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Abstract: The c-Jun N-terminal kinases (JNKs) are a family of proteins that, once activated by stress
stimuli, can alter neuronal functions and survival. The JNK cascade plays a crucial role in the
post-synaptic neuronal compartment by altering its structural organization and leading, at worst,
to an overall impairment of neuronal communication. Increasing evidence suggests that synaptic
impairment is the first neurodegenerative event in Alzheimer’s disease (AD). To better elucidate this
mechanism, we longitudinally studied 5xFAD mice at three selected time points representative of
human AD symptom progression. We tested the mice cognitive performance by using the radial
arm water maze (RAWM) in parallel with biochemical evaluations of post-synaptic enriched protein
fraction and total cortical parenchyma. We found that 5xFAD mice presented a strong JNK activation
at 3.5 months of age in the post-synaptic enriched protein fraction. This JNK activation correlates
with a structural alteration of the post-synaptic density area and with memory impairment at this
early stage of the disease that progressively declines to cause cell death. These findings pave the way
for future studies on JNK as a key player in early neurodegeneration and as an important therapeutic
target for the development of new compounds able to tackle synaptic impairment in the early phase
of AD pathology.

Keywords: c-Jun N-terminal kinase; synaptic dysfunction; cognitive decline; cell death

1. Introduction

Alzheimer’s disease (AD) is a progressive and still untreatable neurodegenerative
disorder. The last stage of the disease is the result of a pathological process already
active and prolonged over time, characterized by synaptic dysfunction, synaptic loss, and
eventually neuronal death. The c-Jun N-terminal kinase (JNK) mediates cellular stress
and is deeply involved in AD pathogenesis [1–3]. Indeed, JNK phosphorylates both
amyloid precursor protein (APP) and tau, promoting the production and accumulation
of amyloid beta (Aβ) protein and neurofibrillary tangles deposition [4–6]. Interestingly,
JNK plays also a role in regulating synapse physiology and formation [7–9] as well as
dysfunction [3,10,11]. At the synaptic terminals JNKs are essential in synaptic plasticity [9],
while prolonged overactivation of JNKs results in decreased protein levels in the post-
synaptic density (PSD) region, triggering a mislocalization of glutamate receptors and
eventually driving synaptic dysfunction [3,12]. The role of JNK in AD post-synaptic
dysfunction was previously investigated in the CRND8 AD mouse model, where it was
shown to regulate synaptic glutamate receptor trafficking by controlling phosphorylation
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of PSD95, eventually leading to neurotransmission impairments and spine loss [3,10,13].
Interestingly, JNK inhibition rescued both behavioral and biochemical degenerations in
CRND8 mice [3,10,11], suggesting an essential role of JNK in AD-induced synaptopathy,
dendritic spine loss, and neurodegeneration [14]. However, this mouse model does not
mimic the long prodromal phase of plaque deposition, with the onset of the cognitive
decline occurring at the same time as plaque deposition [15]. For this reason, the benchmark
reference model in the AD field is currently the 5xFAD mice model [16].

