]

Tissue lung, breast, colon, gastric,
and endometrial

184 tumor tissue
34 normal tissue

Bisulfite
amplicon
sequencing

Designed a 302-bp PCR amplicon, covering the ZNF154
tumor-specific hypermethylated region, and methylation
patterns were used to develop a multi-cancer classifier.
AUC of 0.96 for discriminating cancer from normal tissue.
Computational simulation of ctDNA displayed AUCs of up to 0.79.

– [124]

Plasma colon, pancreatic, liver, and
ovarian

71 cancer patients
20 healthy individuals DREAMing

TCGA methylation data from white blood cells revealed that
ZNF154 locus remains unmethylated, even in older
individuals, showing the potential for the development of a
blood test for cancer detection.
AUC values ranged from 0.75 to 0.87 for discriminating
cancer patients from healthy individuals, except for liver
cancer which displayed an AUC of 0.48.

– [42]

Plasma lung and prostate 323 cancer patients
136 healthy individuals qMSP

“PanCancer” panel (FOXA1, RARβ2, and RASSF1A) detected
cancer with 64.3% sensitivity, 69.8% specificity and 66.4% accuracy.
“CancerType” panel (GSTP1 and SOX17) discriminated
between lung and prostate cancer with 93% specificity.

– [44]
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Table 1. Cont.

Biomarker Source Tumor Types Sample Methods Main Findings Test/
Company Ref.

Plasma lung, breast, and
colorectal

253 cancer patients
103 healthy individuals qMSP

“PanCancer” panel (APC, FOXA1, RASSF1A) detected cancer
with 72.4% sensitivity, 73.5% specificity and 72.8% accuracy.
“CancerType” panel (SCGB3A1, SEPT9, and SOX17)
discriminated TOO with 80.0%, 98.9%, and 85.1% specificity
for breast, colorectal, and lung cancer, respectively.

– [43]

Serum lung, breast, colorectal, gastric,
pancreatic, and hepatocellular

70 cancer patients
10 healthy individuals MSP

Methylation levels of a 4 gene-panel (RUNX3, p16,
RASSF1A, and CDH1) showed 89% sensitivity and 100%
specificity for cancer detection.

– [125]

Plasma colorectal and pancreatic 60 cancer patients
60 healthy individuals

Methylation
array

Found a 7 gene panel (MDR1, SRBC, VHL, MUC2, RB1, SYK,
and GPC3) that detects colorectal and pancreatic cancers
with 63.16% sensitivity, 84% specificity, and AUC of 0.8177.

– [126]

Plasma lung, breast, and liver 46 cancer patients
32 healthy individuals

Bisulfite
sequencing

Developed CancerLocator, a test based on cfDNA bisulfite
sequencing combined with a probabilistic model for cancer
detection and TOO discrimination. CancerLocator uses TCGA
methylation data as features to estimate the fraction of ctDNA in
the plasma and the likelihood of coming from each tumor type.
TOO discrimination showed a low error rate of 0.265
(99.7% accuracy).

Cancer
Locator [127]

Plasma liver but applicable to
any cancer

33 cancer patients
36 healthy individuals

Bisulfite
sequencing

Developed CancerDetector, a test based on cfDNA bisulfite
sequencing combined with a probabilistic model that joints
methylation states of multiple adjacent CpG sites on an
individual sequencing read, for cancer detection.
94.8% sensitivity and 100% specificity were obtained.

Cancer
Detector [128]

Plasma > 50 cancer types

2482 cancer patients
4207 healthy individuals

Bisulfite
sequencing

Developed a targeted methylation assay combined with a
machine learning classifier for detecting and discriminating
TOO in more than 50 cancer types using cfDNA.
54.9% sensitivity and 99.3% specificity were obtained in the
validation set.
93% accuracy for TOO prediction. Galleri

(GRAIL)

[54]

2823 cancer patients
1254 healthy individuals

Developed a refined assay and classifiers optimized for
screening purposes and performed clinical validation.
51.5% sensitivity and 99.5% specificity were obtained.
88.7% accuracy for TOO prediction.
PPV of 44.4% and NPV of 99.4% for cancer detection.

[55]
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Table 1. Cont.

Biomarker Source Tumor Types Sample Methods Main Findings Test/
Company Ref.

Plasma
colorectal, hepatocellular,
esophageal, gastric,
and pancreatic

254 cancer patients
46 healthy individuals

Bisulfite
sequencing

Developed EpiPanGI Dx, a cfDNA methylation-based test
combining bisulfite sequencing and machine learning, for
detecting and discriminating TOO of
gastrointestinal cancers.
AUC of 0.88 for detecting gastrointestinal cancers.
Accuracy of 0.85–0.95 for TOO prediction.

EpiPanGI
Dx [45]

Plasma lung, colorectal, gastric, liver,
and esophageal

191 pre-diagnosis
cancer samples
223 post-diagnosis
cancer samples
414 healthy samples

Bisulfite
sequencing
(using semi-
targeted PCR
libraries)

Developed PanSeer, a blood test combining the analysis of
477 cancer-specific differentially methylated regions with
machine learning for cancer detection.
87.6% sensitivity for post-diagnosis samples, 94.9%
sensitivity for pre-diagnosis samples and 96.1% specificity
were obtained in the testing set.
Cancer can be detected by PanSeer up to 4 years before
conventional diagnosis with 95.7% sensitivity.

PanSeer
(Singlera

Genomics)
[49]

Plasma lung, pancreatic, and acute
myeloid leukemia

137 cancer patients
62 healthy individuals cfMeDIP-seq

Developed cfMeDIP-seq, an immunoprecipitation-based
protocol for methylation profiling in cfDNA and combined
it with machine learning algorithms to discriminate TOO.
AUC values ranged from 0.92 to 0.98 for
discriminating TOO.

Adela,
Inc. [64]

Plasma lung, breast, colorectal,
and melanoma

78 cancer patients
66 healthy individuals

Bisulfite
sequencing

Developed a targeted methylation sequencing assay to
analyze the methylation status of 9 223 cancer related CpG
sites, combined with a novel algorithm that converts
sequencing data into a methylation score, for cancer
detection and TOO discrimination.
83.8% sensitivity and 100% specificity were obtained for
cancer detection.
78.9% accuracy for TOO discrimination.

– [129]

Plasma Lung, breast, colorectal,
and liver Not available NGS

Developed IvyGeneCORE Test, a blood test analyzing
cfDNA methylation levels at specific genes combined with
artificial intelligence for cancer detection.
84% sensitivity and 90% specificity were obtained for
discriminating cancer from healthy individuals.

IvyGene
-CORE

(Laboratory
for

Advanced
Medicine)

[47]
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Table 1. Cont.

Biomarker Source Tumor Types Sample Methods Main Findings Test/
Company Ref.

Plasma lung, colorectal, pancreatic, liver,
esophageal, and ovarian

625 cancer patients
483 healthy individuals ELSA-seq

Developed ELSA-seq, a targeted methylation sequencing
assay combined with machine learning for cancer detection
and TOO discrimination.
80.6% sensitivity and 98.3% specificity were obtained in
validation set.
81.0% accuracy for TOO discrimination.

OverC
(Burning
Rock Dx)

[130]

Plasma 14 cancer types 549 cancer patients
80 healthy individuals

Targeted
sequencing

Developed a cancer detection model based on 37
methylation-correlated blocks (MCB).
72.86% sensitivity, 96.67% specificity, and AUC of 0.86 were
obtained in the validation set.

GENECAST

[131]

Plasma
lung, breast, colorectal,
pancreatic, gastric, esophageal,
liver, and ovarian

598 cancer patients
302 healthy individuals

Targeted
sequencing

Developed a cancer detection and TOO discrimination
model based on 135 MCB.
66.3% sensitivity, 95.5% specificity, and AUC of 0.85 were
obtained in the validation set. 75.4% accuracy for TOO
discrimination.

