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Abstract: Regrowth of atrophied myofibers depends on muscle satellite cells (SCs) that exist outside
the plasma membrane. Muscle atrophy appears to result in reduced number of SCs due to apoptosis.
Given reduced AMP-activated protein kinase (AMPK) activity during differentiation of primary
myoblasts derived from atrophic muscle, we hypothesized that there may be a potential link between
AMPK and susceptibility of differentiating myoblasts to apoptosis. The aim of this study was
to estimate the effect of AMPK activation (via AICAR treatment) on apoptosis in differentiating
myoblasts derived from atrophied rat soleus muscle. Thirty rats were randomly assigned to the
following two groups: control (C, n = 10) and 7-day hindlimb suspension (HS, n = 20). Myoblasts
derived from the soleus muscles of HS rats were divided into two parts: AICAR-treated cells and
non-treated cells. Apoptotic processes were evaluated by using TUNEL assay, RT-PCR and WB.
In differentiating myoblasts derived from the atrophied soleus, there was a significant decrease
(p < 0.05) in AMPK and ACC phosphorylation in parallel with increased number of apoptotic nuclei
and a significant upregulation of pro-apoptotic markers (caspase-3, -9, BAX, p53) compared to the
cells derived from control muscles. AICAR treatment of atrophic muscle-derived myoblasts during
differentiation prevented reductions in AMPK and ACC phosphorylation as well as maintained the
number of apoptotic nuclei and the expression of pro-apoptotic markers at the control levels. Thus,
the maintenance of AMPK activity can suppress enhanced apoptosis in differentiating myoblasts
derived from atrophied rat soleus muscle.

Keywords: AMPK; AICAR; primary myoblasts; hindlimb suspension; apoptosis; caspase-3; TUNEL

1. Introduction

Skeletal muscle satellite cells (SCs), also called muscle stem cells, are known to play a
crucial role in muscle fiber maintenance, regeneration and (re)growth. Under unstressed
conditions, SCs, located at the periphery of myofibers under the basal lamina, exist in
a quiescent state (i.e., G0 phase of the cell cycle). However, upon stimulation, SCs exit
their quiescent state and start to proliferate and differentiate. Differentiated myoblasts (the
progeny of SCs) can fuse either into existing myofibers or with each other, forming new
muscle fibers [1,2].

Inactivity/mechanical unloading is known to result in a decrease in the number of
SCs in postural muscles [3–6]. Evidence suggests that SC depletion under degenerative
conditions (Duchenne muscular dystrophy, chronic muscle denervation, and aging) can
be related, at least partially, to apoptosis [7,8]. Available data concerning SC function
under unloading/disuse conditions are contradictory. Some authors report a decrease in
SC proliferation and differentiation under conditions of mechanical unloading [4,9], while
others mark an increase in the activity of muscle SCs [10–12].

AMP-activated protein kinase (AMPK) is a well-known cell energy gauge, the activity
of which is determined by the AMP:ATP ratio in the cell [13,14]. Under conditions of energy
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deprivation, AMPK is known to play an important role in the regulation of pathways related
to fatty acid and cholesterol metabolism, mitochondrial biogenesis, anabolism, catabolism,
autophagy, and coordination of cell survival [15]. In addition, the lack of AMPK in SCs can
block normal muscle regeneration after injury [16]. It has been shown that in AMPKα1
knockout mice, skeletal muscle regeneration following injury is significantly weakened
compared to wild-type mice. Moreover, AMPKα1 knockout SCs have reduced myogenic
capacity when transplanted into wild-type muscles, suggesting that impaired muscle
regeneration could be linked to the absence of AMPKα1 in the SCs [17]. Fu et al. (2015) have
demonstrated that in response to muscle injury, AMPKα1 can serve as a critical mediator
linking a non-canonical Sonic hedgehog pathway to Warburg-like glycolysis in SCs, thereby
contributing to the activation of muscle stem cells skeletal muscle regeneration [18].

