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Abstract: The NF-κB signalling pathway is a major signalling cascade involved in the regulation of
inflammation and innate immunity. It is also increasingly recognised as a crucial player in many steps
of cancer initiation and progression. The five members of the NF-κB family of transcription factors
are activated through two major signalling pathways, the canonical and non-canonical pathways.
The canonical NF-κB pathway is prevalently activated in various human malignancies as well
as inflammation-related disease conditions. Meanwhile, the significance of non-canonical NF-κB
pathway in disease pathogenesis is also increasingly recognized in recent studies. In this review, we
discuss the double-edged role of the NF-κB pathway in inflammation and cancer, which depends on
the severity and extent of the inflammatory response. We also discuss the intrinsic factors, including
selected driver mutations, and extrinsic factors, such as tumour microenvironment and epigenetic
modifiers, driving aberrant activation of NF-κB in multiple cancer types. We further provide insights
into the importance of the interaction of NF-κB pathway components with various macromolecules to
its role in transcriptional regulation in cancer. Finally, we provide a perspective on the potential role
of aberrant NF-κB activation in altering the chromatin landscape to support oncogenic development.

Keywords: NF-κB signalling; cancer; chromatin landscape; epigenetic

1. Introduction

The nuclear transcription factor NF-κB was discovered in 1986 as a Nuclear Factor
that binds an immunoglobulin kappa light chain of activated B-cells [1]. NF-κB was subse-
quently reported to regulate the expression of various important target genes having diverse
physiological functions in multiple cell types through its specific DNA binding activity [2,3].
The family of NF-κB transcription factors in mammals comprises five members—RelA
(p65), RelB, c-Rel, NF-κB1 (p105/p50) and NF-κB2 (p100/p52) [4–21]. Activation of NF-κB
occurs via two major signalling pathways—the canonical and non-canonical pathways
that involve distinct regulatory mechanisms and NF-κB members. One of the prominent
features of NF-κB transcription factors is their association with the member protein of IκB
inhibitor family in the cytoplasm making them unavailable for transcriptional activation in
the nucleus. The IκB family typically consists of five members (IκBα, IκBβ, IκBε, IκBζ and
BCL3), all sharing similar structures. However, unprocessed p100 and p105 proteins are
also categorized as members of the IκB family of proteins due to the presence of typical
ankyrin repeats (ANK) in their C-terminal region. An alternative transcript of p105 gene,
only reported to be expressed in some murine lymphoid cells, has also been named as one
of the members of the IκB family (IκBγ) [22–24]. Hence, activation of both the canonical and
non-canonical NF-κB pathway involves phosphorylation-dependent degradation of IκB
factors by stimulus-response-activated IκB kinases (IKKs). The canonical NF-κB pathway
is mediated through the activation of NF-κB essential modifier (NEMO)-dependent IKK
(IKKγ), whereas non-canonical NF-κB pathway activation requires a NEMO-independent
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kinase complex involving IκB kinase α (IKKα) and the NF-κB-inducing kinase (NIK) [25].
Upon activation of the canonical NF-κB pathway, IκB kinases (IKKα, IKKβ and NEMO)
phosphorylates inhibitory IκBs and target the latter for proteasomal degradation, resulting
in the subsequent nuclear accumulation of NF-κB dimers [26–29]. In the non-canonical
NF-κB pathway, NIK phosphorylates IKKα on Ser 176 position, which in turn phospho-
rylates p100 subunit, leading to cleavage and ubiquitination mediated degradation of
C-terminal half of p100 protein generating active p52 subunit [30]. However, reports also
suggest the presence of atypical nuclear-localized IκB proteins, referred to as the BCL3
subfamily (Bcl3, IκBNS, IκBζ and IκBη). These IκBs are reported to show entirely different
sub-cellular localization, activation kinetics and functional diversity. They are not only
capable of interacting with NF-κB transcription factors inside the nucleus but are also found
to get induced and not degraded after NF-κB activation, compared to typical IκB mem-
bers. In addition, they do not exclusively act as inhibitors of the NF-κB pathway, instead
they can regulate the transcriptional activity of NF-κB transcription factors both positively
and negatively [25,31–34]. Nuclear-localized BCL3 act as transcriptional coactivators by
removing suppressive p50/p50 homodimers from the promoter of its target genes, in turn
allowing binding of activating p50/p65 heterodimer [35]. Bcl3 is also reported to suppress
transcription via blocking of the ubiquitination of p50 to stabilize a suppressive NF-κB
complex in the nucleus [36]. One interesting finding on the nuclear role of IκB family
proteins is its direct binding to NF-κB target sites. Wang et al., showed that Bcl3 forms a
complex with p52 homodimer to activate transcription when bound to G/C-rich κB sites in
the DNA, whereas the same complex represses transcription when bound to A/T-centric
sites in the DNA [37]. In a recent finding, it is reported that atypical IκB Bcl3 enhances
the generation of p52 homodimer, subsequently upregulating the expression of target
genes involved in proliferation, migration and inflammation [38]. Another BCL3 family
member protein, IκBζ, is reported to inhibit transactivation of p65 and its DNA-binding
activity in the nucleus [39]. In contrast, IκBη have been shown to be a positive regulator
of NF-κB-mediated expression of pro-inflammatory cytokines [40]. Nuclear IκBNS is also
shown to interact with several different NF-κB factors in the nucleus but its biological role
towards the activity of NF-κB transcription factors is yet to be elucidated [41,42].

In the presence of activating stimuli, the NF-κB-signalling cascade can be induced
via either of the pathways depending on the type of stimuli, dimers formed and kinases
involved in the post transcriptional modification (PTM) of IκBs and processing of NF-κB
factors. In addition to innate and adaptive immune response-dependent activation of
the NF-κB pathway, the range of stimuli activating either the canonical or non-canonical
pathway varies to a large extent. The canonical pathway of NF-κB is highly inducible
and is activated by a diverse range of stimuli, such as radiation, DNA damage, cytokines
(TNF-a, IL-1, IL-6), chemokines (MCP-1, IL-8), growth factors, adhesion molecules (ICAM-
1, VCAM-1, ELAM), reactive oxygen species (ROS), pattern-recognition receptors (PRRs)
and pro-inflammatory receptors such as TNF receptor superfamily (TNFRs) and Toll Like
receptor superfamily (TLRs) [43–51]. In contrast, the non-canonical NF-κB pathway relies
on specific sets of cytokine/receptor molecules for its activation, such as tumour necrosis
factor (TNF) receptor superfamily proteins, including BAFF receptor (BAFFR), CD-40,
lymphotoxin β receptor (LTβR), Fn14 and receptor activator of nuclear factor kappa-B
(RANK) [52–55], all of which signal through a MAP3K member kinase (MAP3K14) called
NF-κB-inducing kinase (NIK), making it a master regulator of the non-canonical NF-κB
pathway [56–59].