[132]

Plasma lung, breast, colorectal,
and pancreatic

101 cancer patients
71 healthy individuals MSRE-qPCR

Developed a 10-marker panel for cancer detection and a
16-marker panel for TOO discrimination.
79% sensitivity, 90% specificity, and AUC of 0.89 were
obtained for cancer detection. TOO discrimination accuracy
was 80% for colorectal, 78% for lung, 75% for pancreatic, and
62% for breast cancer.

Signal-X
(Universal

Dx)
[133]

Plasma Lung, colorectal, bladder,
and pancreatic

>1500 cancer patients
>1800 healthy
individuals

5mC
enrichment and
targeted
sequencing

Developed a blood test based on cfDNA methylation
signatures for early cancer detection and
TOO discrimination.
90% and 87% sensitivity at 90% specificity for stage I/II
colorectal and lung cancer detection. 73% and 52%
sensitivities at 95% specificity for stage I/II pancreatic and
bladder cancer detection.
At 98% specificity, TOO accuracy was 99% for colorectal, 94%
for lung, 88% for bladder, and 86% for pancreatic cancer.

LUNAR
(Guardant

Health)
[134]
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Table 1. Cont.

Biomarker Source Tumor Types Sample Methods Main Findings Test/
Company Ref.

Plasma lung, breast, colorectal, prostate,
pancreatic, liver, and ovarian

111 cancer patients
55 healthy individuals

Targeted
sequencing

Developed Omni1, a targeted methylation sequencing panel
comprising around 3000 cancer-specific hypermethylation
markers for cancer early detection.
65% sensitivity for stage I cancers, 75% sensitivity for stage
II cancers, and 89% specificity were obtained.

Omni1
(Avida

Biomed)
[135]

Plasma
lung, breast, colorectal, gastric,
esophageal, and liver

269 cancer patients
170 healthy individuals

Bisulfite
sequencing

Developed Aurora, a blood test based on cancer specific
cfDNA methylation signatures for detecting 6 major
cancer types.
AUCs of 0.90, 0.98, and 0.92 were obtained for lung, breast
and colorectal cancer detection, respectively.

Aurora
(AnchorDx)

[136]

203 cancer patients
206 healthy individuals

Improved to Aurora 2.0, a targeted methylation
sequencing assay.
AUCs of 0.94 and 0.935 were obtained for gastric and
esophageal cancer detection, respectively.
AUCs of 0.973, 0.962, and 0.92 were obtained for lung,
breast, and colorectal cancer detection, respectively.

[137]

1000 cancer patients
505 healthy individuals

AUCs of 0.973, 0.962 and 0.92, 0.94, and 0.935 were obtained
for lung, breast, colorectal, gastric and esophageal cancer
detection, respectively.
At 99% specificity, 84%, 75%, 82%, 85%, and 78% sensitivity
were obtained for lung, breast, colorectal, gastric, and
esophageal cancer, respectively.

[138]

Tissue
Plasma

breast, colorectal, prostate,
and lymphoma

72 tumor and 31 normal
tissues
100 cancer and 45
healthy plasmas

Electrochemical
assays

Developed electrochemical and colorimetric assays that can
detect methylation differences between cancer and healthy
genomes based on the level of DNA adsorption on planar
and colloidal gold surfaces.
DNA adsorption levels could discriminate between cancer
patients and healthy individuals with an AUC of 0.887 using
an electrochemical assay.
DNA adsorption levels could discriminate between cancer
patients and healthy individuals with an AUC of 0.785 using
a colorimetric assay.

– [65]
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Table 1. Cont.

Biomarker Source Tumor Types Sample Methods Main Findings Test/
Company Ref.

Stool colorectal and gastric 105 cancer patients
113 healthy individuals Hi-SA

Developed a method combining single-step sodium bisulfite
modification and fluorescence PCR to measure RASSF2 and
SFRP2 methylation status in fecal DNA.
DNA recovery from feces showed an AUC of 0.78 for
distinguishing cancer from non-advanced lesions
(adenomas, polyps and healthy). Methylation levels showed
an AUC of 0.78. A combination score showed the best AUC
of 0.81.

– [139]

DNA
methylation
and
circulating
proteins

Plasma
Serum

lung, pancreatic, gastric,
esophageal, liver, and ovarian

180 cancer patients
257 healthy individuals Multiplex PCR

and LQAS

Developed a multi-analyte blood test based on 26
methylation markers and 5 circulating proteins combined
machine learning algorithms for cancer detection.
83% sensitivity, 94% specificity, and AUC of 0.96 were
obtained in the validation set.

Exact
Sciences

[140]

160 cancer patients
315 healthy individuals

85% sensitivity, 95% specificity, and AUC of 0.96 were
obtained in the validation set. [141]

DNA
methylation
and copy
number
variations
(CNVs)

Plasma

lung, breast, hepatocellular,
nasopharyngeal, smooth muscle
sarcoma, and
neuroendocrine tumor

46 cancer patients
32 healthy individuals

Bisulfite
sequencing

Performed bisulfite sequencing to analyze genome-wide
hypomethylation combined with copy number alterations in
cfDNA and developed algorithms for cancer detection.
If a sample was positive if either hypomethylation or CNAs
were observed, 85% sensitivity, and 88% specificity
were obtained.
If a sample was positive if both hypomethylation and CNAs
were observed, 60% sensitivity, and 94% specificity
were obtained.

– [142]

DNA
methylation,
fragmentation,
CNVs and
microbial
composition

Plasma lung, colon, gastric, and liver 275 cancer patients
204 healthy individuals cfMethyl-Seq

Developed CancerRadar, a test based on genome-wide
methylation profiling of cfDNA combined with machine
learning for cancer detection and TOO discrimination.
85.6% sensitivity and 99% specificity for cancer detection.
91.5% accuracy for TOO discrimination.

Cancer
Radar
(Early

Diagnostics)

[76]
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Table 1. Cont.

Biomarker Source Tumor Types Sample Methods Main Findings Test/
Company Ref.

DNA
hydroxymeth-
ylation

Plasma lung, breast, colorectal, gastric,
esophageal, and liver

2241 cancer patients
2289 healthy individuals

5hmC-Seal
profiling

Used the 5hmC-Seal technology to profile genome-wide
5hmC in cfDNA and combined it with machine learning for
cancer detection and TOO discrimination.
79.3% sensitivity and 95% specificity were obtained in
training set.
67.6% sensitivity and 98.2% specificity were obtained in the
testing set.
83.2% accuracy for TOO discrimination.

Epican
Genetech [67]

Plasma lung, breast, prostate,
and pancreatic

188 cancer patients
180 healthy individuals

5hmC
sequencing

Developed a novel 5hmC enrichment technology coupled
with sequencing and machine learning for cancer detection.
AUCs of 0.89, 0.84, 0.95, and 0.83 were obtained for breast,
lung, pancreatic and prostate cancer detection, respectively.

BlueStar
Genomics [69]

Genetic
variants

Plasma lung, breast, colorectal, prostate,
bladder, pancreatic, and liver

260 cancer patients
415 healthy individuals NGS

Developed DEEPGENTM, an assay based on NGS combined
with machine learning for cancer detection.
57% sensitivity at 95% specificity, 43% sensitivity at 99%
specificity, and AUC of 0.90 were obtained.

DEEPGEN
(Quantgene) [28]

Stool colorectal, pancreatic, gastric,
biliary, and oropharyngeal

69 cancer patients
69 healthy individuals

Digital melt
curve method

Identified target mutations in genes commonly mutated in
gastrointestinal cancer by sequencing tumor tissues.
Target mutation analysis in stool detected cancer with 68%
sensitivity and 100% specificity.