Thus, a certain level of AMPKα1 appears to be required for proper skeletal muscle
regeneration following injury [19]. It has also been demonstrated that the loss of AMPK
activity is a major reason for impaired muscle regeneration in obese mice [17]. However,
hyperactivation of AMPK is able to impair SC proliferation and differentiation [20,21].
Furthermore, AMPK is involved in the regulation of apoptosis that normally accompanies
myogenic differentiation of myoblasts [15]. Niesler et al. (2007) have shown that some
level of AMPK activity is needed to inhibit apoptotic processes in differentiated C2C12
myotubes [22]. Moreover, we have recently found an accelerated differentiation and
myotube formation in primary myoblasts derived from rat soleus muscles that were
exposed to mechanical unloading prior [23]. We also observed decreased phosphorylation
levels of acetyl-CoA carboxylase (ACC), a marker of AMPK activity, in rat soleus-derived
myoblasts at later stages (5 days) of differentiation [24].

It is also known that denervation-induced muscle atrophy can increase susceptibility
of SCs to apoptosis [8,25]. Since we recently found a decrease in AMPK activity during
enhanced differentiation of primary myoblasts derived from atrophic rat soleus muscle [24],
we hypothesized that there may be a potential link between AMPK activity and suscep-
tibility of differentiating myoblasts to apoptosis. Hence, using AICAR, a specific AMPK
activator, we aimed to estimate the effect of AMPK activation on apoptosis in differentiating
myoblasts derived from atrophied rat soleus muscle.

2. Materials and Methods
2.1. Experimental Design

A widely recognized Morey-Holton hindlimb suspension (HS) rodent model was
used to induce mechanical unloading [26]. Male Wistar rats (3 months, 180 ± 10) were
kept under standard laboratory conditions (room temperature about 21 ◦C and 12:12 h
light/dark cycle) with free access to food and water. The rats were divided into three
groups (n = 10/group): (1) control (C); (2) hindlimb suspension (HS); and (3) hindlimb
suspension + AICAR (HS + AICAR). Upon completion of the HS experiment, soleus mus-
cles from both hindlimbs were collected and subsequently used for isolation of muscle
stem/progenitor cells. Euthanasia of animals was performed by decapitation under isoflu-
rane anesthesia. Isolation of SCs/myoblasts from the soleus muscle was performed as
described in our previous paper [23]. Following isolation, more than 90% of the isolated
cells expressed Pax7 (Figure 1b). After obtaining the pure primary myoblast culture, the
cells were cultured in growth medium under a humidified atmosphere with 5% CO2 at
37 ◦C. Two or three days later, when cells reached 80% confluency, myogenic differentiation
was induced by changing the media to differentiation media (DMEM medium supple-
mented with 4.5 g/L D-glucose, L-glutamine, penicillin–streptomycin, and 2% of horse
serum). Cells from the HS + AICAR group were incubated with differentiation media
containing 1 mM AICAR (cat. ab120358, Abcam, Cambridge, UK) from day 3 to day 5 of
differentiation (Figure 1a). All measurements in the study were performed on the 5th day
of myogenic differentiation.
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Figure 1. Experimental design. (a) Pax7 immunostaining in soleus-derived myoblasts (24 h in culture)
and (b) Seven arbitrary fields were counted using a 20× objective. Approximately 93% of the cells
are Pax7 positive. Pax7: violet, DAPI: blue. Scale bar = 50 µm.

2.2. In Situ Detection of Apoptotic Cells

The detection of DNA double-strand breaks in differentiating myoblasts was per-
formed using the terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL)
technique, as described in Sancilio et al., (2022) [27]. Myotubes were fixed for 30 min in 4%
paraformaldehyde at RT. They were then rinsed in PBS and incubated in a permeabilizing
solution (0.1% Triton X-100 and 0.1% sodium citrate) for 2 min on ice. DNA strand breaks
were determined using the In Situ Cell Death Detection Kit (cat. 11684795910, Roche, Basilea,
Switzerland) according to the protocol supplied by the manufacturer. Nuclei were stained
with 4′,6-diamidino-2-phenylindole (DAPI) (cat. D1306, Molecular Probes, Waltham, MA,
USA). Fluoromount™ Aqueous Mounting Medium (cat. F4680, Sigma-Aldrich, Saint Louis,
MA, USA) was used for mounting coverslips on slides. The Olympus inverted fluores-
cent microscope (20×magnification) and Cell Sens Dimension Software 3.2 (Build 23706)
(Olympus, Tokyo, Japan) were used to acquire and analyse microscopic images.

