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Abstract: Background: Probiotics may facilitate the clinical management of allergic diseases. How-
ever, their effects on allergic rhinitis (AR) remain unclear. We examined the efficacy and safety of
Lacticaseibacillus paracasei GM-080 in a mouse model of airway hyper-responsiveness (AHR) and
in children with perennial AR (PAR) by using a double-blind, prospective, randomized, placebo-
controlled design. Methods: The production of interferon (IFN)-γ and interleukin (IL)-12 was mea-
sured by using an enzyme-linked immunosorbent assay. GM-080 safety was evaluated via the
whole-genome sequencing (WGS) of virulence genes. An ovalbumin (OVA)-induced AHR mouse
model was constructed, and lung inflammation was evaluated by measuring the infiltrating leuko-
cyte content of bronchoalveolar lavage fluid. A clinical trial was conducted with 122 children with
PAR who were randomized to receive different doses of GM-080 or the placebo for 3 months, and
their AHR symptom severity scores, total nasal symptom scores (TNSSs), and Investigator Global
Assessment Scale scores were examined. Results: Among the tested L. paracasei strains, GM-080
induced the highest IFN-γ and IL-12 levels in mouse splenocytes. WGS analysis revealed the absence
of virulence factors or antibiotic-resistance genes in GM-080. The oral administration of GM-080
at 1 × 107 colony forming units (CFU)/mouse/day for 8 weeks alleviated OVA-induced AHR and
reduced airway inflammation in mice. In children with PAR, the oral consumption of GM-080 at
2 × 109 CFU/day for 3 months ameliorated sneezing and improved Investigator Global Assessment
Scale scores significantly. GM-080 consumption led to a nonsignificant decrease in TNSS and also
nonsignificantly reduced IgE but increased INF-γ levels. Conclusion: GM-080 may be used as a
nutrient supplement to alleviate airway allergic inflammation.
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1. Introduction

Allergic rhinitis (AR) and asthma, which occur in the upper and lower airways,
respectively, and their co-occurrence are noted in >40% of patients with allergic airway
inflammation [1]. T helper 2 (Th2) cells are considered a critical factor in the development
of allergic airway inflammation. Animal models have revealed that the transfer of antigen-
specific Th2 cells into naïve mice followed by challenge with the specific antigen through
inhalation induces asthmatic responses, such as airway hyper-responsiveness (AHR),
eosinophilic inflammation, and mucus hyperproduction [2,3]. The airway expression of
interleukin (IL)-4, IL-5, and IL-13 released by Th2 cells is a crucial mediator [4–6]. However,
the major limitations related to biological drugs for allergic airway inflammation, such as
dupilumab, include high costs and the loss of responsiveness over time [7]. Thus, low-cost
alternative agents for allergic airway inflammation should be developed.

Although animal and human studies [8] have indicated the benefits of probiotics in al-
lergic disease treatment, medical societies hold a conservative attitude toward probiotic use.
The World Allergy Organization [9] states that despite the insufficient volume of data on the
relevant probiotic strains and dosages, the application of probiotics in pregnant and breast-
feeding women, as well as in infants with a family history of allergic disease, particularly
eczema, may have considerable effects [10]. The term “pharmabiotics” has been proposed,
and the underlying immunomodulatory pathway is of interest to several researchers and
clinicians [11]. In a mouse model of house dust mite-induced asthma, Voo et al. found that
combination treatment with Lacticaseibacillus rhamnosus and corticosteroid reduced AHR,
serum IgE levels, and Th2 cytokines [12]. Lan et al. reported that the oral administration
of Lactiplantibacillus plantarum CQPC11 strain to an ovalbumin (OVA)-induced asthmatic
mouse model decreased OVA-specific IgE or IgG1 in sera and proinflammatory cytokines
in bronchoalveolar lavage fluid (BALF) [13]. Yan et al. reported a meta-analysis of the
beneficial effects of probiotics on AR by collecting 30 randomized controlled trials. Their
results revealed that the consumption of probiotics improved the scores of Rhinitis Quality
of Life and Rhinitis Total Symptom but not immunological parameters, including blood
eosinophil count or total and antigen-specific serum IgE levels [14]. Given the unequal
effects of different probiotic species or strains in treating allergic AHR [15,16], investigating
the efficacy of different probiotic strains in cell models, animal models, and clinical trials
before their use as food supplements is essential.

Here, we selected Lacticaseibacillus paracasei strain GM-080 (LP-33, BCRC 910220,
CCTCC M 204012), which has been reported to alleviate allergic dermatitis in infants [17],
grass pollen-induced persistent AR in adults [18], and perennial AR (PAR) in infants [19],
as the main target probiotic. We examined its therapeutic effects in an asthma mouse
model and a double-blind, prospective, randomized, placebo-controlled study on children
with PAR.