– [24]

Genetic
variants
and cfDNA
fragmentation

Plasma

lung, breast, colorectal, GIST,
ovarian, Hodgkin lymphoma,
diffuse large B-cell lymphoma,
and multiple myeloma

558 cancer patients
367 healthy individuals WGS

Developed GIPXplore, a method combining cfDNA
whole-genome sequencing profiles with machine learning
for cancer detection and TOO discrimination.
92% sensitivity, 98% specificity, and AUC of 0.99 were
obtained for discriminating hematological cancers from
healthy samples. 85% accuracy for TOO prediction.
55% sensitivity, 95% specificity, and AUC of 0.83 were
obtained for discriminating solid cancers from healthy
samples. 69% accuracy for TOO prediction.

– [143]

Plasma 17 tumor types 200 cancer patients
65 healthy individuals WGS

Analysis of mutations in size-selected cfDNA fragments
improved diagnostic capacity.
Combined fragmentation and mutation analysis provided
an AUC > 0.99 compared to AUC <0.80 without using
fragmentation features.

– [75]
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Table 1. Cont.

Biomarker Source Tumor Types Sample Methods Main Findings Test/
Company Ref.

cfDNA
fragmentation

Plasma Lung, colorectal, and liver 971 cancer patients
243 healthy individuals WGS

Used cfDNA fragmentation profiles combined with machine
learning for cancer early detection and TOO discrimination.
95.5% sensitivity, 95% specificity, and AUC of 0.983
were obtained.
93.1% accuracy for TOO prediction.

– [72]

Plasma
lung, breast, colorectal,
pancreatic, gastric, bile duct,
and ovarian

236 cancer patients
245 healthy individuals WGS

Developed DELFI, a test based on cfDNA fragmentation
patterns combined with machine learning for cancer
detection and TOO discrimination.
73% sensitivity, 98% specificity, and AUC of 0.94 were
obtained for discriminating cancer from healthy samples.
61% accuracy for TOO prediction.
Combining DELFI with mutant ctDNA, sensitivity for
cancer detection increased to 91%, and TOO accuracy
increased to 75%.

DELFI
(Delfi

Diagnostics)
[74]

Circulating
proteins and
cfDNA
mutations

Plasma

lung, breast, colorectal, pancreas,
gastric, liver, esophageal,
and ovarian

1005 cancer patients
812 healthy individuals

Targeted
sequencing
and
Bead-based
immunoassay

Developed CancerSEEK, a blood test based on cfDNA
mutations on 16 genes and 8 circulating proteins combined
with machine learning for cancer detection and TOO
discrimination.
62% sensitivity, 99% specificity, and AUC of 0.91 were
obtained for discriminating cancer from healthy samples.
63% accuracy for TOO prediction.

CancerSEEK
(Exact

Sciences)

[29]

–
9911 women not
previously known to
have cancer

Evaluated the feasibility of CancerSEEK testing combined
with PET-CT to detect cancer in a prospective cohort. The
blood test was considered positive for 134 participants. 127
were further evaluated by PET. 64 showed imaging
concerning for cancer. 26 were proven to have cancer by
biopsy or other method.
27.1% sensitivity, 98.9% specificity, and 19.4% PPV were
obtained for blood testing alone. 15.6% sensitivity, 99.6%
specificity, and 28.3% PPV were obtained for blood testing
combined with PET.

[30]
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Table 1. Cont.

Biomarker Source Tumor Types Sample Methods Main Findings Test/
Company Ref.

Circulating
Hsp90α Plasma

lung, breast, colorectal, stomach,
liver, pancreatic, esophageal,
and lymphoma

661 cancer patients
308 non-cancer patients
331 healthy individuals

ELISA

Hsp90α levels in plasma discriminated cancer from
non-cancer controls (healthy + at-risk).
AUC of 0.893, 81.72% sensitivity, and 81.03% specificity were
obtained in the validation set.

– [144]

Gene
expression

Whole
blood

lung, breast, colorectal,
pancreatic, hepatobiliary,
and glioblastoma

228 cancer patients
55 healthy individuals

RNA
sequencing

Identified 2246 differentially expressed mRNAs in
tumor-educated-platelets (TEPs). 1072 mRNAs were
selected for developing a machine learning classifier for
multi-cancer detection and TOO prediction.
97% sensitivity, 94% specificity, and 96% accuracy were
obtained in the validation set. 71% accuracy for
TOO prediction.

thromboDx
BV [86]

Bone
mar-
row

leukemias, myelodysplastic
syndrome, myeloproliferative
neoplasm, and lymphoma

136 cancer patients RNA
sequencing

Developed RANKING, a machine learning algorithm
applied to RNA-seq data for the identification of
hematological cancers.
Accuracy of 100% for acute myelocytic leukemia and acute
lymphocytic leukemia classification.

– [145]

Whole
blood

breast, rectum, colon, esophagus,
stomach, thyroid, and uterus

45 cancer patients
30 healthy individuals

RNA
sequencing

Developed a machine learning classifier that uses RNA-seq
data for cancer detection.
Identified 900 differentially expressed genes that were used
for constructing the classifier. 0.77 accuracy and
0.72 precision were obtained in the testing set.
Another classifier based only on very long intergenic
non-coding RNAs (vlincRNAs) outperformed the previous
with 0.86 accuracy and precision.
vlincRNAs demonstrated superior performance compared
with mRNAs for cancer status identification.

– [80]

Whole
blood 22 tumor types 500 cancer patients

500 non-cancer patients qRT-PCR

Developed the HrC scale, using OCT-4A expression in
120 samples (based on fold increase), for cancer detection
and staging.
100% sensitivity, 100% specificity, and AUC of 1
were obtained.

– [87]
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Table 1. Cont.

Biomarker Source Tumor Types Sample Methods Main Findings Test/
Company Ref.

lncRNA

Serum 15 tumor types

900 cancer patients
450 patients with
benign conditions
450 healthy individuals

qRT-PCR

AUC values ranged from 0.826 to 0.966 for discriminating
cancer patients from healthy individuals.
AUC values ranged from 0.723 to 0.896 for discriminating
cancer from benign conditions.
LOC553103 expression was not able to discriminating cancer
from benign conditions in pancreatic, ovarian and
thyroid cancer.

– [81]

Serum 12 tumor types

360 cancer patients
360 patients with benign
conditions
360 healthy individuals

qRT-PCR

AUC values ranged from 0.833 to 0.967 for discriminating
cancer patients from healthy individuals.
AUC values ranged from 0.7 to 0.81 for discriminating
cancer from benign conditions.
BLACAT1 expression was not able to discriminating cancer
from benign conditions in breast, ovarian, prostate, and
nasopharyngeal cancer.

– [82]

microRNA
Serum 14 tumor types

112 cancer patients
48 patients with
benign conditions
8 healthy individuals

qRT-PCR

Higher miR-93 expression was observed for all cancers
compared to healthy controls, except for colorectal, bladder,
gastric, renal, cervical, and ovarian cancer.
AUC values ranged from 0.86 to 1.00, sensitivities from 63%
to 100% and specificities from 81% to 100% for
discriminating cancer patients from healthy individuals.