2.3. Immunocytochemistry for Pax7 Detection

Detection of Pax7 in rat satellite cells was performed as described in our previous
study [23].

2.4. Gene Expression Analysis

mRNA expression of target genes was determined by reverse transcription polymerase
chain reaction (RT-PCR) as described in our previous study [23]. Primer sequences are
provided in Table 1. Gapdh and Ywhaz were used as reference genes.
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Table 1. Primer sequences for RT-PCR analysis.

Gene Name Sequence (5′->3′) GenBank

Caspase 9 5′-gaagaacgacctgactgctaag-3′

5′-atgagagaggatgaccacca-3′ NM_031632.2

Caspase 3 5′-gagcttggaacgcgaagaaa-3′

5′-taaccgggtgcggtagagta-3′ NM_012922.2

p53 5′-cccctgaagactggataactgt-3′

5′-gacctcaggtggctcatacg-3′ NM_030989.3

Bax 5′-ggcctttttgctacagggtttc-3′

5′-gggggtcccgaagtaggaaag-3′ NM_017059.2

Bcl-2 5′-tcatgtgtgtggagagcgtc-3′

5′-agttccacaaaggcatcccag-3′ NM_016993.2

Ywhaz 5′-cccactccggacacagaata-3′

5′-tgtcatcgtatcgctctgcc-3′ NM_013011.4

Gapdh 5′-cggtgtgaacggatttggc-3′

5′-ttgaggtcaatgaaggggtcg-3′ NM_017008.4

2.5. Western Blot Analysis

Western blot analysis was performed as described in our previous studies [28,29]. Pri-
mary antibodies used in the study were as follows: p-AMPK (Thr172) (1:500, cat. # Y408289,
ABM, Richmond, BC, Canada), t-AMPK (1:1000, cat. # 2523, Cell Signaling Technology,
Danvers, MA, USA), p-ACC (S79) (1:1000, cat. # 2535, Cell Signaling Technology, USA),
t-ACC (1:1000, cat. # 3662, Cell Signaling Technology, USA), Caspase-3 (1:1000, cat. # 9661,
Cell Signaling Technology, USA), p-rpS6 (S240/244) (1:2000, cat. # 5364 Cell Signaling
Technology, Danvers, MA, USA), rpS6 (1:2000, cat. # 2217, Cell Signaling Technology, Dan-
vers, MA, USA), Bax (1:2000, cat. # ab32503 Abcam, Cambridge, UK) and tubulin (1:3000,
cat. # CSB-MA000185 Cusabio Biotech, Wuhan City, China). Horseradish peroxidase-
conjugated antibodies to rabbit immunoglobulins (1:60,000, cat. # 111-035-003, Jackson
Immuno Research, Cambridge, UK) were used as secondary antibodies. Following image
capture of phosphorylated proteins, membranes were stripped of the phospho-specific
antibodies using RestoreTM Western Blot Stripping Buffer (cat. # 21059, Thermo Fisher
Scientific, Waltham, MA, USA). The membranes were then re-probed with primary anti-
bodies for each respective total protein. A total protein staining (Ponceau S) and/or tubulin
protein expression were used for normalization of Western blots.

2.6. Statistical Analysis

Statistical analysis was performed using SigmaPlot 12.5 software. qRT-PCR and
Western blot data are shown as mean ± SEM. Two-way ANOVA with post-hoc Tukey
test was used to determine the significant differences between group means. Statistical
significance was accepted at p < 0.05.

3. Results
3.1. Body Weight and Soleus Muscle Weight

Seven-day HS induced a slight decrease in rat body weight and a more profound
reduction in absolute and normalized soleus muscle weight compared to the control group
(Table 2).

Table 2. Changes in body weight, soleus wet weight and soleus weight-to-body weight ratio.
C—control group, HS—hindlimb suspension for 7 days. Values are means ± SEM. * —p < 0.05 vs. C.