The 5xFAD mouse overexpresses human APP and PSEN1, containing five familial
AD mutations (APP KM670/671NL (Swedish), APP I716V (Florida), APP V717I (London),
PSEN1 M146L, PSEN1 L286V) under the control of a Thy1-promoter. An in-depth analysis
of these mice, performed by Forner and colleagues, confirmed that they develop amyloid
pathology [16,17], microgliosis and inflammation [18–20], astrogliosis, impairments in long-
term potentiation [21], and deficits in behavioral tasks [17,22]. In addition, differently from
other AD models, cognitive decline appears months after amyloid plaque deposition [17].
Neuronal loss starts from 9 months of age in those areas involved in memory formation
and processing, and 25–40% of layer 5 neurons are lost between 9 and 12 months [17,22,23].
This feature is particularly important as many other AD animal models do not present
any neuronal loss. Interestingly, as in humans, synaptic dysfunction precedes neuronal
death. On the other hand, spine and dendrite loss and axonal dystrophy start earlier, at
around 4–6 months [17], when cognitive deficit usually begins. This suggests a stronger
correlation between synaptic dysfunction and mild cognitive deficit. Thus, the 5xFAD
mouse model enables the study of preventive treatments against AD synaptic dysfunction.
Interestingly, JNK’s key role in 5xFAD was confirmed by chronic treatment with Brimaptide
(also known as D-JNKI1), a peptide able to inhibit all JNK isoforms. This treatment resulted
in a reduction of Aβ plaque burden, cognitive deficits, cell death, and the pro-inflammatory
IL-1β cytokine [24,25]. Despite this experimental evidence, the relevance of JNK activation
in the PSD of the post-synaptic element in this mouse model has never been explored. We
here used behavioral, biochemical, and proteomic methods to characterize the sequence of
events leading to JNK activation and cognitive decline in 5xFAD mice. We focused on three
pivotal time points of the AD continuum: the pre-symptomatic phase (2 months), the initial
phase (3.5 months), and the overt latest phase of the disease (10 months), deeply analyzing
the molecular changes in cortical tissues.

2. Materials and Methods
2.1. Mice

Briefly, 5xFAD mice (B6SJL-Tg(APPSwFlLon,PSEN1*M146L*L286V) 6799Vas/Mmjax Strain
#034840-JAX) on a B6SJLF1/J background were obtained from the Jackson Laboratory. Age-
matched wild-type (wt) littermates were used as controls. Hemizygous male mice (not carriers
for the Pde6brd1 gene) were bred to B6SJLF1/J female mice (carriers for the Pde6brd1 gene) at
the Mario Negri Institute for Pharmacological Research IRCCS [3,26,27]. Procedures involving
animals and their care were in accordance with national and international laws and policies
(Permit Number 4/2021-PR). Genotyping was performed by PCR using a standard protocol
provided by the Jackson Laboratory and GoTaq®G2 Flexi DNA polymerase kit (Promega,
Madison, WI, USA). The experimental scheme comprised two groups: the Tg-5xFAD and
the wt mice. Male and female tg-5xFAD and wt mice were tested at the ages of 2 (n = 7 per
group), 3.5 (n = 7 per group), and 10 (n = 7 per group) months.

2.2. Behavioral Test

The radial arm water maze (RAWM) was performed as described in Alamed et al.,
2006 [28]. Entry into an incorrect arm (all four limbs within the arm) was scored as an error.
If a mouse failed to make an arm entry within 15 s, this also was scored as an error. The
errors for blocks of 3 consecutive trials were averaged for data analysis.
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2.3. Triton Insoluble Fractionation (TIF)

After the behavioral test, animals were sacrificed, and brains were removed for bio-
chemical analysis. Subcellular fractionation was performed as reported in the literature,
with minor modifications [29,30].