– [83]

Serum 13 tumor types 254 cancer patients
27 healthy individuals microRNA chip miR-1307-3p levels showed 98% sensitivity, 85% specificity,

and AUC of 0.98 for cancer detection in the validation set. – [84]

Epitope
detection in
monocytes
(EDIM)

Whole
blood

17 tumor types 240 cancer patients
117 healthy individuals

Flow
cytometry

EDIM-TKTL1 test is based on the detection of activated
macrophages that present the TKTL1 antigen intracellularly.
94% sensitivity, 81% specificity and AUC of 0.89 were
obtained. PanTum-

Detect®

(Zyagnum
AG)

[107]

oral squamous cell carcinoma,
breast, and prostate

213 cancer patients
74 healthy individuals

Combination of EDIM-TKTL1 and EDIM-Apo10 tests showed
95.8% sensitivity and 97.3% specificity for cancer detection. [108]

cholangiocellular, pancreatic
and colorectal

62 cancer patients
13 patients with
inflammatory conditions
16 healthy individuals

Combination of EDIM-TKTL1 and EDIM-Apo10 tests
showed 100% sensitivity, 96.2% specificity and an AUC of
0.9934 for cancer detection.
A positive result was seen for 100% of all cancer patients, 0% of
healthy individuals, and 7.7% of individuals with inflammation.

[109]
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Table 1. Cont.

Biomarker Source Tumor Types Sample Methods Main Findings Test/
Company Ref.

Circulating
ensembles of
tumor-
associated cells
(C-ETACs)

Whole
blood 18 cancer types

5509 cancer patients
10,625 healthy
individuals

Immuno-
staining

C-ETACs were detected in 4944 out of 5509 cancer patients
as well as in 255 of the 8493 individuals with no abnormal
findings in routine screening procedures. This reflects an
89.8% sensitivity and 97% specificity.
C-ETACs were detected in 137 out of 2132 asymptomatic
individuals with abnormal findings in routine screening
procedures. Assuming that cancer will not clinically
manifest in none of the asymptomatic individuals positive
for C-ETACs results in a maximum false-positive rate
of 3.7%.

– [94]

Whole
blood 27 cancer types

9416 cancer patients
6725 individuals with
suspected cancer
13,919 healthy
individuals

Immunocy-
tochemistry

Additional organ-specific markers were profiled aiming to
predict TOO.
C-ETACs were detected in 91.8% of the 9416 cancer patients.
Of the 6725 symptomatic individuals, 6025 were diagnosed
with cancer and C-ETACs were detected in 92.6% of these.
This resulted in a sensitivity of 92.1%.
C-ETACs were undetectable in 13,408 of the 13,919 healthy
individuals, resulting in a specificity of 96.3%.
93.1% accuracy for TOO prediction.

– [95]

Circulating
tumor cells
(CTCs)

Whole
blood

lung, colorectal, gastric, liver,
and esophageal

174 cancer patients
32 non-cancer patients
25 healthy individuals

Magnetic
enrichment and
immunoflu-
orescence

CTCs count in cancer patients was significantly higher
compared to non-cancer patients with high-risk conditions
and healthy individuals (p < 0.001).
The average CTCs count was 7.3 for cancer patients, 2.4 for
non-cancer patients, and 0.9 for healthy individuals.
CTCs count superior to 5 could be indicative of
cancer status.

– [92]
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Table 1. Cont.

Biomarker Source Tumor Types Sample Methods Main Findings Test/
Company Ref.

Extracellular
vesicles (EVs)

Plasma
breast, lung, acute myelocytic
leukemia, and acute
lymphocytic leukemia

53 cancer patients
15 healthy individuals

Digital
Profiling of
Proteins on
Individual EV
(DPPIE)

Developed an ultrasensitive assay of digital profiling of
proteins on individual EV (DPPIE), based on DNA aptamer
recognition of specific EV proteins and rolling circle
amplification reactions, that produce fluorescent signals on
each single EV.
DPPIE showed an AUC of 1.0, with specificity and
sensitivity of 100% for carcinomas.

– [104]

Serum lung, breast, prostate, liver,
ovarian, and lymphoma

145 cancer patients
27 healthy individuals

Thermophoretic
aptasensor
(TAS)

Developed TAS, an assay based on DNA aptamer
recognition of 7 EV proteins and thermophoretic enrichment
for cancer detection and TOO discrimination.
95% sensitivity, 100% specificity were obtained for cancer
detection and 68% accuracy for TOO discrimination in the
validation set.

– [105]

Plasma pancreatic, bladder, and ovarian 139 cancer patients
184 healthy individuals

Verita™ and
bead-based
immunoassay

Developed an EV-based blood test combining alternating
current electrokinetics (Verita™ System) for EVs isolation,
immunoassays for protein quantification, and machine
learning algorithms for early cancer detection.
71.2% sensitivity, 99.5% specificity, and AUC of 0.95 were
obtained for discriminating cancer from healthy samples.

– [101]

Plasma 16 cancer types 77 cancer patients
43 healthy individuals

Mass
spectrometry

Analysis of tumor-specific extracellular vesicles and
particles (EVP) proteomes combined with machine learning
allowed cancer detection and TOO discrimination.
Based on a 47-protein panel, 95% sensitivity and 90%
specificity were obtained in the testing set.
Based on all 372 tumor-related proteins, 100% sensitivity
and 90% specificity were obtained. 30 protein panel
discriminated TOO with very high accuracy.

– [103]

Serum 15 cancer types 133 cancer patients
45 healthy individuals qRT-PCR Exossomal hTERT expression levels detected cancer with

62% sensitivity and 100% specificity. – [100]
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Table 1. Cont.

Biomarker Source Tumor Types Sample Methods Main Findings Test/
Company Ref.

Glycosamino-
glycans

Plasma
Urine 14 cancer types

753 plasma samples
(460 cancers and
293 healthy)
559 urine samples
(219 cancers and
340 healthy)

Mass
spectrometry

Measured the levels of glycosaminoglycans in plasma and
urine samples and combined it with machine learning for
cancer detection.
AUC of 0.78 was obtained in the validation set for
discriminating 5 cancer types from healthy individuals
using urine glycosaminoglycans.
AUC of 0.84 was obtained in the validation set for
discriminating 14 cancer types from healthy individuals
using plasma glycosaminoglycans.

GAGome
(Elypta) [114]

Metabolites

Serum lung, colorectal, pancreatic,
gastric, liver, and thyroid

950 cancer patients
233 healthy individuals

Mass
spectrometry

Developed a laser desorption/ionization mass
spectrometry-based liquid biopsy for multi-cancer detection
and classification (MNALCI).
MNALCI showed 93% sensitivity and 91% specificity for
cancer detection in the internal validation cohort and 84%
sensitivity and specificity in the external validation cohort.
92% accuracy for TOO discrimination in the internal
validation cohort and 85% in the external cohort.

– [112]

Serum breast, endometrial, cervical,
and ovarian

1119 cancer patients
250 healthy individuals

Mass
spectrometry

Developed a method combining untargeted serum
metabolomics with machine learning to identify metabolite
signatures that allow early stages cancer detection.
98% sensitivity, 98.3% specificity, and 98% accuracy
were obtained.
TOO discrimination with 94.4% accuracy for breast, 91.6%
for endometrial, 87.6% for cervical, and 92% for
ovarian cancer.

– [113]

Plasma
denaturation
profiles

Plasma glioma but applicable to
any cancer

84 cancer patients
63 healthy individuals

Differential
scanning
fluorimetry

Applied nanoDSF, a differential scanning fluorimetry
method for analyzing protein denaturation profiles, to
plasma samples and combined it with a machine learning
algorithm for distinguish the denaturation profiles of
cancer patients.
All 5 machine learning algorithms showed accuracies above
87%. Neural Networks (NN) algorithm performed the best,
showing 92% sensitivity, 93% specificity and 92.5% accuracy.

– [146]
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Table 1. Cont.

Biomarker Source Tumor Types Sample Methods Main Findings Test/
Company Ref.