2. Materials and Methods
2.1. L. paracasei Strain and Cell-Wall Component Preparation

L. paracasei strains (GM-080 and GM-2–GM-23; Figure 1A) were obtained from Gen-
Mont Biotech (Tainan, Taiwan). Bacterial cells were cultured in MRS broth overnight,
then resuspended in sterile phosphate-buffered saline (PBS), and subsequently diluted
to 4 × 107 cells/mL. Lipoteichoic acid (LTA) and peptidoglycan (PGN) were purified
from live concentrated GM-080 (1 × 1011 colony forming units [CFU]/mL) as previously
reported [20].

2.2. Mouse Splenocyte Stimulation and Enzyme-Linked Immunosorbent Assay–Based Detection
of Cytokines

The mouse spleen was excised, passed through a 45 µm cell strainer (BD Biosciences,
Franklin Lakes, NJ, USA) for conversion into a single-cell suspension, then subjected to
red blood cell lysis by using RBC lysis buffer (eBiosciences Inc., San Diego, CA, USA).
Isolated splenocytes were seeded into a 96-well-plate at a cell density of 4 × 105 cells/well



Cells 2023, 12, 768 3 of 19

and incubated with 2 µg/mL ConA, 1 µg/mL lipopolysaccharide (LPS), or GM-080 with
different multiplicities of infection (MOIs) separately for 48 h. Cell culture supernatants
were then harvested, and the presence of cytokines (IL-5, IL-12, and IFN-γ) was detected by
utilizing commercial enzyme-linked immunosorbent assay (ELISA) kits (Cat. No. 555256
for mouse IL-12[P70] and Cat. No. 555138 for mouse IFN-γ; purchased from BD Biosciences,
Franklin Lakes, NJ, USA).
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Figure 1. Th1 cytokine induction by GM-080 in mouse splenocytes. (A) List of L. paracasei strains
used for coculture with mouse splenocytes. (B,C) Different strains of viable L. paracasei were used to
coculture with mouse splenocytes at MOI = 10 for 48 h. The presence of IFN-γ (B) and IL-12 (C) in
the culture supernatants was determined using commercial ELISA kits. LPS (1 µg/mL) or ConA
(2 µg/mL) was used as the positive control.

2.3. Antimicrobial Susceptibility Profiling

Antimicrobial susceptibility was determined by using the broth microdilution method
and lymphocyte separation medium (LSM, including 90% IST medium [Cat. No. CM0473;
Oxoid, Basingstoke, Hampshire, UK] and 10% MRS medium (Cat. No. 288130; Difco
Laboratories Inc., Franklin Lakes, NJ, USA) in accordance with the guidelines of the Quality
and Standards Authority of Ethiopia (ES ISO10932:2012). Twofold dilutions of clinically
relevant antibiotics (clindamycin, chloramphenicol, erythromycin, gentamicin, kanamycin,
streptomycin, tetracycline, and ampicillin, all from Sigma-Aldrich, Saint Louis, MO, USA)
were prepared in LSM. Approximately 50 µL of 6 × 105 CFU/mL L. paracasei cells were
loaded into a 96-well plate, followed by 50 µL of multiple antibiotics diluted in LSM. The
plate was incubated under anaerobic conditions at 37 ◦C for 16–24 h. Minimum inhibitory
concentrations (MICs) were defined as the lowest concentrations of antibiotics at which
the growth of L. paracasei was completely inhibited. Strains were classified as susceptible
or resistant by using the microbiological cutoffs established by the European Food Safety
Authority (EFSA) [21].
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2.4. DNA Extraction, Whole-Genome Sequencing, and Hybrid Genome Assembly

We established a whole-genome sequencing (WGS) assembly pipeline in accordance
with a previously reported procedure [22] with minor modifications. In brief, genomic DNA
was fragmented through ultrasonication by using Covaris S2 (Covaris, Woburn, MA, USA).
Indexed polymerase chain reaction-free library construction was performed by using the
multiplexed high-throughput sequencing TruSeq DNA Sample Preparation Kit (Illumina,
Inc., San Diego, CA, USA) in accordance with the manufacturer’s protocols with minor
modifications. The GM-080 genome was deeply sequenced through Nanopore GridIon
long-read sequencing with 175-fold coverage and whole-genome shotgun sequencing by
using 2 × 250-bp paired-end sequencing at 125-fold coverage on a MiSeq platform and
hybrid-assembled on a MaSuRCA v3.3.1 assembler [23]. Benchmarking Universal Single-
Copy Orthologs (version 4.0.0) [24] was applied for genome completeness assessment
through comparison with the lactobacillales_odb10 gene database. We deposited all the
sequencing data in GenBank under BioProject ID no. PRJNA824946.