2.4. Western Blot

Protein concentrations were quantified using the Bradford Assay (5000006, Bio-Rad
Protein Assay, Hercules, CA, USA): 10 µg of total homogenate and 5 µg of TIF extracted
proteins were separated by 10% SDS polyacrylamide gel electrophoresis. PVDF membranes
(1620177, Bio-Rad, Hercules, CA, USA) were blocked in Tris-buffered saline 5% non-fat milk
powder (70166, Sigma-Aldrich, Darmstadt, Germany), and 0.1% Tween 20 (P1379, Sigma-
Aldrich, Darmstadt, Germany) (1 h, RT). Primary antibodies were diluted in the same
buffer (incubation overnight, 4 ◦C) using anti-P-JNKs (1:1000, BK9251S, Cell Signalling,
Danvers, MA, USA); anti-JNKs (1:1000 BK9252S, Cell Signalling, Danvers, MA, USA);
anti p-APP (1:1000, Cell signaling); anti-APP (1:1000, VC298620, Invitrogen, Waltham,
MA, USA); anti-p-c-Jun (1:1000, 06-659, Millipore, Bedford, MA, USA); anti-c-Jun (1:1000,
BK9165S, Cell Signalling, Danvers, MA, USA); anti-NMDA Receptor 2A GluN2A (1:2000,
BK4205S, Cell Signalling, Danvers, MA, USA); anti-NMDA Receptor 2B GluN2B (1:2000,
BK14544S, Cell Signalling, Danvers, MA, USA); anti-Glutamate Receptor 1 (AMPA subtype)
GluA1 (1:1000, BK13185S Millipore, Bedford, MA, USA); anti-Glutamate Receptor 2 (AMPA
subtype) GluA2 (1:1000, MAB397 Millipore, Bedford, MA, USA); anti-post-synaptic density
protein 95 (PSD95) (1:2000, CAY-10011435-100, Cayman Chemical Company, Ann Arbor,
MI, USA); anti PSD95 (1:1000, AB2930, Abcam, Cambridge, UK); anti-Drebrin (1:1000,
BSR-M05530, Boster, Pleasanton, CA, USA); anti-Shank3 (1:1000, 64555, Cell Signalling,
Danvers, MA, USA); anti-Actin (1:5000, MAB1501, Millipore, Bedford, MA, USA). Blots
were developed using horseradish-peroxidase-conjugated secondary antibodies (Santa
Cruz Biotechnology, Dallas, TX, USA) and the ECL chemiluminescence system (Bio-Rad,
Hercules, CA, USA). Western blots were quantified by densitometry using Quantity One
software (Bio-Rad, Hercules, CA, USA). Experiments were performed at least three times.

2.5. ELISA

Aβ1-42 oligomers detection in cortex total homogenates was performed using the
amyloid-beta (x-42) ELISA kit (IBL international GMBH, RE59721). Briefly, protein concen-
tration was quantified using the Bradford assay and then diluted at the same concentration
of 0.5 µg/µL (5000006, Bio-Rad Protein Assay, Hercules, CA, USA) following the manufac-
turer’s instruction. Data were shown as fold change of the average of all the wt groups.

2.6. Mass Spectrometry

Brain lysates (30 µg) were reduced in Laemmli buffer (15 min at 65 ◦C), then loaded
and separated on 10% SDS-PAGE. Resolved proteins were stained with Coomassie Brilliant
Blue G-250 (0.5% w/v in 40% aqueous methanol and 10% glacial acetic acid) overnight at
4 ◦C. Gels were de-stained and all samples were divided into five bands between exact
molecular weight markers and across the whole gel, providing five gel sections for every
sample. Excised sections were separately diced and transferred into PCR-clean low protein
binding polypropylene tubes (Eppendorf, Hamburg, Germany). Gel pieces were fully
de-stained with 50% acetonitrile in 50 mM ammonium bicarbonate (50% MeCN v/v in
50 mM ABC), then dehydrated with pure acetonitrile and vacuum dried for 30 min in a
vacuum concentrator (Eppendorf, Hamburg, Germany). For proteolytic in-gel digestion,
dried gel pieces were fully rehydrated with 40 µL of trypsin (Sequencing grade, Promega,
UK) in 6 mM ABC (25:1 protein to trypsin ratio) at RT for 5 min and layered with 200 µL
of 6 mM ammonium bicarbonate to prevent the gel from dehydrating during overnight
digestion at 37 ◦C on an orbital thermoshaker (700× g). Tryptic peptides were extracted
from the gel sequentially in 30% and 50% of acetonitrile in 50 mM ABC (15 min in an
ultrasonic bath), after which samples were fully dehydrated in pure acetonitrile. Peptide
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extracts from a single-sample section were combined into one polypropylene tube, after
which they were vacuum dried and stored at −20 ◦C before mass spectrometry analysis.