Metallobalance Serum

breast, colorectal, prostate,
pancreatic, gastric, liver, bile
duct, thyroid, ovarian, cervical,
and endometrial

1856 cancer patients
5327 healthy individuals

Mass
spectrometry

Applied a mass spectrometry-based technology to evaluate
the serum profile of 17 elements as a cancer detection tool.
AUC of 0.830 for discriminating cancer patients from
healthy individuals.
Classical markers (CEA, CA19-9, CA125, PSA) alone could
not discriminating cancer patients from healthy individuals.
However, for individuals with a normal CEA reading, the
levels of Na, K, Cu, Fe Co, and Mo displayed differences in
cancer over healthy samples, and the same applied to the
other classical markers.

– [116]

Serum
spectral
profile

Serum
lung, breast, colorectal, prostate,
pancreatic, renal, ovarian, and
brain

1543 cancer patients
460 symptomatic
non-cancer patients
91 healthy individuals

Infrared
spectroscopy

Developed Dxcover®, an infrared spectroscopy-based blood
test for the early detection of cancer and TOO discrimination.
90% sensitivity with 61% specificity (adjusted for higher
sensitivity), 56% sensitivity with 91% specificity (adjusted
for higher specificity), and AUC of 0.86 were obtained for
cancer detection.
AUC values ranged from 0.74 to 0.91 for TOO
discrimination.

Dxcover® [117]

Tumor-
activatable
minicircles

Whole
blood

Applicable to any
cancer –

Luminescence
measurement in
the blood

Developed engineered non-viral vectors (minicircles) by
coupling SEAP expression to activation of the Survinin
promoter, resulting in luminescence production when tumor
cells uptake the vectors.
Minicircles were injected into tumor-bearing and control
mice and SEAP was measured in the blood. AUC of 0.918
was obtained for discriminating cancer from healthy mice.

– [119]



Cells 2023, 12, 935 24 of 41

Table 1. Cont.

Biomarker Source Tumor Types Sample Methods Main Findings Test/
Company Ref.

Engineered
macrophages

Whole
blood

Applicable to any
cancer –

Luminescence
measurement in
the blood

Developed engineered macrophages by coupling luciferase
expression to activation of the Arginase-1 promoter,
resulting in luminescence production when macrophages
adopt an M2 tumor-associated phenotype.
Engineered macrophages were injected into tumor-bearing
and control mice and luciferase was measured in the blood.
100% sensitivity and specificity were obtained for
discriminating cancer from healthy mice.

– [120]

Abbreviations: AUC—Area under ROC curve; cfDNA—cell-free DNA; cfMeDIP-seq—cell-free methylated DNA immunoprecipitation and sequencing; CpG—Cytosine-phosphate-
Guanine; ctDNA—circulating tumor DNA; DREAMing—Discrimination of Rare EpiAlleles by Melt; ELISA—enzyme-linked immunosorbent assay; Hi-SA—high-sensitivity assay for
bisulfite DNA; LQAS—long probe quantitative amplified signal; MSP—methylation-specific PCR; MSRE-qPCR—methylation-sensitive restriction enzyme -based quantitative PCR;
NGS—next generation sequencing; NPV—negative predictive value; PPV—positive predictive value; qMSP—quantitative methylation-specific PCR; qRT-PCR—real-time quantitative
reverse transcription PCR; TCGA—The Cancer Genome Atlas; TOO—tissue of origin; WGS—whole genome sequencing; 5hmC—5-hydroxymethylcytosine; 5mC—5-methylcytosine.
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3. Bioinformatics Meets Cancer Detection: Finding the Right Targets and Improving
Biomarker Performance

With the development of The Cancer Genome Atlas (TCGA) project, a large-scale
open-access database containing genomic, transcriptomic, epigenomic, and proteomic
datasets across more than 30 tumor types, cancer research experienced a boost derived from
the analysis of molecular features of individual tumor samples, not only increasing the
knowledge on tumor heterogeneity but also on individual and shared profiles among differ-
ent cancers [147]. Furthermore, given the complexity of sequencing- and array-generated
data, many tools have been created to allow a more interactive and comprehensive mining
of the different types of data, including the UCSC Cancer Genomics Browser [148], the cBio-
Portal for Cancer Genomics [149] and UALCAN [150], among others. In 2012, the TCGA
Pan-Cancer analysis project was launched with the goal of providing new multi-omics data
across multiple cancers, increasing the statistical power of the datasets, and making it easier
to identify and analyze common cancer molecular abnormalities [147,151]. Nonetheless,
performing differential analysis in the context of early detection and diagnosis also requires
a significant amount of data from matched normal tissues. Despite several normal-adjacent
tissue datasets being available in TCGA, the sample size is small, which is why many
studies combine their analysis with GTEx samples, although only RNA-seq data is avail-
able [152]. The Gene Expression Omnibus (GEO) is another database containing many sets
of high-throughput sequencing data, consisting in a repository where researchers upload
their results and these become freely available to the entire scientific community [153].

The availability of such a large amount of molecular data has prompted data mining
as the first step of biomarker discovery and, since the clinical data of the sequenced samples
is also publicly available, possibilities range from early detection to prognosis and therapy
response prediction. Indeed, many molecules have been proposed as detection biomarkers
across several cancer types by data mining (Table 2). For instance, when mining the
available methylome data of TCGA in search of pancreatic cancer biomarkers, Manoochehri
et al. found DMRs in the first exon of the SST gene that were significantly hypermethylated
in tissues of 11 cancers compared to para-cancerous tissues [154]. Interestingly, it was
later reported that two CpG sites within SST’s first exon could detect colorectal, gastric,
and esophageal cancer with 59.3% sensitivity and 72.8% specificity using tissue samples
of 229 patients [123]. Similarly, the expression of Hsp90α was shown to significantly
differ between 9 tumors and respective normal tissues by in silico analysis [155], and the
circulating plasma levels of the Hsp90α protein were also reported to detect several cancer
types with 81.72% sensitivity and 81.03% specificity [144]. Although without validation in
biological specimens, many other markers have shown MCED potential, with the benefit
of data mining allowing the reduction of an entire sequencing/array run data into single
genes or proteins, enabling the design of a targeted validation assay. For example, Liu et al.
used whole-genome methylation data to identify 12 CpG markers and then utilized them
to construct a deep learning model that detected 27 cancer types with 92.8% sensitivity,
90.1% specificity, and 92.4% accuracy [156]. Likewise, Ibrahim et al. showed that the
methylation levels of a set of 4 CpGs could detect 14 tumor types with an AUC of 0.96
and a set of 20 CpGs discriminated TOO with AUC values ranging from 0.87 to 0.99 [157].
Remarkably, this was possible by using machine learning algorithms that tested different
combinations of CpGs to find the most informative ones. Aside from methylation, in
silico analysis of the expression of several individual genes, miRs, and lncRNAs also
displayed biomarker potential for several tumor types (Table 2), thus being easily validated
by quantitative PCR in human samples.

Importantly, these databases also allow the development and training of machine
learning algorithms to improve biomarkers’ detection capacity. Fan et al. developed a
mathematical model to expand the Illumina 450K methylation array data to cover a larger
percentage of the total CpG sites in the genome and combined such expanded data with
genome-wide expression and mutational coverage into a random forest classifier that
detected cancer with an AUC of 0.85. Additionally, a multi-class regression model was
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constructed to discriminate TOO in 13 tumors, showing 95.3% accuracy [158]. Applying
neural network-based deep learning on transcriptomic data, Yuan et al. developed the
DeepDCancer classifier that disclosed 90% accuracy for detecting and an average 94%
for discriminating 10 cancer types [159]. Similarly, the GeneCT model was constructed
by Sun et al. resulting in 96.0% sensitivity and 96.1% specificity for cancer identification,
followed by 99.6% accuracy for TOO prediction [160]. This time focusing on ncRNA, Wang
et al. showed that this deep learning approach detected 26 cancers with an AUC of 0.963
and discriminated between cancer types with 82.15% accuracy [161]. MicroRNA data can
also be used for classifier construction, with Yuan et al. evaluating several algorithms and
reporting accuracies over 95%, but ultimately, the support vector machine (SVM) performed
the best with 99% accuracy in classifying 11 tumor types [162].