Once activated, each subunit of NF-κB signalling cascade, p65 (RelA), RelB, c-Rel,
p105/p50 (NF-κB1) and p100/52 (NF-κB2) associate with each other to form distinct
transcriptionally active homo/heterodimers [60]. Though they all possess a conserved
300-amino-acid-long amino-terminal Rel homology domain (RHD) that is important for
dimerization, DNA binding and interaction with IκBs, as well as nuclear translocation, the
role of transactivation is characterised to specific members. RelA (p65), RelB and c-Rel
contain the carboxy-terminal transactivation domains (TAD), which form transcriptionally
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active heterodimers only with p50 and p52 subunits, in turn assisting in DNA-binding
activity and activated target gene expression. [61,62]. Reports also suggest formation of
homodimers within Rel proteins as well as p50 and p52 subunits [63–66]. Gourisankar
and his group have solved the crystal structures of homodimers of several NF-κB pathway
factors such as p65 (RelA) homodimer in complex with a DNA target (2.4 Å resolution)
and p50 homodimer bound to a palindromic κB site (2.3 Å resolution) [12,65]. Interestingly,
p50/p50 homodimer has been described to exert inhibitory effects on NF-kB regulated gene
expression [67,68]. c-Rel homodimer is also reported to have the ability to bind IκBα, which
in turn inhibits its DNA binding but not cytoplasmic retention [69,70]. A recent report also
showed atypical IkB protein, Bcl3-mediated enhanced generation of p52 homodimer, in turn
enhancing transcription of genes involved in cancer-associated biological processes [38].
There are also many other combinations of dimers reported but the most prominent dimers
are the RelA-p50 and RelB-p52 dimers, which are activated by the respective canonical and
non-canonical pathways [71,72]. The complexity of the NF-κB-signalling mechanisms is
further illustrated by the specificity of NF-κB dimers in the transcriptional activation of
different target genes.

In addition, NF-κB member proteins also undergo various post-translational modi-
fications (PTMs), like phosphorylation and acetylation, regulating their interaction and
crosstalk with components of other signalling pathways. As mentioned earlier, the phos-
phorylation status of the IκBs determines the activation state of the NF-κB pathway. The
availability and activity of NIK, one of the major activating components of the non-canonical
pathway also depends on the PTM state of members of its degradation complex containing
TRAF3/TRAF2/cIAP1/cIAP2 proteins, which keeps the level of NIK low under constitu-
tive conditions. Upon activation, the degradation complex is recruited to the active receptor
complex. This leads to the degradation of cIAP1-cIAP2, thus allowing NIK to dissociate
from the complex and subsequently activate the non-canonical NF-κB pathway [73–79].
However, in an interesting finding in both normal B cells and B cell-derived tumors, it
has been shown that CD40 or BAFF receptor activation results in the complete degrada-
tion of TRAF3 and partial degradation of TRAF2 but not cIAP1-cIAP2. These findings
demonstrate a ubiquitination cascade in which TRAF2 ubiquitinates and activates cIAP1-
cIAP2, which then ubiquitinates TRAF3, leading to its degradation and enhanced NIK
stabilization as well as processing of NF-κB2/p100 [80]. Low levels of TRAF proteins lead
to the higher accumulation of NIK, which then phosphorylates p100 and IKKα, thereby
activating the kinase activity important for multiple site phosphorylation of p100 at its C-
terminal. Phosphorylated p100 is ubiquitinated by β-TrCP, leading to cleavage-dependent
ubiquitination-mediated degradation of C-terminal part of p100, generating active p52
subunit [56,81]. The processing of p100 is important in context to various steps of regulation
in the activation of NF-κB pathway. Unprocessed p100 binds RelA, RelB or c-Rel subunit
via its C-terminal ankyrin repeats, further inhibiting the activity of Rel subunits [82,83].
Hence, in the context of activation of the non-canonical NF-κB pathway, stabilization of
NIK and processing of p100 acts as one of the major steps involving multiple PTMs of its
regulator molecules [58].

Specific stimuli-dependent activation of the non-canonical NF-κB pathway is impor-
tant in regulating various important biological functions such as lymphoid organogenesis,
B-cell survival and maturation, dendritic cell activation and bone metabolism [84–90]. In
spite of being tightly regulated by various activators and inhibitory factors, the aberrant
activation of the NF-κB pathway has been observed in many lymphoid malignancies. Be-
sides its role in immune regulation, NF-κB members have been documented to regulate
transcriptional activities that promote the malignant transformation and survival of cancer
cells. Several studies demonstrate the presence of promiscuous mutations responsible for
inhibiting TRAF2, TRAF3 and cIAP1/2 complex or enhancing the expression/stability of
NIK and other receptor molecules like CD-40 and LTβR. Such mutations are associated
with the abnormal activation of the non-canonical NF-κB pathway [85,91–95]. Additionally,
recent studies suggest the interdependency of NF-κB-driven expression of target genes
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with epigenetic changes in the genome. In this review, we will discuss the activation and
regulation of NF-κB signalling in inflammation and cancer in context to its interaction with
transcription factors (TFs), kinases, epigenetic modifiers and non-coding RNAs. We focus
on discussing the interdependent role of NF-κB-signalling components with transcription
factors and chromatin modifiers in the aberrant activation of the NF-κB pathway, as well as
in the active transcriptional activation of its target genes (summarized in Figure 1).
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Figure 1. Aberrant activation and transcriptional regulation of NF-κB pathway in cancer. In addi-
tion to constitutive activator molecules of both the canonical and non-canonical NF-κB pathway
(highlighted in grey box), activation of the NF-κB pathway in cancer occurs via various other factors
involving cytokines like TNF-α, IL-1, IL-17 secreted by tumour-associated macrophages (TAMs)
and oncogenic driver mutations in various regulatory factors of the pathway (highlighted in pink
box). Upon such activation, the activated NF-κB subunits interact with pro-tumorigenic transcription
factors (highlighted in red oval), causing activation of alternative target genes associated with tumour
promotion phenotypes, angiogenesis and tumour-associated non-coding RNAs.