2.5. Annotation of Protein-Coding Genes, Virulence Factors, and Antibiotic Resistance

The protein-coding genes in the GM-080 genome were annotated by using Prokka [25].
On the basis of the risk assessment of potential genes of concern for microorganisms to be
used in the food chain established by EFSA [26], virulence factors in the genome were sepa-
rately identified by running BLAST against the virulence factor database (VFDB) [27] by using
the following criteria: query sequence hits with identity ≥80%, alignment coverage > 70%,
and E-value < 10−30. Antibiotic-resistance genes were predicted through a BLAST search
against both the Comprehensive Antibiotic Resistant Database (CARD) [28] and ResFinder
(version 4.1) database [29] by using the same criteria. Whole-genome average nucleotide
identity was computed by OrthoANI [30]. GM-080 phylogeny and other related genomes
were reconstructed using MEGA X [31]. After annotation, the circular genome atlas was
generated using the Circos visualization tool [32].

2.6. OVA-Induced AHR Mouse Model

Seven-week-old female BALB/c mice were purchased from The Experimental Animal
Facility of the College of Medicine, National Taiwan University (Taipei, Taiwan). Allergic
airway inflammation was induced with an intraperitoneal injection of 50 µg of OVA
(purchased from Sigma-Aldrich) mixed with the Th2-adjuvant aluminum hydroxide on
day 0 and was followed by the administration of 25 µg of OVA on days 14, 28, 42, and
56 to sensitize the mice and then by intranasal challenge with OVA (100 µg) on days 67
and 68. Sera were collected from the retro-orbital sinus on the day before the first OVA
sensitization; on post sensitization days 35, 49, and 63; and on the day of sacrifice.

2.7. ELISA Determination of OVA-Specific Immunoglobulins

A 96-well plate was coated with OVA at 1 µg/well and then incubated with blocking
solution (1% bovine serum albumin in PBS buffer) at room temperature. The wells were
added with mouse serum followed by antibodies diluted with the blocking solution (1:50,
1:1000, and 1:10,000 dilutions for IgE, IgG2a, and IgG1, respectively) and incubated at 4 ◦C
overnight. Biotin-conjugated antibodies against mouse IgE, IgG1, or IgG2a (BD Biosciences)
were added after the wells were washed with 0.05% Tween-20/PBS buffer. Then, the plate
was incubated at room temperature for 2 h. Next, streptavidin-conjugated horseradish
peroxidase was added to the wells. 3,3′,5,5′-Tetramethylbenzidine substrate was used for
color development. After the termination of the reaction by using 2 N H2SO4, absorbance
was measured at 450 nm on a VERSAmax microplate reader (Molecular Devices, San Jose,
CA, USA).

2.8. AHR Determination

In mice, the development of AHR was determined on a Buxco system (Biosystem XA;
Buxco Electronics, Sharon, CT, USA). The enhanced pause (Penh) values were calculated
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with the following formula: (pause × PIF)/PEF, with pause being (Te − Tr)/Tr. Here, PIF is
the peak inspiratory flow, PEF is the peak expiratory flow, Te is the expiratory time, and Tr
is the relaxation time. First, we recorded the Penh of the mice under awake conditions by
using a whole-body plethysmograph chamber for 3 min with normal saline vaporization.
Next, the mice received methacholine-containing aerosols at increasing concentrations of
6.25, 12.5, 25, and 50 mg/mL for 3 min. The Penh data are presented as the relative increase
in Penh after normalization with Penh after PBS inhalation.

2.9. BALF Collection and White Blood Cell Count

BALF was collected through lung flushing with HBSS buffer containing 2% bovine
serum albumin three times by using a trachea cannula (Angiocath, BD Biosciences). BALF
cells were then collected through centrifugation at 300× g for 5 min and spanned on slides
by using a cytocentrifuge (Thermo Fisher Scientific, Waltham, MA, USA) and then subjected
to Liu’s staining. Monocyte, lymphocyte, neutrophil, and eosinophil numbers within the
cell pellet were then counted with a 100× objective lens. The data are presented as the
average cell count in at least five fields for each sample. BALF eotaxin and IL-5 levels were
determined by using commercial ELISA kits (BD Biosciences).