In fact, the benefits of combining machine learning with molecular analysis may be
corroborated by the fact that practically all the studies above mentioned using human
samples (Table 1) applied algorithms to the outputted data of the used methodologies and
built classifiers for discriminating cancer from healthy and further detecting the underlying
cancer type. Indeed, the remarkable results obtained with GRAIL’s MCED test were the
result of a custom model based on two ensemble logistic regression (LR) algorithms, one to
differentiate cancer from non-cancer and the other to identify the TOO [54]. CancerSEEK’s
and PanSeer’s technology also relied on LR [29,49], while DELFI used a stochastic gradient
boosting model [74]. This shows that several models exist and can be tested to disclose
the most suitable, according to the type of data being used as model features and its
final purpose.

Machine learning is a subset of artificial intelligence that uses mathematical and
statistical methods to improve a computer’s performance in decision-making. Using large
amounts of data, algorithms can be trained to learn certain tasks and then be tested to
predict their behavior in a real-world scenario [163,164]. Moreover, deep learning is a
subset of machine learning that uses supervised or unsupervised learning methods to train
multilayered artificial neural networks. It has been shown to outperform even the best
machine learning algorithms, due to performing better on big datasets, which may also be
a drawback, since many biological samples are available in low quantity [163,164]. While
classical statistics is based on probability and assumption, machine learning uses algorithms
that are trained and improved with experience and increasing input data, thus being more
effective in dealing with high-resolution data, such as biological data [165]. In fact, it is
the complexity of the high-throughput molecular techniques’ data that led to the inclusion
of machine learning as a part of biomarker research, in feature extraction of relevant
biomarkers, as well as in validating these for sample classification [166]. Moreover, the
capacity of developing multimodal algorithms, i.e., models containing not only molecular
but also histological, radiological, and clinical data as input features, holds great promise
for precision oncology [167].
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Table 2. Data mining studies of multi-cancer early detection.

Biomarker Database Tumor Types Main Findings Ref.

DNA
methylation

TCGA
GEO 26 tumor types

Identified 7 informative CpG sites capable of discriminating tumor from normal samples. AUC of 0.986 was obtained in the training set.
Validation using GEO datasets of breast, colorectal cancer, and prostate cancer obtained AUCs of 0.97, 0.95, and 0.93, respectively.
Validation set comprising the remaining cancer types obtained an AUC of 0.94.
Identified 12 CpG sites capable of discriminating each tumor type with an AUC of 0.98.

[168]

TCGA
GEO 27 tumor types

Identified 12 CpG markers and 13 promoter markers and constructed diagnostic models by deep learning.
CpG marker model achieved 98.1% sensitivity, 99.5% specificity, and 98.5% accuracy on training set, while achieving 92.8% sensitivity,
90.1% specificity, and 92.4% accuracy on testing set.
Promoter marker model achieved 96.9% sensitivity, 99.9% specificity, and 97.8% accuracy on testing set, while achieving 89.8% sensitivity,
81.1% specificity, and 88.3% accuracy on testing set.

[156]

TCGA
GEO 27 tumor types

Developed the CAncer Cell-of-Origin (CACO) methylation panel comprising 2 572 cytosines that are significantly hypermethylated in tumor
tissues compared with normal tissues and healthy blood samples.
CACO panel identified TOO with AUC ranging from 0.856 to 0.998 in discovery cohort and 0.854 to 0.998 in validation cohort.
CACO panel could identify TOO in liquid biopsies and unknown primary carcinoma samples.

[169]

TCGA 14 tumor types

Combined genome-wide differential methylation profiling with machine learning to detect cancer and discriminate TOO.
Set of 4 CpGs detected cancer with an AUC of 0.95 in the discovery set and an AUC of 0.96 in the validation set.
Set of 20 CpGs discriminated TOO with AUC values ranging from 0.87 to 0.99; 12 out of 14 cancer types were discriminated with sensitivities and
specificities above 90%.

[157]

TCGA
GEO 3 tumor types

Developed a machine learning algorithm to detect and discriminate TOO in 3 urological cancers (prostate, bladder, and kidney) using
128 methylation markers.
99.1% accuracy in training set; 97.6% accuracy in 2 independent validation sets.

[170]

TCGA
GEO 33 tumor types Identified a 12-market set that can detect all 33 cancers in TCGA database with AUCs > 0.84.

Identified sets of 6 markers that can discriminate TOO with AUCs ranging from 0.969 to 1. [171]

TCGA 12 tumor types

While performing genome-wide methylation analysis for pancreatic cancer biomarker discovery, identified SST as hypermethylated in pancreatic
tumors compared to normal tissue and showed an AUC of 0.89 for pancreatic cancer detection in cfDNA.
SST methylation and expression in 11 other cancer types showed significant hypermethylation and downregulation of expression when
compared to the respective normal tissue (p < 0.0001).

[154]

TCGA
GEO 14 tumor types

Identified 6 CpGs in the GSDME gene differentially methylated between tumor and normal samples and used them for developing a machine
learning algorithm for cancer identification.
98.8% sensitivity, 94.2% specificity, and AUC of 0.86 in the training set. AUC of 0.85 in validation set.
6 CpG model showed TOO discrimination capacity.

[172]

DNA
methylation, gene
expression and somatic
mutations

TCGA 13 tumor types

Developed EAGLING, a model that expands the Illumina 450K array data to cover about 30% of CpGs in the genome. Used this expanded
methylation data combined with gene expression and somatic mutation data to identify genes with differential patterns in various cancer types
(triple-evidenced genes).
Developed a machine learning algorithm, using the identified triple-evidenced genes, for cancer detection. AUC of 0.85 was obtained; 95.3%
accuracy was obtained for TOO discrimination.
TNXB, RRM2, CELSR3, SLC16A3, FANCI, MMP9, MMP11, SIK1, and TRIM59 showed great capacity for cancer diagnosis.

[158]

Gene mutations TCGA 5 tumor types Based on a tumor’s mutations and their respective GO terms and KEGG pathways, a machine learning algorithm was developed for TOO
discrimination; 62% accuracy was obtained for discriminating TOO in 5 cancer types. [173]
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Table 2. Cont.

Biomarker Database Tumor Types Main Findings Ref.

Gene expression

GEO 10 tumor types

Developed a deep learning classifier for multi-cancer diagnosis using transcriptomic data termed DeepDCancer.
90% accuracy was obtained for distinguishing cancer from normal samples, while accuracies ranged from 86 to 98% (94% average) for
discriminating individual cancer types.
96% accuracy was obtained for distinguishing cancer from normal samples using an improved classifier, DeepDCancer.

[159]

TCGA 40 tumor types
Developed SCOPE, a machine learning algorithm that uses RNA-seq data for TOO prediction.
SCOPE achieved 97% accuracy in training set and 99% in testing set.
SCOPE showed the ability to identify TOO in cancers of unknown primary.

[174]

TCGA 11 tumor types

Developed GeneCT, a deep learning algorithm that uses RNA-seq data for cancer identification and TOO prediction. Known cancer-related genes
were used for cancer status identification and transcription factors for TOO prediction.
100% sensitivity and 99.6% specificity for cancer identification in training set. 96.0% sensitivity and 96.1 specificity for cancer identification in
validation set.
99.6% accuracy for TOO prediction in training set and 98.6% in validation set.