2. NF-κB: One of the Key Factors Linking Inflammation in Cancer

Even before Vichow’s hypothesis on the origin of cancer from the site of inflammation,
several inflammation-associated viral and bacterial infections (Hepatitis B, Helicobacter pyroli)
were found to be associated with increased risk of malignancies of the liver, colon and
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stomach [96–99]. Additionally, statistical reports estimate that inflammatory viral infections
contribute to >15% of all cancers [100,101]. It has been postulated that cancer cells can hijack
the normal inflammatory mechanism to boost their growth and survival. In general, the
normal function of immune cells is to trigger the innate and adaptive immune response to
differentiate between self/non-self and destroy/engulf the foreign invaders. However, in
the tumour microenvironment, cancer cells can alter the protective functions of immune cells
and convert them to act as tumour-promoting cells. They are reprogrammed to secrete pro-
survival inflammatory cytokines, allowing better proliferation, survival, migration, invasion
and inhibition of apoptosis in cancer cells. Hence, tumour-promoting inflammation acts as one
of the major hallmarks of cancer. But what remains unanswered are the regulatory molecules
that link inflammation to cancer progression. One of the major pathways reported to be
involved in manipulating the immune response machinery in the tumour microenvironment
is the NF-κB pathway.

Several studies have converged on the role of the NF-κB pathway as one of the critical
missing links between inflammation and cancer. The first evidence comes from various
studies reporting extensive sequence similarity between c-Rel and viral oncoprotein v-Rel
in their N-terminal domain, a region referred to as the Rel Homology Region (RHR), and
identification of oncogene Bcl3 as a member of the IκB family [102,103]. In addition, many
cancer cell types show elevated levels of NF-κB expression and activation. Endogenous
activation of NF-κB is reported in Hs294T melanoma cells due to altered equilibrium
between IκBα degradation and resynthesis, leading to overall decrease in the level of IκBα
expression [104]. Moreover, human colorectal cancer (CRC) epithelial cells have been
observed to express enhanced NF-κB and IκBα, which is accompanied by the increased
expression of cox-2 gene [105]. Similar selective activation of the NF-κB pathway is also
reported in breast cancer. The RelA subunit of NF-κB is reported to be activated in breast
cancer cell lines, whereas breast tumours are shown to exhibit an absence or low level of
nuclear RelA, in contrast to activated c-Rel, NF-κB1 and NF-κB2 along with bcl2 expression,
as compared to nontumorigenic adjacent tissue [106]. Most interestingly, the NF-κB family
of transcription factors have been shown to contribute to the function and maintenance of
tumour-initiating cells (TICs) in breast cancer. Experimental data indicates the activation
of both the canonical and non-canonical NF-κB pathway to be important in the function
of TICs by stimulating epithelial-to-mesenchymal transition (EMT) and upregulating the
expression of the inflammatory cytokines IL-1β and IL-6 [107]. In a recent finding, Monica
et al. reported the involvement of the NF-κB pathway towards resistance to endocrine and
chemotherapies in breast cancer [108]. Furthermore, BRCA1 signalling, which is one of the
prominent pathways activated in various cancer types including breast cancer and ovarian
cancer, additionally possesses the capability to induce the NF-κB pathway [109].

Additionally, in lung carcinoma, the enhanced expression of IKKβ and NF-κB is
reported as an important factor for tumour initiation and progression [110]. Another NF-κB
activity dependent type of cancer is melanoma. Studies using mice models have shown that
initiation of such tumours is HRas-mediated and involves the regulation by IKKβ in the
activation of NF-κB [111]. In the cell line model of Diffuse large B-cell lymphoma (DLBCL),
constitutive activity of IKK and high NF-κB DNA-binding activity is reported in the ABC-
DLBCL subtype but not in the GC-DLBCL subtype [112]. Recently, Eluard et al. reported
the presence of a new subset of Diffuse large B-cell lymphoma (DLBCL) patients showing
enhanced RelB activation with aberrant gene expression and mutation profiles [113]. Based
on these studies, it can be postulated that abnormal activation of the NF-κB pathway in
various cancer types is critical for the survival of transformed cells, particularly in the
suppression of apoptosis and senescence. Apart from endogenous elevated levels of NF-κB
expression and activation in cancers (summarized in Table 1), there are also reports on
aberrant activation of NF-κB pathway in cancer cells. Hence, there appears to be various
extrinsic and intrinsic factors regulating the malignancy-associated enhanced activation of
the NF-κB pathway in cancers.
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Table 1. Summarized table of alteration of different components of NF-κB pathway in different
cancer types (HCC: Human Colorectal Carcinoma; FLHCC: Fibrolamellar Hepatocellular Carcinoma;
GBM: Glioblastoma Multiforme; MM: Multiple Myeloma; DLBCL: Diffuse large B-cell lymphoma;
PMBL: Primary Mediastinal B-cell Lymphoma; ABC-DLBCL: Activated B-cell-like Diffuse large B-cell
Lymphoma; PEL: Primary Effusion Lymphoma; ALT: Adult T-cell Lymphoma/Leukemia).

Factors of NF-κB Pathway and Alterations Cancer Type References

RelA (p65)

• Higher expression and activation of p65
in tumour tissue compared to
normal tissue

HCC, FLHCC, Breast cancer cell lines [105,114,115]

RelB

• Frequent activation of RelB leading to
non-canonical NF-κB pathway activation

GBM, MM, DLBCL [113,116–119]

c-Rel

• Gain of chromosomal material (9p)
leading enhanced expression of c-Rel

• Gain of 2p leading to nuclear
accumulation of c-Rel

Breast tumours, Hodgkin lymphoma,
DLBCL, GC-DLBCL, PMBL [120–122]

NF-κB–inducing kinase (NIK)

• Enhanced activation/overexpression of
NIK in cancer cells/tumour compared
to normal

GBM, MM, Hodgkin lymphoma [110,119,123]

IκBα

• Enhanced degradation of IκBα causing
endogenous activation of NF-κB pathway

• High expression of IκBα transcript in
certain cancer type

• Direct transactivation via interaction with
κB motifs in the DNA inside the nucleus