2.10. Patient Recruitment

PAR was diagnosed in accordance with the definition of Saleh and Durham,
i.e., symptoms lasting more than 4 days per week and illness duration lasting more than
4 weeks [33]. In total, 156 patients aged 5–16 years old were recruited from the pediatric
outpatient clinics of two hospitals (MacKay Memorial Hospital, Taipei, Taiwan and Chang
Gung Children’s Hospital, Taipei, Taiwan) for eligibility assessment in our clinical trial.
However, 34 patients were excluded because they withdrew without signing the written
informed consent form or because they fulfilled the exclusion criteria. The inclusion criteria
were (i) age = 5–16 years; (ii) PAR for≥1 year; (iii) positive on any one of the following tests
within 12 months: skin-prick test reaction (wheal size at least 3 mm larger than that made in
the diluent control group) or allergic reaction examined by the methods of Pharmacia-CAP
or multiple allergens simultaneous test; and (iv) mean total nasal symptoms score (TNSS)
of no less than 5 throughout the screening period (at least 4 days) and TNSS on the day
before day 0 (first dosing day) visit of no less than 5. Subjects were excluded if they (i) had
clinically significant abnormalities in laboratory results as determined during 14 days prior
to visit 1 or during the baseline period by the investigator; (ii) had acute or significant
chronic sinusitis, severe persistent asthma, congenital immunodeficiency, neuropsychiatric
disorders, immune-compromised massive wounds in the oral cavity, use of rhinitis medica-
tions, and chronic use of tricyclic antidepressants; (iii) need to take prohibited medications
during the study or took the medications within 30 days prior to the screening visit, includ-
ing parenteral or oral corticosteroids, nasal corticosteroids, topical flurandrenolide, topical
clobetasol propionate, topical halobetasol propionate, astemizole, ketotifene, nedocromil
or sodium cromoglycate, loratadine, cetirizine, antileukotrienes, other H1 antihistamines,
nasal decongestant, or any food supplements including L. paracasei; (iv) were undergoing
desensitization therapy within 3 months prior to the screening visit or with vasomotor rhini-
tis; (v) participated in an investigational drug trial within 4 weeks before entering this study;
(vi) were pregnant, lactating, or planning to become pregnant; and (vii) had any other
serious disease considered by the investigator not in the condition to enter the trial. The trial
was approved by the Joint Institutional Review Board (c/o Taipei Veterans General Hospi-
tal, Taipei City, Taiwan) with the reference number 05-016-A on the date of 13 November
2006 and complied with the principles of the Declaration of Helsinki. The trial was regis-
tered on ISRCTN Registry (ISRCTN14829274, https://www.isrctn.com/ISRCTN14829274,
accessed on 28 October 2022). All the eligible patients and their parents or guardians
were provided verbal and written information regarding the study and provided written
informed consent.

https://www.isrctn.com/ISRCTN14829274
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2.11. Randomized, Double-Blind, Placebo-Controlled Trial Design

The randomized, double-blind, placebo-controlled trial on PAR was designed in
accordance with the guidance for developing drug products for AR treatment published by
the Division of Pulmonary, Allergy, and Rheumatology Products in the Center for Drug
Evaluation and Research at the Food and Drug Administration (April 2000 version). All
patients who met the eligibility criteria were randomized to either the probiotic-treated or
control group. In total, 137 patients were double-blinded and randomized to four groups,
namely, one placebo group and three groups that received live GM-080 at different dosages:
group A (2× 108 colony forming units [CFU]/day); group B (2× 109 CFU/day), and group
C (1× 1010 CFU/day). All treatments were administered for 3 months. Considering the key
factors that could potentially influence treatment outcomes, randomization was stratified
by age, sex, and AR severity. All probiotic capsules were supplied and stored at less than
4 ◦C with cGMP facilities. The demographic characteristics of the patients were collected at
baseline by using questionnaires. The primary outcome was the change in AR severity after
3 months of intervention compared with the AR severity at baseline. The patients visited the
hospital for data collection six times: at screening (V1) and in treatment weeks 0 (V2), 2 (V3),
4 (V4), 8 (V5), and 12 (V6). TNSS was used to evaluate the severity of main AR symptoms;
here, the higher TNSS, the more severe the AR symptoms. Generalized estimating equations
(GEEs) [34] were used for a within-subject covariance structure evaluation. The Investigator
Global Assessment Scale score at V3–V6 was evaluated by the trial investigator to assess
the overall improvement of the participants after the treatment, which was divided into
four levels: complete relief (4 points), partial relief (3 points), no relief (2 points), or worse
(1 point). All parents were contacted 1 month after treatment to determine whether they
observed a relapse after treatment interruption. Changes in severity scores in the groups
were evaluated at each visit. The secondary outcomes were changes in total serum IgE and
INF-γ levels observed in months 0 and 3. Only 122 patients (28, 31, 31, and 32 in group A,
group B, group C, and the placebo group, respectively) were included in the final analysis
due to loss of follow-up.

2.12. Skin Prick Tests and Serum Biomarkers

Skin prick tests were performed with commercial allergen extracts of egg, milk, crab,
mite, cockroach, and animal dander (ALK-Abell & Oacute, Round Rock, TX, USA). Skin re-
activity to allergen sensitization was classified into four grades as previously described [35].
Serum total IgE levels were measured by the Division of Laboratory Medicine of MacKay
Memorial Hospital (Taipei City, Taiwan) and the Division of Laboratory Medicine of Chang
Gung Memorial Hospital, Taipei (Taipei City, Taiwan). Serum IFN-γ levels were measured
by using ELISA kits (BD Biosciences).