[160]

TCGA 33 tumor types 5 machine learning algorithms were compared on their performance for cancer classification.
Linear support vector machine (SVM) showed the best accuracy of 95.8%. [175]

TCGA 5 tumor types
Developed a deep learning model for TOO discrimination using RNA-seq data among the 5 most common cancers in women. LASSO feature
selection reduced all 14,899 genes to only 173 relevant genes.
99.45% accuracy was obtained for discriminating TOO in 5 cancer types.

[176]

TCGA
GTEx 28 tumor types

Identified differentially expressed genes (DEGs) that were shared in various cancer types and constructed a diagnostic model using 10
upregulated DEGs (CCNA2, CDK1, CCNB1, CDC20, TOP2A, BUB1B, AURKB, NCAPG, CDC45, and TTK).
AUC of 0.894 was obtained for discriminating cancer from normal samples.

[177]

TCGA 15 tumor types

MMP11 and MMP13 expression was significantly higher in most cancer types compared to tissue matched controls.
Each cancer type featured at least one MMP with an AUC greater than 0.9, except prostate cancer; 6 cancer types featured 4 or more MMPs with
AUC > 0.9.
If serum detection is possible, upregulated MMP11 or MMP13 could serve as a multi-cancer biomarker.

[178]

TCGA 9 tumor types
Hsp90α expression was significantly higher in 8 cancers compared to tissue matched controls, except for prostate cancer which displayed
significant lower expression.
AUC values ranged from 0.63 to 0.94 for individual cancer types.

[155]

TCGA
GTEx 33 tumor types

Claudin-6 was significantly overexpressed in 20 cancer types.
AUC > 0.7 were obtained for detecting 15 cancer types.
AUC > 0.9 were obtained for detecting acute myeloid leukemia, testicular, ovarian, and uterine cancer.

[179]

TCGA
GTEx 33 tumor types YTHDC2 expression was significantly downregulated in most cancers compared with normal tissues.

YTHDC2 displayed high diagnostic value (AUC > 0.90) for 7 cancer types and moderate diagnostic value (AUC > 0.723) in 8 cancer types. [180]

TCGA
GTEx 24 tumor types PAFAH1B expression was significantly upregulated in most cancers compared with normal tissues.

PAFAH1B displayed high diagnostic value (AUC > 0.90) for 15 cancer types and moderate diagnostic value (AUC > 0.75) in 9 cancer types. [181]

TCGA
GTEx 20 tumor types

SHC1 expression was significantly upregulated in most cancers compared with normal tissues.
SHC1 displayed high diagnostic value (AUC > 0.90) for 4 cancer types and moderate diagnostic value (AUC > 0.70) in 16 cancer types.
Strong diagnostic capability for KICH (AUC = 0.92), LIHC (AUC = 0.95), and PAAD (AUC = 0.95).

[182]
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Table 2. Cont.

Biomarker Database Tumor Types Main Findings Ref.

TCGA
GTEx 29 tumor types

GPC2 expression was significantly upregulated in 12 early-stage cancers compared with normal tissues.
GPC2 displayed high diagnostic value (AUC > 0.90) for 6 cancer types, moderate diagnostic value (AUC > 0.70) in 16 cancer types, and low
diagnostic value (AUC > 0.50) in 7 cancer types.

[183]

ncRNA TCGA 26 tumor types

Developed algorithms to remove all the factor effects (genetic, epidemiological, and environmental variables) from big data and revealed
56 ncRNAs as universal markers for 26 cancer types. Used these 56 ncRNAs as markers and employed machine learning algorithms to
discriminating cancer from normal samples and identify TOO.
AUC of 0.963 for discriminating cancer from normal samples. AUC values ranged from 0.99 to 1 for detecting individual cancer types.
82.15% accuracy for discriminating TOO.

[161]

lncRNA

TCGA
GEO 9 tumor types

CRNDE expression was significantly higher in 9 cancers compared to tissue matched controls.
AUC values ranged from 0.855 to 0.984, sensitivities from 70 to 97% and specificities from 75 to 100%.
Meta-analysis from 6 studies showed a pooled sensitivity of 77%, specificity of 90%, and AUC of 0.87.

[184]

TCGA
GEO 12 tumor types

Identified 6 differently expressed long intergenic noncoding RNAs (lincRNAs) (PCAN-1 to PCAN-6) and applied machine learning algorithms
for cancer detection using 5 of them.
AUC of 0.947 was obtained in the training set. AUC of 0.947, 81.7% sensitivity, and 97% specificity were obtained in the testing set.

[185]

TCGA
GEO 8 tumor types

Using RNA-seq and methylation data from TCGA, identified 9 epigenetically regulated lncRNAs (lncRNAs regulated by methylation) that can
predict cancer. Developed a score based on expression and methylation data of these 9 genes (PVT1, PSMD5-AS1, FAM83H-AS1, MIR4458HG,
HCP5, GAS5, CTD2201E18.3, HCG11, and AC016747.3) that was applied to all cancer and normal samples.
AUC values ranged from 0.741 to 0.992 for detecting 8 cancer types. AUC values ranged from 0.712 to 1 in an independent validation set.

[186]

TCGA 33 tumor types SNHG3 expression was significantly upregulated in 16 (out of 33) cancers compared with normal tissues.
72% sensitivity, 87% specificity, and an AUC of 0.89 was observed for cancer detection. [187]

microRNA

TCGA 21 tumor types Used machine learning algorithms to develop a multi-cancer diagnostic method based on microRNA expression. Support vector machine (SVM)
classifier was chosen, since it provided the highest accuracy of 97.2%, sensitivities over 90%, and specificities of 100% for most cancers. [188]

GEO 11 tumor types
Developed a computational pipeline for extracellular microRNA-based cancer detection and classification.
All classifiers showed accuracies over 95%. SVM classifier performed the best, with 99% accuracy.
Identified a 10 microRNA-signature capable of TOO discrimination.

[162]

TCGA 4 tumor types
Identified 3 differentially expressed miRNAs (miR-552, miR-490, and miR-133a-2) with diagnostic potential for digestive tract cancers.
3 miRNAs showed high diagnostic value in rectal cancer (AUC > 0.961) and moderate diagnostic value in esophageal (AUC > 0.826), gastric
(AUC > 0.798), and colon cancer (AUC > 0.797).

[189]

GEO 12 tumor types

Developed a serum-based 4-microRNA diagnostic model (has-miR-5100, has-miR-1343-3hashsa-miR-1290hasnd hsa-miR-4787-3p) for cancer
early detection.
Sensitivities ranging from 83.2 to 100% for biliary tract, bladder, colorectal, esophageal, gastric, glioma, liver, pancreatic, and prostate cancers
were obtained, while reasonable sensitivities of 68.2 and 72.0% for ovarian cancer and sarcoma, respectively, with 99.3% specificity.

[190]
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Table 2. Cont.

Biomarker Database Tumor Types Main Findings Ref.

GEO 12 tumor types

Developed a m6A target miRNAs serum signature, based on 18 microRNAs combined with machine learning, for cancer detection.
93.9% sensitivity, 93.3% specificity, and AUC of 0.979 in training set.
94.2% sensitivity, 91.6% specificity, and AUC of 0.976 in internal validation set.
90.8% sensitivity, 84.7% specificity, and AUC of 0.936 in external validation set.

[191]

Progenitorness score TCGA
GEO 17 tumor types

Selected 77 progenitor genes and formulated a score to quantify the progenitorness of a sample using its expression profile data.
Tumor samples showed significantly higher progenitorness scores than normal tissues for all cancer types, with AUC ranging from 0.746 to 1.000.
For the majority of cancers, AUC was above 0.90.

[192]
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4. What Is Stopping MCED Tests from Moving into Clinical Application?