Ovarian Carcinoma cell line, HCC,
Melanoma [104,105,109,124,125]

IKK

• Higher expression of endogenous IKK in
tumour tissue compared to normal tissue

• Constitutive IKK activity causing
enhanced activation of NF-κB pathway

Lung carcinoma, Melanoma, Hodgkin
lymphoma, ABC-DLBCL, PEL, ALT, HCC [105,110–112,126–128]

NF-κB1

• Higher expression of p50 in tumour tissue
compared to normal tissue

• Enhanced degradation of IκBα leads to
increased activation of NF-κB1 subunit

Breast tumours, Melanoma cells, Lung
cancer, HCC, ALT, ABC-DLBCL [104,105,110]

NF-κB2

• Selective activation in some cancer types
• Overexpression of NIK underlies

constitutive activation of non canonical
NF-κB pathway

Colon carcinoma cell line, MM, Breast
cancer, Lung cancer [106,107,110,119,124]

3. Factors Contributing to the Hyperactivation of NF-κB Pathway in Cancers
3.1. Cancer Associated Immune Signalling Molecules

In addition to the role of elevated NF-κB activity in the survival of transformed cells,
NF-κB is found to be activated in cancer stem cells (CSCs). In CSCs, it promotes the release
of pro-inflammatory cytokines that exert anti-apoptotic and pro-proliferative activities [129].
One of the prominent factors involved in the activation of the canonical NF-κB pathway in
both solid and hematologic malignancies is the tumour microenvironment (TME). A large
number of immune cells (macrophages, dendritic cells, neutrophils, mast cells, T cells and
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B cells) are recruited to the TME, leading to the enhanced production of cytokines, growth
and angiogenic factors and proteases that degrade the extracellular matrix to support
cancer development and progression [130]. In solid tumours, the sustained activation of
the NF-κB pathway is predominantly achieved through the continuous release of cytokines
by tumour-associated macrophages (TAM) in the TME. One of the predominant properties
of TAM is the ability to switch from M1- to M2-phenotype with enhanced release of
anti-inflammatory cytokines [131,132], suggesting a crosstalk between cancer cells and
neighboring macrophages. Interestingly, IKKβ and NF-κB are also reported to assist in the
polarization of macrophages towards the M2 type, which fosters and protects the tumour
cells instead of attacking them [133,134]. Hence, this permits malignant cells to bypass
tumour immunosurveillance activity via NF-κB-mediated polarization of macrophages
from the M1 to M2 phenotype.

Activation of either of the canonical or non-canonical pathways in both solid and
hematologic malignancies also depends on different sets of inflammation-associated cy-
tokines and receptors activated in tumour cells. Induction of the canonical NF-κB pathway
is initiated by pattern recognition receptors and diverse tumour-promoting cytokines, such
as TNF, IL-1, and IL-17 [135]. On the contrary, activation of the non-canonical NF-κB
pathway is triggered by signalling via a specific subset of TNFR superfamily members such
as B-cell-activating factor belonging to TNF family receptor (BAFFR) [52,55], CD-40 [53],
lymphotoxin β-receptor (LTβR) [54], receptor activator for nuclear factor κB (RANKL) [136],
TNFR2 [137,138], Fn14 [139], etc.

In addition to the involvement of immune regulatory molecules in activation of both
the canonical and non-canonical NF-κB pathways towards cancer-promoting mechanisms
rather than their classical immunosurveillance roles, the important observation is their
expression in non-immune cells. Enhanced expression of CD-40 is reported in many non-
immune cells, such as the intestinal epithelial cells (IECs) of patients with colon cancer.
This, in turn, leads to the aberrant activation of non–canonical NF-κB pathway, suggesting
the important link between immunosurveillance and tumorigenicity [140–142]. LTβR is
expressed in lymphoid stromal and epithelial cells. BAFFR is predominantly expressed
in B cells, whereas RANK, which is best known for its role in osteoclastogenesis, is also
reported to be highly expressed in various cancer types like breast and prostate cancer cells,
mediating the migration and skeletal metastasis of cancer cells [143,144].