2.13. Statistical Analysis

The data from in vitro and OVA-induced airway inflammation mouse model experi-
ments were presented as means ± standard deviations and were analyzed for differences
between groups by using one-way analysis of variance (ANOVA), followed by Tukey’s
Honestly Significant Difference test. The chi-square test was conducted to compare clin-
ical symptoms. Intragroup comparisons for TNSSs and blood biomarkers at baseline
and 3 months after treatment commencement were carried out by using paired t-tests.
Intergroup comparisons among the four groups were performed by using ANOVA. The
differences in TNSSs at the six visits among the four groups were also evaluated by apply-
ing a mixed model with adjustment for potential confounders. All children who completed
the study were included in an intention-to-treat analysis regardless of their compliance.
All tests assumed a two-sided alternative hypothesis with a significance level of 0.05. All
analyses were conducted by using SAS (version 9.1; SAS Institute, Cary, NC, USA).
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3. Results
3.1. GM-080 Induces Th1 Cytokine Production in Mouse Splenocytes

The Th1 cytokines of IFN-γ or IL-12 have been demonstrated to suppress AHR in
response to allergens [36,37]. We used mouse splenocytes as a cell model and evaluated Th1
cytokine (IFN-γ and IL-12) production in the cell supernatant after L. paracasei exposure to
identify the potential L. paracasei strains with antiallergic effects. By using ConA or LPS
as the positive control (Figures 1 and 2A,F), we observed that out of all the 23 L. paracasei
strains that were screened, GM-080 demonstrated the strongest IFN-γ (Figure 1B) and IL-12
(Figure 1C) induction activity, whereas BCRC 16100 demonstrated the lowest induction
activity. We examined the Th1 cytokine induction ability of live GM-080 and the derived
LTA or PGN in mouse splenocytes. The best IFN-γ (Figure 2B) and IL-12 (Figure 2G)
induction activity was demonstrated by live GM-080 at MOI = 10 and 0.1, respectively; IL-
12 induction was greater because of live GM-080 than because of LPS (Figure 2F). LTA and
PGN could induce IFN-γ production with the highest extent of induction at a concentration
of 1 mg/mL (Figure 2C,D, respectively). These data suggest that GM-080 has the potential
to alleviate allergic conditions.
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Figure 2. Effects of GM-080 preparations and cell wall compartments in Th1 cytokines production of
mouse splenocytes. We seeded 4 × 105 mouse splenocytes into a 48-well plate, followed by treatment
with viable GM-080 preparation with the indicated MOI or cell wall compartments purified from
GM-080 (LTA and PGN) for 48 h. The culture supernatants were then harvested, and INF-γ (A–D) or
IL-12 (E–H) production was determined using commercial ELISA kits. LPS (1 µg/mL) or ConA
(1 µg/mL) was used as the positive control. N.D., not detected.

3.2. WGS Analysis Revealed That GM-080 Is a Safe L. paracasei Strain

We performed WGS analysis on GM-080 by using next-generation sequencing. The
genetic organization of GM-080 was illustrated in a genome atlas created by using Cir-
cos (Figure 3A). One CRISPR locus, one bacteriocin gene, and six prophage-like clus-
ters (Table S1) were observed in the GM-080 genome, with no plasmid being identified
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(Figure 3B). We next examined the determinants of putative antibiotic resistance and viru-
lence factors to evaluate the safety of GM-080 on the basis of the WGS analysis guidelines
for probiotics safety provided by EFSA [26]. Our in silico analysis demonstrated no puta-
tive antibiotic resistance or virulence factor genes in the GM-080 chromosome. We further
examined the safety of GM-080 by using antimicrobial susceptibility profiling in accordance
with the guidelines established by QSEA (ET ISO 10932). All MICs of the tested antibiotics
to GM-080 were below the cutoffs suggested by EFSA (Table S2). These data suggest that
GM-080 is safe for consumption as a probiotic.
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3.3. GM-080 Genome Contains Immunosuppressive Motifs and CpG-Containing Oligonucleotides
That Induce Th1 Cytokines in Mouse Splenocytes