Groups Body Weight, g Soleus Wet
Weight, mg

Soleus Weight-to-Body
Weight Ratio, mg/g

C 235 ± 4 78 ± 3 0.33 ± 0.01
HS 213 ± 5 * 49 ± 3 * 0.23 ± 0.01 *
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3.2. Phosphorylation Status of AMPK (Thr172), ACC (Ser79) and rpS6 (Ser 240/244) in
Differentiating Myoblasts

In the HS myoblasts, there was a significant decrease (53%) in the level of AMPK
(Thr172) phosphorylation compared to the control myoblasts (Figure 2a). Treatment of the
HS myoblasts with 5-Aminoimidazole-4-carboxamide ribonucleoside (AICAR) (a potent
AMPK activator) prevented a decrease in AMPK (Thr172) phosphorylation (Figure 2a).
Phosphorylation of ACC on Ser79 was reduced in the HS myoblasts and AICAR prevented
this reduced ACC phosphorylation (Figure 2b). Furthermore, phosphorylation status of
ribosomal protein S6 (rpS6), a marker of mTORC1 activity, was evaluated. In the HS
myoblasts, there was a significant increase (29%) in rpS6 (Ser 240/244) phosphorylation
compared to the control myoblast cultures. Treatment of the HS myoblasts with AICAR
abrogated the increased rpS6 (Ser 240/244) phosphorylation (Figure 2c).
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Figure 2. Effect of AICAR treatment on phosphorylation status of (a) AMPK (Thr172), (b) ACC
(Ser79) and (c) rpS6 (Ser 240/244) in differentiating myoblasts derived from the atrophied rat soleus
muscle. C—myoblasts derived from rat soleus muscle of the control rats, HS—myoblasts derived
from rat soleus muscle after 7-day HS, HS+AICAR—myoblasts derived from rat soleus muscle after
7-day HS and treated with AICAR. Values are means ± SEM, expressed as % of the C. Dots, squares
and triangles on the bars represent individual data points. n = 6, *—p < 0.05 vs. C; #—p < 0.05 vs. HS.

3.3. Effect of AICAR Treatment on Morphological Characteristics and Expression of Differentiation
Markers in Myoblasts Derived from the Atrophied Rat Soleus Muscle

On the 5th day of differentiation, myotubes derived from the atrophied soleus muscle
showed an increased fusion index but significantly decreased area, diameter, width and
length relative to myotubes derived from the control soleus muscle (Table 3). AICAR
treatment of differentiating myoblasts derived from the atrophied muscle reversed changes
in fusion index and attenuated or fully prevented morphological alterations in myotubes
(Table 3).
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Table 3. Morphological characteristics of differentiating myoblasts derived from the atrophied rat
soleus muscle. Values are means ± SEM. The fusion index was calculated as the percentage of
nuclei in fused myotubes out of the total nuclei, measured in %. C—myoblasts derived from rat
soleus muscle of the control rats, HS—myoblasts derived from rat soleus muscle after 7-day HS,
HS+AICAR—myoblasts derived from rat soleus muscle after 7-day HS and treated with AICAR;
n ≥ 36/group. *—significant difference vs. C, p < 0.05, #—significant difference vs. HS, p < 0.05.

Groups Fusion Index,
%

Area,
µm2

Diameter,
µm

Width,
µm

Length,
µm

C 100 ± 4.3 8908 ± 814 70 ± 3 25 ± 1 510 ± 30
HS 143 ± 13.5 * 5667 ± 569 * 54 ± 3 * 17 ± 1 * 306 ± 38 *

HS+ AICAR 102 ± 10.2 # 7686 ± 759 # 69 ± 3 # 24 ± 2 # 365 ± 31 *

By the 5th day of myogenic differentiation, RT-PCR analysis also revealed that HS
cells exhibit a significant upregulation of genes responsible for myoblast differentiation
(myogenin and MyoD) and fusion (Myomaker and Myomixer) compared to the control cells
(Table 4). However, treatment of differentiating HS myoblasts with AICAR significantly
attenuated the expression of differentiation and fusion markers (Table 4).

Table 4. Expression level of differentiation markers in myoblasts derived from the atrophied rat
soleus muscle. Values are means ± SEM. C—myoblasts derived from rat soleus muscle of the control
rats, HS—myoblasts derived from rat soleus muscle after 7-day HS, HS+AICAR—myoblasts derived
from rat soleus muscle after 7-day HS and treated with AICAR; n = 7/group. *—significant difference
vs. C, p < 0.05, #—significant difference vs. HS, p < 0.05.