3.2. Intrinsic Mutations and Post Translational Modifications (PTMs)

In addition to the receptor dependent aberrant activation of NF-κB pathways in
cancer, activating mutations in other signalling components of the non-canonical NF-
κB pathway have been documented particularly in lymphoid malignancies [91]. Such
activation is driven by the presence of selected mutations inactivating the genes encoding
negative regulators of the pathway (TRAF2, TRAF3, TNFAIP3, BIRC3, MAP3K14, CYLD,
cIAP1/cIAP2) and activating the regulator molecules (NF-κB1, NF-κB2, CD40, LTβR, TACI,
and NIK) in various cancer types like multiple myeloma (MM), splenic marginal zone
lymphoma (SMZL), MALT lymphoma and B-cell lymphoma [15,93,145–149] (Table 2).
Mutations leading to constitutive activation of the kinase NIK in multiple myeloma have
been found in NIK itself, that disrupts its binding with TRAF3, in turn causing dissociation
of NIK from the inhibitory complex having TRAF2 and the ubiquitin ligases cIAP1 and
cIAP2. This, in turn, results in NIK stabilization, leading to aberrant activation of the non-
canonical NF-κB pathway [93,119]. The genetic selection of these driver mutations by cancer
cells highlights the critical importance of the NF-κB pathway towards cancer progression
and enhanced malignancy. In the case of multiple myeloma, mutations are also reported in
many other signalling subunits of non-canonical NF-κB pathway—NF-κB2, TRAF2, TRAF3,
BTRC encoding β-TrCP, which alters the inhibitory degradative pathway of NIK kinase
by TRAF2/TRAF3 complex, leading to malignancy-associated activation of non-canonical
NF-κB signalling [150]. Overexpression of NIK due to t(17;22) chromosomal translocation is
also associated with the occurrence of multiple myeloma [93]. Oncogenic mutations in the
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TP53 protein are reported to be associated with higher RelA expression, in turn activating
the canonical NF-κB pathway in human B-cell lymphomas such as Hodgkin lymphoma
and, to a lesser extent in T-cell lymphoma cell lines as well [151,152]. Chromosomal
translocation t(10;14)(q24;q32) of the NF-κB2 gene is observed to be associated with a
variety of hematological malignancies, such as MALT lymphomas [153]. The translocation
moves the IgG promoter to a region upstream of the bcl-10 gene, resulting in expression
of a truncated bcl-10 protein, leading to activation of NF-κB [153]. Another reported
translocation is t(11;18), which results in the generation of a chimeric protein, AP12-MALT1,
which leads to NF-κB activation in B-cell lymphomas [154]. The modified NF-κB2 gene
codes for the protein that lacks the ankyrin regulatory domain but still binds the kappa
B sequence in vitro. Such rearrangement of NF-κB2 has been reported in both B-cell and
T-cell lymphoma patients suggesting that translocation dependent truncation of the ankyrin
domain may be a common mechanism in the abnormal activation of NFKB2 gene and its
relevant role in lymphomagenesis [15,148,153,155–157]. Another genomic rearrangement
event reported in DLBCL is on chromosome 10q24, which results in increased NFKB2
mRNA expression, causing constitutive expression of NF-κB2 [15,158]. Chromosomal
translocation of the c-Rel gene to chromosome 2p 13–15 causing its enhanced amplification
has been reported in DLBCLs with a large cell component, constituting approximately
50% of B-cell non-Hodgkin’s lymphomas [149,159–161]. This chromosomal aberration of
c-Rel has also been found in primary mediastinal (thymic) B-cell lymphomas and follicular
large cell lymphomas, and is reported to be associated with extra nodal presentation [120].
Another member of the NF-κB family, RelA, is mapped to be translocated to 11q13, a site
where a number of genes involved in neoplastic development have already been mapped,
suggesting a link between chromosomal translocation and the tumour-inducing role of
RelA [162]. Activating mutations (translocation t(14;19)(q32;q13.1)) in another member of
the NF-κB pathway, Bcl3, which is a proto-oncogene, have also been observed in B-cell
leukaemia. The chromosomal translocation of Bcl3 results in its enhanced expression in
leukemic cells as compared to normal blood cells [163]. In addition to biallelic deletion
and chromosomal translocation, several other mutations, including missense mutation,
frameshift mutation and in frame deletion are also reported to inactivate the TRAF3 gene,
in turn inducing the activation of NF-κB pathway [91].

Besides the reported genomic abnormalities, there are several other factors that can
influence the transcriptional activity of NF-κB pathway. Reports suggest that crosstalk
with certain activating and inhibitory kinases such as Glycogen Synthase Kinase (GSK-3β),
p38 and PI3K can either modulate the transcriptional activity of NF-κB or its upstream
signalling pathways [164–166]. Kinases are reported to modulate the activity of NF-κB in
glioma cell lines and pancreatic cancer cells through post-translational modification (PTM)
of the NF-κB subunits (p65/p50) [166–169]. Further studies indicate that GSK-3β has no
role in the nuclear accumulation of NF-κB, but instead alters the DNA-binding activity
of NF-κB subunits by inducing hypermethylation of the target DNA [167–171]. Other
kinases documented to regulate the NF-κB pathway include the Jun- N-terminal kinase
(JNK) and p38 [172]. Though both the kinases can be induced by the same stimuli (TNFα)
that activate NF-κB pathway, they have been found to display differential functions on
NF-κB activity. p38 acts as a co-factor to modulate the transactivation machinery of NF-κB
to regulate TNF-induced IL-6 gene expression, whereas a counteracting relationship occurs
between JNK and NF-κB. NF-κB complexes downregulate the c-Jun amino-terminal kinase
(JNK) cascade via upregulation of gadd45β/myd118 gene expression. Gadd45β, in turn,
targets MKK7/JNKK2, a specific and essential activator of JNK. Mechanistically, binding of
gadd45β with MKK7 blocks the catalytic activity of the latter, causing inhibition of the JNK
pathway [173–176]. Hence, the aberrant activation of NF-κB pathway depends on multiple
factors including cell type, micro-environment, PTMs, enzymatic activity of regulatory
molecules and chromosomal abnormalities.
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Table 2. Summarized table of various mutations/chromosomal alterations in components of NF-κB
pathway affecting its expression and activity in different cancer types.

Factors/Regulators of
NF-κB Pathway

Type of Muta-
tion/Chromosomal

Translocation
Cancer Type Response References

TRAF3 Bi-allelic deletion
at 14q32 MM Increased

p52/p100 ratios [91,177]

TRAF2 Bi-allelic deletion
at 9q34 MM Increased

p52/p100 ratios [91,177]

CYLD Bi-allelic deletion
at 16q12 MM Increased

p52/p100 ratios [91,177]

cIAP1/cIAP2 Bi-allelic deletion
at 11q22 MM Increased

p52/p100 ratios [91,177]

NIK
t(17;22) translocation,
IgH translocation or

amplification
MM Overexpression of NIK [93]

LTBR
amplification of the

entire 12p chromosome
arm

MM Activatory [91]

NF-κB2 t(10;14)(q24;q32)
t(10q24)

MALT Lymphoma,
DLBCL

Activatory,
Enhanced expression of

NF-κB2 gene
and protein

[15,91,153]

AP12-MALT1 t(11;18)(q21;q21) B-cell Lymphoma,
MALT lymphoma Activatory [154,155]

c-Rel t(2p 13-15)
DLBCL, B-cell

lymphoma, Follicular
large cell lymphoma

Enhanced amplification
of c-Rel gene [120,121,149,159,161]

RelA (11q13) site with
t(11;14)(q13;q32)

NHL, Diffuse large cell
lymphoma, Squamous
carcinoma of head and

neck, Breast cancer

Activatory [159,162]

Bcl3 t(14;19)(q32;q13.1) B-cell leukaemia Activatory [163]

3.3. Epigenetic Modification in the Component(s) of NF-κB Pathway

Reports suggest the dependency of NF-κB components on various epigenetic factors
for its activation in cancer cells. Reduced expression of histone methyltransferase EZH2
stimulates the expression of TRAF2/5 via the de-repression of their expression due to
H3K27 hypermethylation by EZH2. The elevated TRAF2/5 expression, in turn, enhances
TNFα-induced activation of NF-κB signalling, leading to an uncontrolled inflammatory
reaction which ultimately contributes to tumorigenesis [178]. The enhanced activation and
expression of NF-κB-signalling component proteins in various cancer types also depends
on the epigenetically modified state of its own component genes and its target genes. Triple
negative breast cancer cells display a high level of NF-κB activation due to the enhanced
expression of NIK that is caused by the epigenetic alteration (histone H3 acetylation) of
the NIK gene [179]. Hence, these studies suggest the plausible de-regulation of the NF-κB
pathway due to epigenetic alterations.