MCED tests are paving the way for a shift in the current cancer screening paradigm,
moving from single organ screening of a hand full of cancers to universal testing using a
simple blood draw. Being a recent topic in cancer research, there are still no guidelines on
how to evaluate and compare the performance of tests being developed. For that reason,
Braunstein and Ofman proposed 9 criteria that should be taken into account in a MCED
test: (1) target high-risk individuals; (2) detect the highest possible number of cancer types;
(3) display a low false-positive rate (FPR); (4) possess an accurate TOO discriminating
capacity; (5) limit detection to cancers that tend to be deadly during a typical lifetime;
(6) display a balanced sensitivity and specificity; (7) be validated in prospective, multi-
center, population based studies; (8) be evaluated in studies comprising several controls,
namely, non-cancer individuals and those harboring benign and inflammatory conditions;
(9) be cost-effective [193]. Still, even if such criteria are met, the performance of MCED tests
in a real-life screening scenario remains unknown.

Thus far, MCED studies have only reported tests’ diagnostic capacity by using post-
diagnosis samples in a retrospective case-control manner [194,195]. Hence, it is not possible
to know if these tests will indeed detect cancer at early stages and, if so, if such stage-shift
will result in clinical benefit and mortality reduction. Furthermore, there are no guidelines
for confirming a positive test result and, consequently, there is no way to infer the real false-
result rates and TOO accuracy, as well as the number of necessary additional procedures
to reach a final diagnosis. Importantly, questions regarding when, how, and to whom
to provide a MCED test also remain unanswered [194–196]. To obtain insights into such
uncertainties, prospective randomized clinical trials, comparing screened and unscreened
asymptomatic individuals, with the right endpoint being cancer-specific mortality, are
demanded [194,195]. Nonetheless, these studies require many participants and a long
follow-up to provide meaningful clinical information. Interestingly, Hackshaw and Berg
suggested that the adoption of a nested randomized trial i.e., storing collected blood
samples and only applying the test in those positive, whether in the screened group or
in the control group, would allow for a more economic and less resource-consuming
trial [197]. Currently, most of the developed MCED tests are under prospective trials, either
in asymptomatic general or high-risk populations, to confirm their screening potential and
shed light into all the above-mentioned concerns (Table 3).

Notably, many simulation studies have used the available performance data of pub-
lished MCED tests to estimate their potential impact on health care systems. For instance,
combining stage-specific incidence and survival data from SEER with GRAIL’s test perfor-
mance, a 78% reduction in late-stage cancer incidence and 26% of all cancer-related deaths
were estimated [198]. In addition, breast cancer detection might be incremented in 11%
if a MCED test would be available during a routine examination [199]. When estimating
the impact of pan-cancer screening in the US and UK, Hackshaw et al. reported that using
such a strategy in someone without a cancer detected by conventional screening not only
increased cancer detection rates, but also significantly reduced the cost of additional diag-
nostic workups [200]. Similarly, Tafazzoli et al. demonstrated an estimated USD 5421 in
cost reduction per cancer treatment if, hypothetically, annual MCED testing was provided
to the population between 50 and 79 years [201]. Focusing on the consequent harms and
benefits, a favorable balance was depicted between the number of individuals exposed
to unnecessary confirmatory tests and the number of detected cancers, with it being even
improved if the test included more lethal cancers [202]. In fact, the harms of MCED testing,
not only concerning overdiagnosis and needless procedures, but also the resulting anxiety
and the overall perception of screening, should not be overlooked. To be cost-effective,
population adherence to screening programs must be high, thus psychological and behav-
ioral aspects also need to be taken into account, such as how the science behind the tests
will be explained, the tests be delivered, and the results revealed, or further procedures
be recommended [203]. Hence, for a successful implementation of MCED tests, adequate
medical communication and public understanding is required [203].
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Another concern regarding MCED tests is the use of high-throughput sequencing-
based methodologies. Although allowing for the simultaneous screen of several genomic
regions, which is beneficial when using a limiting material as liquid biopsies, such methods
are highly costly and lengthy processes, requiring specialized data analysis [204,205]. As
mentioned above, tests may reach USD 1000 per individual, which is not a feasible option
for population-based screening. Thus, efforts should also be made to develop more targeted,
fast workflow and cost-effective assays.

Notably, lack of standardization is a major issue encompassing the liquid biopsy
research field. Pre-analytical variables and isolation methods have great impact on subse-
quent molecular results, precluding an accurate comparison between different tests and
studies. Hence, initiatives such as Cancer-ID, now replaced by the European Liquid Biopsy
Society (ELBS), and BloodPAC are key for standardizing and moving liquid biopsy testing
from bench to beside [206,207].

Table 3. Clinical trials conducted/ongoing for validation of multi-cancer early detection tests.

Trial ID Trial Name MCED Test Sponsor Status (as of July 2022)

NCT02889978 CCGA Galleri GRAIL, LLC Active, not recruiting

NCT03085888 STRIVE Galleri GRAIL, LLC Active, not recruiting

NCT03934866 SUMMIT Galleri University College London and GRAIL Active, not recruiting

NCT04241796 PATHFINDER Galleri GRAIL, LLC Active, not recruiting

NCT05155605 PATHFINDER 2 Galleri GRAIL, LLC Recruiting

NCT05205967 REFLECTION Galleri GRAIL, LLC Recruiting

NCT05235009 LEV87A GAGome Elypta Recruiting

NCT05295017 LEV93A GAGome Elypta Recruiting

NCT05227534 PREVENT OverC Guangzhou Burning Rock Dx Recruiting

NCT04825834 DELFI-L101 DELFI Delfi Diagnostics Inc. Recruiting

NCT04213326 ASCEND CancerSEEK Exact Sciences Completed

NCT03756597 PAN ReCIVA Owlstone Ltd. Unknown

NCT03517332 – DEEPGEN Quantgene Inc. Unknown

NCT03967652 – Na-nose Anhui Medical University Not yet recruiting

NCT05366881 CAMPERR – Adela, Inc. Recruiting

NCT05254834 Vallania – Freenome Holdings Inc. Recruiting

NCT04972201 PROMISE – Chinese Academy of Medical Sciences
(and Burning Rock Dx) Recruiting

NCT04822792 PRESCIENT – Chinese Academy of Medical Sciences
(and Burning Rock Dx) Recruiting

NCT04820868 THUNDER – Shanghai Zhongshan Hospital (and
Burning Rock Dx) Recruiting

NCT04817306 PREDICT – Shanghai Zhongshan Hospital (and
Burning Rock Dx) Recruiting

NCT05227261 K-DETEK – Gene Solutions Recruiting

NCT05159544 FuSion – Singlera Genomics Inc. Recruiting

NCT04405557 PREDICT – Geneplus-Beijing Co. Active, not recruiting

NCT02662621 EXODIAG – Centre Georges Francois Leclerc Completed

NCT04197414 – – Yonsei University Recruiting

NCT03951428 – – LifeStory Health Inc. Unknown

NCT03869814 – – Bluestar Genomics Inc. Active, not recruiting

NCT02612350 – – Pathway Genomics Completed



Cells 2023, 12, 935 33 of 41

5. Conclusions

Overall, by complementing the currently available screening and diagnostic ap-
proaches, MCED tests show great promise for reducing cancer mortality by shifting de-
tection to earlier stages, in which curative options are most likely to be effective. DNA
methylation-based tests are in forefront of development, being the most frequently cho-
sen source of biomarkers, due to its features of aberrant tumor-specific patterns, tissue-
specificity, and easiness to assess in cfDNA. By combining molecular analysis of liquid
biopsies with artificial intelligence, the performance of MCED tests may be greatly im-
proved, increasing not only the sensitivity of detection of multiple cancers but also the
accuracy of discriminating among the different tumor types (Figure 3). MCED tests, how-
ever, still lack validation in prospective multicenter studies to enable their implementation
into population-based screening programs and make their way into routine clinical practice.
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