Groups Myogenin
mRNA, 2−∆∆Ct

MyoD mRNA,
2−∆∆Ct

Myomaker
mRNA, 2−∆∆Ct

Myomixer
mRNA, 2−∆∆Ct

C 1 ± 0.06 1 ± 0.04 1 ± 0.02 1 ± 0.05
HS 2.91 ± 0.22 * 2.49 ± 0.28 * 1.4 ± 0.15 * 2.02 ± 0.11 *

HS + AICAR 1.78 ± 0.15 *# 1.63 ± 0.27 # 1.14 ± 0.06 # 1.67 ± 0.19 *

3.4. The Number of Apoptotic Cells in Myoblast Cultures

TUNEL assay revealed that in the HS myoblasts, the number of apoptotic cells was
43% greater than in the control myoblasts (Figure 3). The number of apoptotic cells in the
AICAR-treated HS myoblasts did not differ from the control myoblasts (Figure 3). Thus,
the maintenance of AMPK activity in differentiating myoblasts derived from the atrophied
soleus muscle was able to fully prevent the increased number of TUNEL+ cells.

3.5. Expression of Apoptotic Markers in Myoblast Cultures

In the HS myoblasts, there was an increase in caspase-9 mRNA expression by 78%
(Figure 4a) and p53 mRNA expression by 100% (Figure 4b) compared to the C myoblasts.
In the AICAR-treated HS myoblasts, no significant changes in the expression levels of
caspase-9 and p53 were found relative to the C myoblasts (Figure 4a,b). In the HS myoblasts,
mRNA expression levels of Bcl-2, a protein that inhibits apoptosis, were reduced by 45%
compared to the control myoblasts (Figure 4c). The expression levels of Bcl-2 after AICAR
treatment of the HS myoblasts did not differ from the control myoblasts (Figure 4c).
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Figure 3. Effect of AICAR treatment on the number of apoptotic cells in differentiating myoblasts
derived from the atrophied rat soleus muscle. (a) Representative images of TUNEL-stained (green
labeling) and DAPI-stained (blue labeling) myoblasts are shown above the graph. (b) Quantification
of TUNEL-positive cells. Scale bar= 50 µm. C—myoblasts derived from rat soleus muscle of the
control rats, HS—myoblasts derived from rat soleus muscle after 7-day HS, HS+AICAR—myoblasts
derived from rat soleus muscle after 7-day HS and treated with AICAR. Values are means ± SEM,
expressed as % of the C. *—p < 0.05 vs. C; #—p < 0.05 vs. HS.

In the HS cells, we also observed a significant upregulation of pro-apoptotic marker
Bax at both mRNA and protein expression levels compared to the control cells (Figure 5).
AICAR treatment of HS myoblasts fully prevented this increased Bax mRNA expression
and protein abundance (Figure 5). Thus, differentiating myoblasts isolated from the un-
loaded soleus muscle showed a significant increase in the expression of pro-apoptotic
markers (caspase-9, p53, and Bax) and a concomitant decrease in the expression of anti-
apoptotic marker (Bcl-2). AICAR-induced prevention of AMPK dephosphorylation in
the HS myoblasts resulted in the maintenance of the apoptotic markers’ expression at the
control levels.
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Figure 4. Effect of AICAR treatment on the mRNA expression of (a) pro-apoptotic markers (caspase-9,
(b) p53 and (c) anti-apoptotic marker (Bcl-2) in differentiating myoblasts derived from the atrophied
rat soleus muscle. C—myoblasts derived from rat soleus muscle of the control rats, HS—myoblasts
derived from rat soleus muscle after 7-day HS, HS+AICAR—myoblasts derived from rat soleus
muscle after 7-day HS and treated with AICAR. Values are means ± SEM, expressed as fold changes
vs. C. Dots, squares and triangles on the bars represent individual data points. n = 7, *—p < 0.05 vs. C;
#—p < 0.05 vs. HS.
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Figure 5. Effect of AICAR treatment on (a) Bax mRNA expression and (b) Bax protein content in
differentiating myoblasts derived from the atrophied rat soleus muscle. C—myoblasts derived from
rat soleus muscle of the control rats, HS—myoblasts derived from rat soleus muscle after 7-day HS,
HS+AICAR—myoblasts derived from rat soleus muscle after 7-day HS and treated with AICAR.
Values are means ± SEM, expressed as fold changes vs. C (PCR data, n = 7) or as % of C (WB data,
n = 6). Dots, squares and triangles on the bars represent individual data points. *—p < 0.05 vs. C;
#—p < 0.05 vs. HS.
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We also evaluated both mRNA expression levels and the content of cleaved caspase-3,
a key effector enzyme in apoptosis induction, in differentiating myoblast cultures. As
shown in Figure 4a, mRNA expression levels of caspase-3 were significantly upregulated in
the HS myoblasts compared to the C cultures. However, AICAR treatment lowered caspase-
3 mRNA expression levels below the C values (Figure 6a). The content of cleaved caspase-3
in the HS myoblasts was 53% greater relative to the C myoblasts (Figure 6b). However, in
the HS+AICAR myoblasts, the content of cleaved caspase-3 was significantly lower than in
the C and HS myoblast cultures (Figure 6b). These data support the findings presented in
Figures 3–5 about the activation of apoptotic processes in differentiating myoblasts derived
from the atrophied rat soleus muscle.
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Figure 6. Effect of AICAR treatment on (a) caspase-3 mRNA expression and (b) cleaved caspase-3 pro-
tein content in differentiating myoblasts derived from the atrophied rat soleus muscle. C—myoblasts
derived from rat soleus muscle of the control rats, HS—myoblasts derived from rat soleus muscle
after 7-day HS, HS+AICAR—myoblasts derived from rat soleus muscle after 7-day HS and treated
with AICAR. Values are means ± SEM, expressed as fold changes vs. C (PCR data, n = 7) or as
% of C (WB data, n = 6). Dots, squares and triangles on the bars represent individual data points.
*—p < 0.05 vs. C; #—p < 0.05 vs. HS.