4. Double Edged Role of NF-κB from Immunosurveillance to
Pro-Tumorigenic Functions

As discussed, the aberrant activation of the NF-κB pathway in cancer is a multifactorial
event. Depending on the prevalent tumour microenvironment, malignancy-promoting mu-
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tations in the components of the NF-κB-signalling cascade, and the inflammatory molecules
released by the tumour immune cells, the biological importance of the NF-κB pathway is
diverted from the immunosurveillance mechanism towards tumour-promoting functions.

NF-κB signalling has been shown to activate the expression of various inflamma-
tory mediators, such as IL1β, TNF and IL6, which promote cancer development [180,181].
However, the question remains as—what factor(s) drives the variation in inflammatory
response by the NF-κB pathway from a protective role towards a tumour-promoting role.
The answer to this oncogenic shift is related to the severity of inflammation response which
mostly occurs during chronic inflammatory conditions. During acute inflammatory condi-
tions, NF-κB activation acts as a tumour immunosurveillance mechanism to assist in the
targeting and elimination of transformed cells. For example, protein kinase D1-mediated
activation of NF-κB signalling can induce the expression of antioxidant proteins such as
MnSOD and anti-apoptotic proteins including A20 and cIAPs to prevent the accumulation
of pro-tumorigenic ROS that can cause oncogenic mutations [182–186]. NF-κB-mediated in-
hibition of ROS accumulation can also repress the activity of pro-tumorigenic transcription
factors such as STAT3 and AP1 [185]. In contrast, under chronic inflammatory conditions,
the continuous presence of NF-κB stimuli seem to outperform the inhibitory role of the
negative NF-κB regulators, leading to constitutive activation of NF-κB signalling. Such
constitutive activity of NF-κB can exert pro-tumorigenic effects ranging from cell prolifera-
tion and cell survival to malignant cell invasion and metastasis. Many cancers arise from
sites of chronic infection or inflammation due to elevated ROS production by neutrophils
in response to invading pathogens. This innate immune response in turn causes DNA
damage and genetic mutations, thereby triggering tumour initiation [186,187].

Though both the canonical and non-canonical NF-κB pathways are reported to be acti-
vated in various invasive and malignant cancers, the functional mechanism for downstream
substrates involved in activation of the non-canonical NF-κB pathway are well character-
ized compared to the canonical pathway. The invasive nature of Glioblastoma Multiforme
(GBM) cells has been reported to be associated with high RelB expression [116,117]. Work
on mouse tumour xenograft models also showed activation of the non-canonical NF-κB
pathway leading to regulation of the expression of its own regulator protein NIK, which,
in turn, is reported to induce dramatic cell shape changes, increase tumour cell invasion
and promote aggressive orthotopic tumour growth [123]. Point mutations at the promoter
region of the telomerase reverse transcriptase (TERT) gene is one of the most frequent non-
coding mutations in cancer. TERT promoter mutations (TPMs) are cancer type-specific and
among the first few mutations reported in melanomas, glioblastomas and hepatocellular
carcinomas [188–191]. In an interesting finding, non-canonical NF-κB signalling is reported
to drive the expression of the TERT gene carrying −146 C > T mutation in its promoter
region, causing telomerase reactivation, which is otherwise not activated via binding of
ETS transcription factor [192,193]. This data specifically highlights a novel role of the
non-canonical NF-κB pathway in the reactivation of telomerase in cancers. Hence, the
level of inflammatory response and genetic changes in the cancer cells can act as some of
the major factor(s) deciding the difference between acute inflammatory response versus
aberrant activator response of the NF-κB-signalling pathway in cancer.

5. Aberrant NF-κB Activation Driven Expression of Tumour Promoting Genes

Apart from activating the expression of its immune response target genes, aberrantly
activated NF-κB signalling in cancer cells contribute to cancer progression by acting as a
transcriptional activator of various other pro-tumorigenic genes involved in cell prolifera-
tion, inhibition of apoptosis, invasion, metastasis and angiogenesis.

In-depth studies also show that NF-κB controlled genes regulating oncogenic prop-
erties are significantly different. NF-κB-dependent cancer-relevant genes mostly encode
for cytokines, cell cycle genes like cyclin D1, matrix metalloproteinases (MMPs) and anti-
apoptotic proteins. Numerous NF-κB target genes such as cIAP1/2, TRAF1/2, Bcl-xL, XIAP,
MnSOD and IEX-1L confer antiapoptotic properties [106,194–196]. Specifically, the NF-κB
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target gene cIAP1/2 functions as an inhibitory factor of cancer cell apoptosis through di-
rectly binding and suppressing the effector caspases [197,198]. NF-κB signalling controls
the epithelial to mesenchymal transition and metastasis, often via upregulation of matrix
metalloproteinases (MMPs) [199]. In breast cancer, NF-κB is also reported to induce the
expression of EMT-related genes such as Twist, intercellular adhesion molecule-1 (ICAM-1),
endothelial leukocyte adhesion molecule 1 (ELAM-1), vascular cell adhesion molecule 1
(VCAM-1), MMPs and serine protease urokinase-type plasminogen activator (uPA), along
with the expression of one of the major tumour promoting genes Bcl2 [200,201]. Inter-
estingly, one study revealed a role for NIK in the phosphorylation, enzymatic activity
and pseudopodal localization of membrane type 1 MMP in highly invasive tumours like
glioblastoma that is distinct from its established kinase function in the non-canonical NF-κB
pathway [202].