Before analysis, dried samples were reconstituted in 30 µL of 3% aqueous acetonitrile
and 0.1% formic acid for liquid-chromatography-coupled tandem mass spectrometry (LC-
MS/MS) analysis. Peptide samples (5 µL) were injected onto a trap column (nanoEase
M/Z Symmetry C18 Trap Column, 100Å, 5 µm, 180 µm × 20 mm, Waters, UK) on an
nUPLC system (Acquity M class, Waters, UK) operating in a single-pump trapping mode
at the flow rate of 5 µL/min of eluent B (eluent B: acetonitrile in aqueous 0.1% formic acid).
Peptide separation was achieved at a flow rate of 0.5 µL/min on an analytical column
(AcclaimTM, PepMapTM C18, 3 µm, 100 Å, 75 µm × 150 mm, ThermoScientific, UK) using
1% of eluent B (acetonitrile in aqueous 0.1% formic acid) applying the following gradient:
0–45 min 1–45% B, 45–49 min 45–90% B, 49–52 min 90% B, 52–67 min 1% B. Stable peptide
electrospray was formed at 2200 V using a PicoTipTM emitter (New Objective, Germany),
and charged peptides were analyzed on 5600 TripleTof mass spectrometer (AB Sciex,
Framingham, MA, USA) in information-dependent mode selecting the 10 most intense ions
from each high-resolution MS survey scan for high sensitivity MS/MS. Acquired peptide
ions were temporarily excluded from MS/MS acquisition for 30 s. The mass spectrometer
was calibrated prior to acquisition to ensure a high mass accuracy on both MS and tandem
mass spectrometry (MS/MS) levels.

Relative protein quantification was performed using Progenesis QI for proteomics
software (version 4, Nonlinear Dynamics, Newcastle, UK). Each sample sub-group (within
the same molecular weight range) was aligned on a retention time vs. m/z plot, ensuring
the alignment of identical peptides across different samples. Data was further in-silico
normalized (based on the peptide distribution) to allow for the high-accuracy relative
quantification. All sub-groups were combined using a multi-fraction setup to build up
representative samples. Relative quantification included only protein-unique peptides.
Merged data were exported as an .mgf file to Mascot search engine (Mascot Daemon
platform, ver 2.5) which was searched against the curated SwissProt database with the
following parameters: mass tolerance of 0.1 Da for MS and 0.5 Da for MS/MS spectra, a
maximum of two trypsin missed-cleavages, Mus Musculus taxonomy, and variable modifi-
cations of methionine oxidation and cysteine carbamidomethylation. Mascot searches were
exported back to Progenesis for the protein relative quantification between the samples.
All keratins were treated as contamination and were excluded from the analysis. Exported
protein relative quantification data tables were used for the quantitative gene ontology
analysis using FunRich software tool.

2.7. Statistical Analysis

Statistical analyses were performed with the Graph Pad Prism 9 program. Data were
analyzed with Student’s t-test and expressed as mean ± SEM with statistical significance
p < 0.05. For comparison between multiple groups, two-way ANOVA was used, followed
by Tukey’s post hoc test.

3. Results

We analyzed 5xFAD at three different time points representing: (1) the pre-symptomatic
phase (2 months of age); (2) the early phase (3.5 months of age); and (3) the late phase of
the disease (10 months of age).

3.1. Pre-Symptomatic Phase: 2-Month-Old 5xFAD Mice Showed an Increase in APP and P-APP
Levels but No Cognitive Deficit or JNK Activation

5xFAD mice cognitive deficits were investigated using the RAWM to evaluate the
number of errors and the time taken to locate the escape platform. As expected, 2-month-
old 5xFAD mice did not show memory impairment compared to wt animals; no significant
differences were found between the two groups in all the trials (Figure 1A,B), confirming a
pre-symptomatic phase.
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Figure 1. Absence of memory impairment and JNK activation in 2-month-old 5xFAD mice. (A) Time
and (B) number of errors to find the submerged escape platform demonstrate the absence of cognitive
impairment in 2-month-old 5xFAD mice. (C) Representative Western blots and relative quantifications
of cortical total homogenate show higher levels of p-APP, APP, and no differences in p-JNK/JNK
ratio in 5xFAD vs. wt mice. Genotypes are compared using t-tests. Statistical significance: ** p < 0.01.
Data are expressed as mean ± SEM.