4. Discussion

Our data demonstrate, for the first time, the direct effects of AICAR treatment (and,
hence, the maintenance of AMPK activity) on the apoptosis in differentiating primary my-
oblasts derived from mechanically unloaded/atrophied rat soleus muscle. Previous studies
demonstrated that exposure to mechanical unloading/microgravity can lead to apoptotic
processes in skeletal muscles [30]. Radugina et al. (2017) have shown that exposure of mice
to 30-day microgravity results in the presence of multiple apoptotic nuclei and a smaller
number of SCs in quadriceps muscles compared to the control mice [10]. It is known that a
certain level of apoptosis normally accompanies myoblast differentiation [31,32]. Enhanced
apoptosis during myoblast differentiation can contribute to muscle fiber degeneration, as
was revealed in various types of muscular dystrophy and atrophy cases [33–35]. In the
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present study, we found a significant upregulation of apoptosis during differentiation of pri-
mary myoblasts isolated from rat soleus after 7-day mechanical unloading. Using TUNEL
assay, we identified a greater number of apoptotic cells in the culture of differentiating
myoblasts derived from the atrophic soleus muscles compared to the differentiating my-
oblasts derived from the control soleus muscles. Moreover, the levels of mRNA expression
of pro-apoptotic markers (caspase-3 and -9, p53 and Bax) were significantly increased in
parallel with reduced mRNA expression of anti-apoptotic Bcl-2. The presence of apoptosis
in these HS myoblasts was also confirmed by an increased content of cleaved caspase-3.
These results correlate well with some literature data. For instance, Andrianjafiniony et al.
(2010) have showed a significant increase in the content of caspase-3 and -9 in rat soleus
muscle after 14 days of HS [36], which is in agreement with the above mentioned study
by Radugina (2017) on the effect of 30-day unloading (microgravity) on murine skeletal
muscle [10]. Furthermore, a significant increase in apoptosis was shown in differentiated
myotubes derived from skeletal muscles of patients with myotonic dystrophy [37].

We also determined the levels of AMPK activity (by assessing AMPK Thr172 phospho-
rylation and ACC Ser 79 phosphorylation) since it is known that AMPK can contribute to
the regulation of programmed cell death (apoptosis) normally, accompanying myogenesis
and muscle regeneration [15,22,38]. Available data on the role of AMPK in the regulation of
apoptosis are controversial. While some reports suggest AMPK-dependent stimulation of
apoptosis [39–41], several studies demonstrate an anti-apoptotic role of AMPK [22,42–44].