NF-κB signalling also contributes to tumour progression and invasion by controlling
pro-angiogenic genes such as vascular endothelial growth factor (VEGF) and its receptors,
macrophage inflammatory protein-1 (MCP-1) and CXC-chemokine ligand 8, also known as
IL-8 (CXCL8) [203–207]. Activated NF-κB signalling in cancer transactivates the expression
of cyclin D1 and c-myc that promote cancer cell proliferation [208,209]. Angiogenesis, the
phenomenon of new blood vessel formation is one of the hallmark phenotypes of cancer
cells. Tumour angiogenesis is dependent on proinflammatory cytokines, chemokines and
growth factors such as MCP-1, IL-8, TNF-α and VEGF, secreted by tumour-associated
macrophages (TAMs) via the activated NF-κB pathway. Furthermore, the recruitment of
bone marrow-derived cells (BMDCs) to tumours for vasculogenesis is essential for tumour
angiogenesis, which is found to involve NF-κB-mediated enhanced expression of IL-8 and
angiogenin [210,211]. Subsequently, the expression and activation level of different NF-κB
subunits can induce varying severity in different cancer types. In the case of ER-positive
breast carcinoma, higher expression of RelB is associated with decreased relapse-free
survival (RFS) and overall survival (OS) rate, whereas in other tumours, such as lung
carcinoma, enhanced expression of NIK and RelB is associated with enhanced metastasis
and shorter OS. Poor RFS outcome is reported to be associated with higher expression of
non-canonical NF-κB target gene myoglobin [212–214]. Elevated RelB activity reported in
a new subset of DLBCL patients is found to confer resistance to DNA damage-induced
apoptosis along with increased cIAP2 expression [113]. In a more recent finding, sustained
activation of the non-canonical NF-κB signalling is also shown to drive doxorubicin resis-
tance in DLBCL via enhanced glycolysis [215]. Hence, these studies indicate the existence
of a high degree of NF-κB dysregulation in cancer.

6. Different Modes of Deregulated NF-κB Signalling in Cancer

While we discussed the multifaceted roles of the NF-κB pathway linking inflammation
and cancer, it is also important to understand the interacting map of the components of
this pathway with other macromolecules, which, in turn, regulate the transcription of
pro-oncogenic transcripts (Figure 2).

6.1. Interaction with Transcription Factors

While NF-κB regulates the expression and activity of various regulatory factors, its
own activity can also be regulated via direct association with several other transcription
factors. The most prominent ones are proto-oncogenic transcription factors such as STAT3,
p53, AP1 and ETS-related genes ERG, implicating their plausible cooperative function with
NF-κB factors in inflammation and cancer [216–218]. Hence, depending on the promoter
sequence and structure of the target genes, the functional link between NF-κB and other
transcription factors might vary. One of the well-characterized factors known to co-associate
with NF-κB is the STAT family members. NF-κB, in association with STAT3, regulates the
expression of various cell cycle genes, anti-apoptotic genes and genes encoding cytokines
and chemokines [219]. Studies suggest that the direct interaction of RelA and NF-κB1
members with STAT3 facilitates both the recruitment of NF-κB and STAT3 onto each
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other’s promoter sites [220–222]. In another context of regulation, STAT3 modifies the
RelA subunit by recruiting acetyltransferase p300, resulting in the acetylation-dependent
retention of NF-κB in the nucleus [223]. Such regulation leads to the enhanced activity of
NF-κB (a tumour-promoting phenomenon) and hence, chronic stimulation of cytokines
in the tumour microenvironment. Cross talk of NF-κB with transcription factor p53 also
occurs [221]. Enhanced secretion of the pro-inflammatory cytokine TNFα triggers the
formation of an active complex containing nuclear RelA and p53 on κB binding motifs,
suggesting the importance of p53 in NF-κB-mediated gene expression induced by canonical
stimuli [224,225]. In addition, some reports suggest that the RelA subunit and transcription
factor p53 can regulate their respective transcriptional activities. p53 has been shown to
inhibit NF-κB transcriptional activity, while the RelA subunit can also inhibit p53-dependent
transactivation of target genes [221]. This constitutive activation of NF-κB, evoked by a p53
hot-spot mutant protein frequently found in tumours, provides an explanation for the fact
that p53 mutations arise more than p53 deletions in tumours of various origin [222,226].
More recently, another transcription factor, the ETS family member ERG, has been identified
to cross talk with NF-κB. As reported by various groups, the functional role of ERG is
validated in various leukemia, Ewing sarcoma and prostate cancer [227–230]. Interestingly,
NF-κB activation is elevated in ERG fusion-positive prostate cancer patients and cancer cell
lines [231]. ERG is also reported to regulate expression of the NF-κB target gene, ICAM-1 in
endothelial cells [232,233]. Another interesting study also revealed the cooperative function
of p52 with transcription factor ETS1 in the reactivation of telomerase in cancers via a
hotspot −146 C > T TERT promoter mutation [192]. On a similar line, a recent finding
has shown the involvement of the non-canonical NF-κB pathway in altering the genomic
binding landscape of transcription factor ETS1 that supports glioma progression [234].
Hence, a cross talk is predicted between NF-κB and other TFs at the level of activation
and transcriptional regulation of NF-κB target genes, which requires further studies for in
depth understanding of the mechanisms involved.
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6.2. Effect of Pro Tumorigenic Non-Coding RNAs

Considering the challenge with highly evolving cancer cells which are resistant to
many available therapies either through selected genetic mutations or positive adaptation
to the cancer microenvironment, it is critical to understand new alternative modes of
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regulations adopted by cancer cells. In recent times, one such regulatory molecule showing
relevance in context to its crosstalk with the components of NF-κB pathway is non-coding
RNAs (ncRNAs). Altered regulation at the level of epigenome mediated by non-coding
RNAs (microRNAs—miRNAs and long noncoding RNAs—lncRNAs) has been found
to be a prevailing factor impacting various types of malignancies. Several miRNAs are
transcriptional targets of NF-κB, such as miR-9, miR-21, miR-143, miR-146 and miR-224, which,
in turn, act as a feedback mechanism for modulating the activity of NF-κB [235–241]. Out of
these, miR-21 and miR-143 are reported to be involved in regulating the malignant phenotypes
like invasion and metastasis in cancer types including breast cancer and HCC [238,239].
On the other hand, NF-κB can also induce the expression of proteins important for the
transcriptional regulation of miRNAs. One such example is the NF-κB driven expression
of Lin28 protein, which inhibits the processing and maturation of let-7 miRNAs—a family
of tumour suppressor miRNAs whose expression is downregulated in many cancer types.
Let7 miRNA also targets IL6. Thus, Lin28-mediated downregulation of Let7 miRNA leads
to the higher expression of IL6 and further enhances NF-κB signalling in a positive feedback
loop mechanism [242].