We compared the genomes of GM-080 and BCRC 16100 to identify the potential func-
tional genes in GM-080. As indicated by the phylogenetic tree (Figure 3C), GM-080 was
clustered with BCRC 16100 [22]; however, BCRC 16100 displayed a lower immunomodu-
lation capability than GM-080 (Figure 1). Table 1 shows that the functional categories of
genes in GM080 and BCRC 16100 were highly similar. The unique genes in GM-080 are
summarized in Table S3. Immunosuppressive motifs (IMs) in Lactobacillus spp. may partici-
pate in ameliorating allergic conditions through their anti-inflammatory activity [38]. In
addition, the activation of toll-like receptor 9 by CpG-containing oligonucleotides (ODNs)
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can shift the immune dominance from Th2 to Th1, which may also facilitate the allevia-
tion of allergic diseases [39]. We analyzed well-known IM and CpG ODNs (Table S4) in
two strains and next synthesized eight candidate IM sequences in accordance with the
genome sequences of GM-080 (IM4–IM7) and BCRC 16100 (IM8–IM11) and used them
to stimulate mouse splenocytes. Although none of the IMs induced IFN-γ production,
IM5 from the GM-080 genome exhibited capability for IL-12 induction activity (Table 2).
We also synthesized six CpG-containing ODNs on the basis of the genome analysis of
GM-080 (ODN1 or ODN2) and BCRC 16100 (ODN3–ODN6) and used them to stimulate
mouse splenocytes. None of the BCRC 16100 ODNs exhibited IL-12 induction activity, but
both ODNs from GM-080 (ODN1 and ODN2) induced IFN-γ and IL-12 secretion (Table 2).
Therefore, we hypothesized that among L. paracasei strains, GM-080 would be a probiotic
with antiallergic activity.

Table 1. COG functional categories of GM-080 and BCRC 16100.

COG Functional Categories a Same Gene No. Unique Genes in GM-080
(Total No.)

Unique Genes in BCRC 16100
(Total No.)

Cell
wall/membrane/envelope

biogenesis (M)
72 rfbP, rgpAc, mprF (3) kdsD, tuaG, tagF, ywqC, tagE, gtf1 (6)

Replication, recombination,
and repair (L) 89

recT, pi112, tnpA1, tnp1216, cas2,
cas1, cas9, int3, pi346, tnpR, is18,

yqaJ, rusA (13)
-

Posttranslational modification,
protein turnover, and

chaperones (O)
44 gst (1) -

Carbohydrate transport and
metabolism (G) 139 agaD, kduI, kdgK, ahaA, xylP, lacE,

lacG, lacF (8) pts32BC, gatY, mnaA (3)

Amino acid transport and
metabolism (E) 132 dppA, pepA, yxeO (3) -

Coenzyme transport and
metabolism (H) 53 - pdxA (1)

Inorganic ion transport and
metabolism (P) 92 feoA, ytmL (2) kdgT, sfuB, fbpC (3)

Secondary metabolites
biosynthesis, transport, and

catabolism (Q)
15 kduD (1) -

Intracellular trafficking,
secretion, and vesicular

transport (U)
36 chaT1, clpP (2) secY2, secA2 (2)

a COG, Clusters of Orthologous Gene. The analysis of COG categories was done by National Center for Biotech-
nology Information (https://www.ncbi.nlm.nih.gov/research/cog/, access on 1 November 2021).

3.4. Orally Gavage GM-080 Alleviates OVA-Induced Allergic Airway Inflammation in Mice

We established an OVA-induced AHR mouse model by using the protocol shown
in Figure 4A. Oral GM-080 treatment was administered from days 7 to 63 at the dose of
either 2 × 106 CFU/mouse/day (low-dose group) or 1 × 107 CFU/mouse/day (high-dose
group). Blood samples were collected on days 63 (4 days before intranasal challenge with
OVA) and 70 (the day of sacrifice). After the intranasal challenge with OVA, the Penh
value elevated as the methacholine dose was increased, indicating the occurrence of AHR.
Oral GM-080 alleviated AHR in a dose-dependent manner (Figure 4B). We also observed
that the oral administration of high-dose GM-080 significantly reduced the numbers of
eosinophils, neutrophils, lymphocytes, and monocyte numbers in BALF, whereas that
of low-dose GM-080 significantly reduced the numbers of neutrophils (Figure 5B) and
monocytes (Figure 5D). The expression of eotaxin in BALF was reduced by oral GM-080
(Figure 5E). In addition, the IL-5 levels in BALF were reduced by oral GM-080 at low and
high dosages (Figure 5F). Next, we found that oral GM-080 at a low dose significantly
reduced anti-OVA IgE (Figure 6A) and anti-OVA IgG2a (Figure 6C) levels, whereas that

https://www.ncbi.nlm.nih.gov/research/cog/
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at a high dose significantly reduced only anti-OVA IgG2a levels (Figure 6C) but not anti-
OVA IgG1 levels (Figure 6B). Moreover, oral GM-080 reduced ConA- (Figure 6E) and
OVA- (Figure 6F) induced IL-5 production in mouse splenocytes. These data demonstrate
that the oral administration of GM-080 can ameliorate allergic airway inflammation in
OVA-induced AHR mice.