In the present study, we found a significant decrease in both AMPK (Thr 172) phos-
phorylation and ACC (Ser 79) phosphorylation in differentiating myoblasts derived from
rat soleus muscle after 7-day HS, indicative of a reduction in AMPK kinase activity. More-
over, a decrease in the activity of AMPK signaling was confirmed by a significant increase
in Ser 240/244 phosphorylation of rpS6, a marker of mTORC1 activity, since AMPK is
known to be an endogenous inhibitor of mTORC1 and protein synthesis in both skeletal
muscles [45] and cultured muscle cells [46,47]. These data are consistent with our previous
study showing a decrease in ACC (Ser 79) phosphorylation in primary myoblasts isolated
from unloaded skeletal muscle [24]. The results on the activity of AMPK and ACC in
differentiating myoblasts derived from soleus muscle after mechanical unloading are in
agreement with data previously obtained directly on rat soleus muscle [28,29,48]. However,
these unloading-induced changes in AMPK activity were seen in rat soleus muscle at earlier
stages of HS (1–3 days) compared to differentiating myoblasts isolated from rat soleus
muscle after 7-day HS in the present study. Liu et al. (2019) have previously demonstrated,
although in non-muscle cells, that AMPK knockdown results in the upregulation of apopto-
sis [49]. In primary myoblast derived from geriatric skeletal muscle, White and colleagues
(2018) have demonstrated that reduced AMPK activity (phosphorylation) is associated
with increased apoptosis [44]. Moreover, it has also been shown in differentiating C2C12
myoblasts that an inhibition of AMPK activity contributes to apoptosis upregulation [22].

In the present study, to elucidate the role of AMPK activity in the regulation of
apoptosis in differentiating myoblasts derived from the unloaded/atrophied soleus muscle,
a specific AMPK activator, AICAR, was used. Incubation of the HS myoblasts with AICAR
not only prevented HS-induced reductions in the phosphorylation levels of AMPK and
ACC, but also reduced the number of apoptotic cells and maintained the expression
of apoptotic markers at the control levels. Thus, our data clearly demonstrate that the
maintenance of AMPK activity (Thr 172 phosphorylation) prevents apoptosis development
in differentiating myoblasts derived from the rat soleus after 7-day mechanical unloading.

It is known that AMPK can participate in the regulation of apoptosis through dif-
ferent mechanisms, including regulation of autophagy [50], Bcl-2-regulated apoptotic
pathway [51], mTOR inhibition [52], p53 activation [53] and phosphorylation of cyclin-
dependent kinase inhibitor 1B (p27Kip1) [44]. Under conditions of metabolic stress, p27Kip1
is involved in the regulation of cell fate. In particular, p27Kip1 controls cell cycle inhibition,
apoptosis and autophagy [38]. It has been shown that p27Kip1 can inhibit the activity of
pro-apoptotic protein Bax and prevent apoptosis [54,55]. The regulation of p27Kip1 activity
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is carried out at the level of transcription, phosphorylation and subcellular localization [44].
It has been demonstrated that nuclear p27Kip1 is able to facilitate quiescence and apoptosis,
while cytoplasmic p27Kip1 can promote cell survival and autophagy [44]. Liang and co-
workers demonstrated that AMPK-related phosphorylation of p27Kip1 on Thr198 is able to
stimulate its sequestration to the cytosol, leading to increased autophagy and decreased
apoptosis [38]. In myoblasts derived from aged mice, increased apoptosis was accompanied
by decreased AMPK and p27Kip1 phosphorylation [44]. Moreover, upon AMPK activation
or p27Kip1 overexpression, apoptosis in these cells was suppressed [44]. We can speculate
that in the present study, the development of apoptosis in differentiating myoblasts derived
from the unloaded soleus muscle could occur due to reduced AMPK-dependent p27Kip1
phosphorylation, resulting in p27Kip1 nuclear localization and induction of apoptosis.
Identification of the precise molecular mechanisms underlying apoptosis development in
differentiating myoblasts isolated from atrophied muscles requires further research.

In conclusion, our study for the first time revealed the increase in apoptotic processes
in differentiating myoblasts derived from the atrophied rat soleus muscle. Further, our data
provide the first evidence that the activation of apoptosis in such differentiating myoblasts
is associated, at least in part, with reduced AMPK activity.
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