Subsequently, NF-κB activity is also regulated by the presence of several miRNAs
mostly via repressive mechanisms. One such miRNA is miR-502e, which is reported to act
as a tumour suppressor factor by altering cell proliferation in hepatoma cell lines and hepa-
tocellular carcinoma by targeting NIK, thereby modulating the activity of non-canonical
NF-κB signalling [243]. Many highly expressed long non-coding RNAs (lncRNAs) are also
reported to regulate the activity of NF-κB. The lncRNA NKILA, was reported to mask the
phosphorylation motifs of IκB, further inhibiting the activation of NF-κB [244]. Along with
the aberrant activation of the NF-κB-signalling pathway, the expression of long non-coding
RNAs (ncRNAs) is also dysregulated in different types of cancer cells, further regulating
the degree of malignancy. The upregulated expression of lncRNA H19 in melanoma cells
and Helicobacter pylori-induced expression of H19 in gastric cancer cells have been reported
to be associated with enhanced cancer cell invasion and migration via activation of the
NF-κB- and PI3K/Akt-signalling pathways [245,246]. Another NF-κB-associated lncRNA
reported to be upregulated in cancer cells is lncRNA NEAT1. Its overexpression promotes
proliferation, migration and invasion, influences the expression of EMT markers, and acti-
vates the NF-κB pathway in HeLa and SiHa cells [247]. H19 and NEAT1 are also reported
to be associated with the resistance of cancer cells to chemotherapeutic drugs including
bortezomib and dexamethasone respectively [248,249]. Hence, it can be speculated that
subunits of NF-κB function in association with ncRNAs to impart their pro-tumorigenic
roles along with chemoresistance functions in tumour cells whose mechanism remains
elusive and requires further clarification.

7. Role of NF-κB Signalling in Shaping the Cancer Cell Chromatin Landscape

Though the NF-κB family of proteins lack endogenous chromatin modifying enzymatic
activity, they can exert changes in the chromatin landscape either by acting as a mediator to
recruit and position chromatin modifiers onto target genes in a specific sequence dependent
manner or by regulating the expression and activity of those modifiers [63,250]. One
noteworthy feature of NF-κB family members is their ability to form multimeric complexes.
Apart from forming multimeric complexes with its own family proteins, NF-κB subunits are
reported to form complexes with other proteins, which includes chromatin modifiers as well.
Upon lymphotoxin treatment, non-canonical NF-κB signalling is activated and RelB/p52
dimer gets associated with the SWI/SNF chromatin remodeling complex via an adapter
protein, requiem, to induce the expression of the BLC gene (CXCL13). Such interaction
suggests an indirect role of activated NF-κB signalling in the epigenetic regulation of
oncogene expression [250]. Additionally, the NF-κB pathway also acts as a key regulator
in the enhanced expression of chromatin modifiers and its subunits/interacting proteins,
such as Enhancer of Zeste Homologue 2 (EZH2), a histone-lysine N-methyltransferase
enzyme involved in the epigenetic modification of histone protein (H3K27), thus conferring
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the hypermethylation-mediated repressive gene expression of anti-oncogenic genes [251].
In colorectal cancers, NF-κB activation in response to TNFα has been reported to induce
the expression of EZH2, leading to the inhibitory promoter hyper-methylation of pro-
apoptotic protein kinase cδ binding protein (PRKCDBP) and resultant increased growth
of cancer cells [252]. Subunits of the NF-κB pathway can also act in a de-repression
mechanism to remove the repressive chromatin marks and complexes. Some inducible
gene promoters harbor high levels of the H3K9 dimethyl modification, associated with
transcriptional silencing. However, upon stimulation, these marks are removed by the
Aof1 histone demethylase, whose recruitment requires initially bound c-Rel dimers within
the promoter region [253,254]. The NF-κB pathway is also reported to regulate RNA
Polymerase II elongation by changing the chromatin landscape via recruitment of General
Control Non-Derepressible 5 (GCN5) acetyltransferase complexes that primarily modify
H4K5/K8/K12 lysine residues. The accumulation of acetylated H4 histone proteins leads
to the association with BRD4, which then positively regulates transcription by recruiting
the elongation factor P-TEFb [255]. Hence, the ability of the components of the NF-κB
pathway to alter the chromatin landscape is not only limited to its signature DNA binding
property but also extended to the recruitment of various chromatin modifiers assisting in
transcriptional regulation.

8. Concluding Remarks

Since the discovery of NF-κB nearly four decades ago, the multi-faceted roles of NF-
κB members and their new transcription-binding partners in cancer have been gaining
more clinical relevance in recent years. Although inflammation was previously implicated
to promote the malignancy of human cancers, the causal mechanisms underscoring the
link between inflammation and cancer have not been adequately characterized. Recent
studies showing the aberrant activation of the NF-κB pathway in various cancer types
and the regulation of NF-κB members in various tumorigenic events support the role of
NF-κB as a hub linking inflammation and cancer. Although the occurrence of activating
mutations in the NF-κB pathway is predominantly observed in hematological malignancies,
the activation of NF-κB in solid tumours is also not negligible. The functional shift of the
NF-κB pathway from inflammation to oncogenesis is mostly driven by the onset of chronic
inflammatory conditions. NF-κB members can exert pro-oncogenic functions during cancer
development through the activation of target gene transcription by their heterodimers. In
addition, NF-κB components have also been demonstrated to interact with other factors,
including transcription factors, kinases, epigenetic modifiers and other biological molecules
like ROS and ncRNAs, to drive multiple oncogenic activities. Despite substantial progress
in the understanding of various aspects of NF-κB signalling in cancer, the approaches for
the targeted inhibition of specific components in the signalling pathway are limited due
to various challenges. These challenges arise from the complex nature of its activity in
different cancer types. Recent genomics studies have revealed the active selection of a wide
range of driver mutations in cancer cells, some of which are important to facilitate the
activation of the NF-κB pathway. In addition, epigenetic alterations have been documented
to contribute to the aberrant activation of the NF-κB pathway. Conversely, the activated
NF-κB pathway is also reported to confer changes in the chromatin landscape of cancer
cells towards enhanced malignant phenotypes. Hence, these findings can potentially pave
new ways for the development of precision medicine to improve the efficiency of existing
cancer therapies and overcome the phenomenon of multidrug resistance in most of the
cancer types.
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