On the same animals, Western blot analysis was performed on cortical total ho-
mogenate. JNK activation was evaluated by measuring the ratio between the phospho-
rylated (p-JNK) and the total form of the kinases (JNK), and no differences were found
in tg compared to wt animals (Figure 1C). In addition, we also analyzed total P-APP and
APP levels using an antibody that recognizes the specific JNK phosphorylation site on this
protein (T669). Our results show that despite the absence of cognitive deficit at 2 months,
a significant increase in both p-APP and APP protein levels (p < 0.01) was observed in
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tg-5xFAD mice compared to wt animals (Figure 1C), highlighting the early accumulation of
amyloid proteins [17].

3.2. Early Symptomatic Phase: Cognitive Impairment Correlates with Increased JNK Activation,
Aβ Oligomers Deposition, and Synaptic Dysfunction in 3.5-Month-Old 5xFAD Mice

We next analyzed mice at 3.5 months of age. Wt and 5xFAD mice performed differ-
ently in the RAWM and we found a significant effect of the genotype on both the errors
and the time spent performing the behavioral test (ANOVA for time, p = 0.032, and for
errors, p = 0.0018; Figure 2A). These data suggest an initial phase of cognitive impairment
in 5xFAD mice at 3.5 months of age. Interestingly, the biochemical analysis showed a
statistically significant increase in JNK activation (Figure 2B, p < 0.01) with no significant
differences in the phosphorylation of its elective target c-Jun [31,32,32] (Figure 2C), which
highlights an activation of the JNK signaling pathway with no involvement of neuronal
death. Additionally, 3.5-month-old transgenic mice also displayed increased APP lev-
els compared to wt mice (Figure 2B, p < 0.001) and increased p-APP levels (Figure 2B,
p < 0.0001) as expected. We then performed an ELISA assay on cortical total homogenate to
evaluate the deposition in the parenchyma of Aβ1-42 oligomers, the most toxic species de-
riving from APP processing [33]. Our results showed a clear increase in Aβ1-42 oligomers
in tg-5xFAD mice compared to wt (p < 0.01, Figure 2C).

The cognitive impairment observed at 3.5 months in 5xFAD-tg mice prompted us to
study the synaptic dysfunction in these mice. We then performed a biochemical characteri-
zation of the cortical post-synaptic enriched protein fraction (Triton Insoluble Fraction-TIF)
of wt and transgenic mice representing the PSD-region. Interestingly, the p-JNK/JNK ratio
was increased in the TIF fraction of 5xFAD mice (Figure 3 p < 0.05), confirming a strong
JNK signaling activation in the PSD region. Additionally, our data showed a dysregulation
of PSD95, the main scaffold protein of the excitatory synapses. PSD95 is also one of the
JNK targets in the TIF compartment [7,34], and we found an increase in P-PSD95/PSD95
ratio (Figure 3, p < 0.05) in tg-5xFAD vs. wt mice. In contrast, the levels of Shank3, an-
other scaffold protein, and JNK target of the excitatory post-synaptic terminal [35], were
decreased in transgenic compared to wt mice (p < 0.05 Figure 3), while Drebrin, a marker
of mature spines, levels did not change between tg and wt mice. We also evaluated gluta-
mate receptor levels by looking at NR2A and NR2B as representatives of NMDA receptor
subunits, and GluR1 and GluR2 as representatives of AMPA receptors. We observed a
statistically significant decrease in all the subunits evaluated in tg-5xFAD mice compared to
wt (p < 0.05, Figure 3), indicating a strong disruption of the PSD biochemical organization.