Table 2. Immunoregulatory effects of putative IM and CpG-containing ODN a in GM-080 and
BCRC 16100.

Code Core Sequence Strain Sequence IFN-r (pg/mL) b IL-12 (pg/mL) c

IM3 TCAAGCTTGA TCAAGCTTGA ND d ND

IM4

TCAAGCTTGA

GM-080 CAAGCGTCAAGCTTGAATGA ND ND
IM5 GM-080 AAAAATTCAAGCTTGATAGT ND 609.8 ± 227.69
IM6 GM-080 CCATCGTCAAGCTTGACTTG ND ND
IM7 GM-080 CCCTAATCAAGCTTGATTAA ND ND
IM8 BCRC 16100 GCAGCTTCAAGCTTGAAAAA ND ND
IM9 BCRC 16100 CCGGCCTCAAGCTTGAATTG ND ND
IM10 BCRC 16100 TTTCATTCAAGCTTGACGCT ND ND
IM11 BCRC 16100 CCTTAATCAAGCTTGATTAG ND ND

ODN1 GACGATCGTC GM-080 GCTTGACGATCGTCTCTGGA ND 38.8 ± 65.2

ODN2 ACGACGTCGT GM-080 GGTCACGACGTCGTTTACAAA 490 ± 272.74 46.1 ± 32.88

ODN3
GACGATCGTC

BCRC 16100 AATTGACGATCGTCTAATTC ND ND
ODN4 BCRC 16100 TGTCGACGATCGTCGTCTGT ND ND
ODN5 BCRC 16100 CAGAGACGATCGTCAAGCGA 77.381 ± 5.4 ND

ODN6 ACGACGTCGT BCRC 16100 CGTCACGACGTCGTGACCGGC ND ND
a ODN, oligonucleotides. b Treatment concentration was 0.125 µM. Data are presented as means ± standard
deviations. c Treatment concentration was 1 µM. Data are presented as means ± standard deviations. d ND,
not detected.

3.5. GM-080 Alleviates PAR in Children

Finally, we conducted a double-blind, randomized, placebo-controlled trial to in-
vestigate the beneficial effects of GM-080 in children with PAR. The study design was
summarized in Figure 7 and their baseline demographic characteristics were presented in
Table 3; no significant differences were noted among the patient groups. We first evaluated
the effects of probiotics on AR symptom severity scores. Only the sneezing subscale scores
significantly decreased, particularly in group B (in which 2 × 109 CFU/day GM-080 was
administered; Table 4). Scores for other symptoms such as rhinorrhea, nasal pruritus, and
nasal congestion did not improve in groups A and C compared with the placebo group. By
contrast, these scores significantly improved in group B over time (Table 4).

We next examined the effects of GM-080 on patients’ quality of life by using TNSSs.
TNSSs are a convenient tool for symptom description and the assessment of functional
problems (physical, emotional, social, and occupational) associated with AR. We noted
a nonsignificant decrease in TNSSs over time in groups A, B, and C (Table 4). In our
GEE model, TNSSs after the five visits among our four groups exhibited no significant
differences (Table 5). Investigator Global Assessment Scale scores were higher in the
groups that were administered GM-080 than in the placebo group after treatment (Table 6,
p = 0.049). We also examined the effects of GM-080 administration on serum IgE production,
skin sensitization, and serum IFN-γ levels at baseline and at the end of treatment (month
3). No changes in sera total IgE levels were observed either at baseline or at the end of
treatment after 12 weeks among the groups (Table 7). We observed an increasing trend in
IFN-γ levels of GM-080 consumption groups with middle and high doses (group B and
group C, respectively) at the end of treatment compared to the placebo or low dose group
(group A) (Table 7). However, the increases did not reach statistical differences. These
data indicate the beneficial effects of GM-080 consumption in pediatric AR; however, these
effects are not dosage-dependent but time-dependent.
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model. Two dosages of GM-080 (LP-L, 2 × 106 CFU/mouse/day; LP-H, 1 × 107 CFU/mouse/day) were 
force-fed to mice through gavage. (B) Respiratory resistance was evaluated on the basis of Penh 
values under the inhalation of the indicated concentration of methacholine. NC, nontreated control; 
H2O, H2O gavage. * p < 0.05 compared with the H2O group. 

Figure 4. Effects of oral GM-080 on respiratory resistance in our OVA-induced AHR mouse model.
(A) Illustration of the experimental procedure used for induction of OVA-induced AHR mouse model.
Two dosages of GM-080 (LP-L, 2 × 106 CFU/mouse/day; LP-H, 1 × 107 CFU/mouse/day) were
force-fed to mice through gavage. (B) Respiratory resistance was evaluated on the basis of Penh
values under the inhalation of the indicated concentration of methacholine. NC, nontreated control;
H2O, H2O gavage. * p < 0.05 compared with the H2O group.