3.3. The Late Phase of the Disease: 10-Month-Old 5xFAD Mice Cortical Lysates Showed Strong
Activation of the Cell Death Programs

We next analyzed mice at 10 months of age, and 5xFAD mice failed to learn the
platform location over 2 days of testing, displaying an almost flat learning curve, and were
significantly impaired compared to the non-transgenic mice (ANOVA for time, p < 0.0001,
and for errors, p < 0.0001; Figure 4A,B). These results demonstrated an important worsening
of cognitive and mnemonic abilities in 5xFAD animals compared to wt mice, confirming
this as the latest phase of the pathology. When we looked at the cortex lysates, no JNK
activation was found in tg compared to wt mice, while the p-c-Jun/c-Jun ratio was sharply
increased (p < 0.001, Figure 4C), indicating the activation of the neuronal death program.
Our data also showed increased p-APP levels (p < 0.05, Figure 4C) without any differences
in APP expression in 5xFAD vs. wt mice. However, we observed sharply increased Aβ1-
42 levels (p < 0.0001, Figure 4C) in 5xFAD mice, reinforcing the correlation between the
progression of the disease and the cognitive impairments.
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Figure 2. Activation of JNK signaling pathway correlates with cognitive impairment in 3.5-month-old
5xFAD mice. (A) Time and (B) number of errors to find the submerged escape platform demonstrate
an initial cognitive impairment in 3.5-month-old tg-5xFAD mice. (C) Representative Western blots
and relative quantifications of cortical total homogenate show higher levels of p-JNK/JNK ratio,
p-APP, and APP but no statistical differences in p-c-Jun/c-Jun ratio in 5xFAD vs. wt mice. Elisa
analysis shows an 8.6 fold increase in Aβ1-42 oligomers in cortical total homogenate in 5xFAD mice.
Genotypes are compared using t-tests. Statistical significance: * p < 0.05, ** p < 0.01, *** p < 0.001,
**** p < 0.0001. Data are expressed as mean ± SEM.
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Figure 3. Synaptic dysfunction in the cortical post-synaptic proteins enriched fraction of 3.5-month-
old mice. Representative Western blots and relative quantifications of 3.5-month-old mice TIF cortex
show JNK signaling activation in tg compared to wt mice and increased levels of p-PSD95/PSD95
ratio together with decreased levels of NR2A, NR2B, GluR1, GluR2, and Shank3 levels. Genotypes
are compared using t-tests. Statistical significance: * p < 0.05. Data are expressed as mean ± SEM.
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Figure 4. Cognitive impairment and parenchyma degeneration in the cortex of 10-month-old mice.
(A) Time and (B) number of errors to find the submerged escape platform demonstrate the strong
cognitive impairment in tg-5xFAD mice compared to wt. (C) Representative Western blots and
relative quantifications of 10-month-old mice cortical total homogenate show a higher level of p-c-
Jun/c-Jun ratio and P-APP in tg-5xFAD vs. wt mice and no changes in p-JNK/JNK and APP levels.
Elisa Aβ1-42 oligomers evaluation in the cortical total homogenate. Genotypes are compared using
t-tests. Statistical significance: * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. Data are expressed
as mean ± SEM.
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To gain insight into the role of JNK in processes impaired by such a high increase
in Aβ oligomers we looked at the proteomic data in the cortex of 5xFAD mice compared
to wt. Our results, as expected, showed a very different proteomic signature of 5xFAD
mice compared to wt (Figure 5). We screened for differentially expressed proteins between
wt and 5xFAD mice via group t-test and identified 389 differentially expressed proteins.
Volcano plot, indicating the fold change in expression and the statistical significance for
5xFAD versus wt, is shown in Figure 5A. We next used these results to identify protein
candidates whose role in neuronal death could be linked to the strong c-jun activation
observed at 10 months. We found a 6.4-fold decrease in the antioxidant and detoxifying
enzyme GST4A (p < 0.001) and a 5.8- and 4.33-fold reduction in proteasome subunits PSMB1
and PSMA2, respectively (p < 0.001 and p < 0.0001, Figure 5). We also found a 5.45-fold
increase in GFAP and a 9.7-fold increase in MKKK7, whose activation induces the apoptotic
pathway and which is an upstream activator of JNK (p < 0.0001 and p < 0.01, Figure 5),
confirming JNK as a key player in the cell death program in 10-month-old 5xFAD tg mice.
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in GSTA4, PSB1, PSA2 proteins in tg vs. control mice. (C) A significant increase in 10-month-old
5xFAD lysates was observed for GFAP and MKKK7 proteins. Genotypes are compared using t-tests.
Statistical significance: ** p < 0.01, *** p < 0.001, **** p < 0.0001. Data are expressed as mean ± SEM.

4. Discussion

The first indication of a role of JNK in AD pathology was its activation markedly
increased in AD human brains, where activated JNK was found closely associated with
neurofibrillary tangles, senile plaques, neuropil threads, and granulovascular degeneration
structures [36]. Further studies showed that JNK phosphorylates both amyloid precursor
protein, promoting the APP cleavage in Aβ-amyloid oligomers, and tau, furthering the
deposition of neurofibrillary tangles [37,38]. In addition, the JNK3 level was found to
increase in the CSF of a small cohort of AD patients and correlated with the extent of
cognitive impairment [39]. Beyond its direct action on APP and tau, JNK phosphorylates
components of the synaptic machinery and is involved in synaptic plasticity changes [7,9].
Indeed, JNK is strongly involved in the phosphorylation of the tSNARE proteins, thus
regulating the zipping of the neurotransmitter vesicles in the pre-synaptic element [37].
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It also phosphorylates PSD95 and SHANK3, the most abundant scaffold proteins of the
PSD region [12,40]. In addition, JNK participates in the inflammatory reaction and the
neurodegeneration program [3,10,25]. In AD, synaptic changes occur in the early stage
of the disease before Aβ plaque formation and neuronal loss [41], but the molecular
mechanisms responsible for synapse dysfunction and loss remain poorly understood.
However, this early symptomatic stage of pathology can represent a therapeutic window
to treat AD and other diseases. The 5xFAD mouse model is the benchmarked reference
model in mimicking human AD pathology and represents a viable model for preclinical
testing [16]. We here analyzed biochemical alterations in 5xFAD mice brain parenchyma
from 2 to 10 months of age, focusing on a specific postsynaptic element as a neuronal
subcellular compartment to study synaptic dysfunction.

The two-month-old 5xFAD mice showed an increase in p-APP in cortex total ho-
mogenates without JNK activation and cognitive decline. This stage, without any kind of
lesion or alteration of intracellular pathways, is defined as a pre-symptomatic phase in the
5xFAD mouse model. At 10 months of age, we observed a stronger increase in P-APP and
Aβ 1-42 oligomer levels that correlated with robust memory impairment and ongoing cell
death characterized by a strong increase in p-c-jun, the elective JNK target. This indicates
an ongoing cell-death pathway in neurons. JNK has many apoptotic targets and regulates
the activity of transcriptional factors in the nucleus (c-Jun, ATF2, and c-Fos), but it also
phosphorylates proapoptotic BH3-only proteins [42] and regulates the balance between
anti-apoptotic Bcl-2 and pro-apoptotic Bax proteins [43]. We next decided to use proteomic
analysis to deeper characterize this late pathological phase with cognitive decline, focusing
on the relation with JNK signaling. We detected a significant decrease in GSTA4 in 5xFAD
compared to wt mice. Decreased glutathione levels were observed in mouse models of
Alzheimer’s disease [44] and in AD patients [45]. It is well known that oxidative stress,
caused by an imbalance in free radical production and cellular antioxidant response, plays
a key role in the pathogenesis of AD. JNK plays a pivotal role in oxidative stress-activated
cellular response, which contributes to cell death. Recent work has also shown that in
neurons, JNK is activated specifically by oxidative stress and activates c-jun containing
AP-1 transcription factors independently of c-Fos. This specific c-jun activation results in an
increased abundance of the antioxidant protein SRXN-1 [46]. Thus, the strong activation of
c-jun we detected in 5xFAD lysates at 10 months could represent an attempt to counteract
the decrease in GST. Accumulation of Aβ aggregates has been shown to inhibit proteasome
activity, thus contributing to the increase in oxidative stress which in turn triggers c-jun
activation [47]. Interestingly, we observed a strong decrease in proteasome subunit beta
type 1 and alpha type 2 in 5xFAD mice versus control. Lastly, our proteomic analysis
showed a strong increase in GFAP and MKKK7 protein levels in the cortex of 5xFAD mice
compared to controls. While the increase in GFAP protein in the cortex and hippocampus
in AD mouse models is well known [48,49], a consensus AP-1 binding site is present in
the human GFAP promoter and is conserved in mice and rats. Interestingly, this AP-1
site was shown to be essential for the upregulation of a gfa2-nlac transgene in response to
injury [50,51]. This could indicate a role for JNK/c-jun activation at 10 months in GFAP
overexpression in the late phase of the disease. The 9.68-fold change in MKKK7 expression
in 5xFAD mice strengthens the role of both MKK/JNK and p38 MAPK signal transduction
cascade and correlates with the increase in c-jun shown in our Western blot analysis at
10 months of age. Taken together, our proteomic data show that the strong cognitive decline
at 10 months of age correlates with an ongoing neuronal death process highlighted by
strong activation of the JNK signaling pathway. It is clear that the time point of 10 months
is too late for any therapeutic intervention.

To gain insight into the link between earlier events in AD pathogenesis and the
JNK pathway, we next evaluated 3.5 months as a time point representative of an early
symptomatic phase with the beginning of a mild cognitive decline. Strikingly, we found
a strong JNK activation in both the cortex lysate as well as in the post-synaptic enriched
protein fraction. Together with this strong JNK activation, we detected a strong decrease in
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the main excitatory post-synaptic density biomarkers (glutamate receptors-NR2A, NR2B,
GluR1, GluR2) and the scaffold proteins (PSD95, Shank3). This strongly suggests that
JNK activation mirrors the alteration of the postsynaptic element at this early phase of the
disease. We previously demonstrated in the CRND8 AD mouse model that Aβ oligomers
powerfully trigger JNK activation before PSD alteration [3,10,11,13], and we proved the
key role of JNK by using D-JNKI1, a cell-permeable peptide that inhibits all JNK isoforms.
JNK inhibition by D-JNKI1 was able to prevent synaptic impairment and behavioral deficit.
In agreement with these data, we here show that JNK activation at 3.5 months of age in the
5xFAD mouse model correlates with mild cognitive impairment and an alteration of the
post-synaptic element, thus confirming what was observed before. Notably, at 3.5 months
of age, we did not observe any c-jun activation, thus confirming that JNK, during this early
phase, is not yet acting on targets involved in the neuronal death program (Figure 6).
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Figure 6. JNK role in AD pathogenesis. Stress stimuli (such as Aβ oligomers) induce JNK hyper-
activation that acts in distinct cell compartments. Active JNK phosphorylates APP, promoting its
amyloidogenic cleavage and the formation of Aβ oligomers that, in turn, activate JNK. While AD
synaptic dysfunction can be induced directly by Aβ oligomers by promoting the misfunctioning of
glutamate receptors, JNK plays a role in the post-synaptic element by phosphorylating its targets
(i.e., PSD95), perpetrating the neurodegenerative process. Additionally, activated JNK can also
translocate in the nucleus, where it targets the elective substrate c-jun, thus triggering the neuronal
death pathway.
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5. Conclusions

In summary, the present study indicates a different role of JNK in the early symp-
tomatic phase compared to a later stage of AD pathogenesis in 5xFAD mice. While JNK
activation at 3.5 months of age, when behavioral abnormalities become detectable, correlates
with postsynaptic dysfunction, c-jun activation at 10 months of age correlates with neu-
ronal death. These data strongly show that JNK is early activated in the pre-symptomatic
AD-phase, and its activation persists up to the late phase of the disease, suggesting a key
role for JNK in AD and its potential as a therapeutic target. More importantly, we here
propose JNK as an ideal target to block PSD disruption in the early AD phase, paving the
way for future studies on specific JNK inhibition as a tool for blocking synaptic dysfunction
in AD.
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