Table 3. Demographic and baseline characteristics of patients a.

Characteristics A Group (n = 28) B Group (n = 31) C Group (n = 31) PLC Group (n = 32) p

Male b 20 (71.4%) 18 (58.1%) 18 (58.1%) 21 (65.6%) 0.660
Age (year) c 8.25 (2.78) 8.74 (2.77) 8.42 (2.55) 8.56 (2.95) 0.917
Sneezing c 1.69 (0.77) 1.61 (0.67) 1.49 (0.79) 1.75 (0.64) 0.527
Rhinorrhea c 1.83 (0.55) 1.81 (0.68) 1.69 (0.70) 1.95 (0.60) 0.435
Nasal pruritus c 1.73 (0.70) 1.72 (0.53) 1.69 (0.67) 1.70 (0.79) 0.997
Nasal congestion c 2.10 (0.63) 1.97 (0.66) 2.04 (0.71) 2.04 (0.61) 0.880
TNSS c 7.34 (1.44) 7.11 (1.74) 6.92 (1.57) 7.44 (1.56) 0.559
Total serum IgE (kU/L) c 652.58 (1366.19) 547.66 (530.99) 614.81 (661.08) 405.68 (384.19) 0.642
Combine with asthma b 11 (39.3%) 14 (45.2%) 11 (35.3%) 12 (37.5%) 0.878
Combine with atopic
dermatitis b 12 (42.9%) 11 (35.5%) 8 (25.8%) 11 (34.4%) 0.590

Combine with
conjunctivitis b 5 (17.9%) 6 (19.4%) 5 (16.1%) 9 (28.1%) 0.648

Allergic sensitization b

Mite (Df) 23 (82.1%) 25 (80.6%) 20 (64.5%) 25 (78.1%) 0.350
Mite (Dp) 26 (92.9%) 30 (96.8%) 28 (90.3%) 31 (96.9%) 0.624

Cockroach 6 (21.4%) 7 (22.6%) 10 (32.3%) 5 (15.6%) 0.470
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Table 3. Cont.

Characteristics A Group (n = 28) B Group (n = 31) C Group (n = 31) PLC Group (n = 32) p

Animal dander (Cats) 6 (21.4%) 4 (12.9%) 7 (22.6%) 7 (21.9%) 0.749

Animal dander (Dogs) 7 (25.0%) 6 (19.4%) 7 (22.6%) 9 (28.1%) 0.869
Mold 1 (3.6%) 2 (6.5%) 2 (6.5%) 1 (3.1%) 0.887

a Severity of each symptom was measured on a 4-point scale: 0 = absent; 1 = mild; 2 = moderate; 3 = severe. Scores
for each symptom were added to obtain the TNSS. b Data are presented as n (%). c Data are presented as mean
(standard deviation).
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Figure 5. Effects of oral GM-080 on immune cell infiltration and eosinophilic cytokines in lungs of
mice with AHR. BALF was collected 2 days after the final OVA challenge followed by centrifugation,
and the cell pellet was collected. (A–D) Eosinophil (A), neutrophil (B), lymphocyte (C), and monocyte
(D) infiltration was evaluated through microscopy after staining cells with Liu’s stain. (E,F) Eotaxin
(E) or IL-5 (F) levels in BALF was determined using commercial ELISA kits. NC, nontreated control;
H2O, H2O gavage; LP-L, GM-080 at 2 × 106 CFU/mouse/day through gavage; LP-H, GM-080 at
1 × 107 CFU/mouse/day through gavage. * p < 0.05, ** p < 0.01.
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(D) or after treatment with 2 µg/mL ConA (E) or 100 µg/mL OVA (F). NC, nontreated control; H2O, 
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Figure 6. Effects of GM-080 consumption in OVA-specific antibodies or OVA-induced IL-5 production
in an OVA-induced AHR mouse model. (A–C) Mice sera were collected 2 days after final theOVA
challenge, and the presence of OVA-specific IgE (A), IgG1 (B), and IgG2a (C) was determined using
ELISA. (D–F) Splenocytes were collected 2 days after the final OVA challenge and then seeded into
a 48-well-plate at a density of 5 × 106 cells/well to determine IL-5 production without treatment
(D) or after treatment with 2 µg/mL ConA (E) or 100 µg/mL OVA (F). NC, nontreated control; H2O,
H2O gavage; LP-L, GM-080 at 2 × 106 CFU/mouse/day through gavage; LP-H, GM-080 at 1 × 107

CFU/mouse/day through gavage. * p < 0.05, ** p < 0.01.

Table 4. AR symptom scores at baseline and follow-up visits among enrolled patients #.

Subscale Examination A Group
(n = 28)

B Group
(n = 31)

C Group
(n = 31)

PLC Group
(n = 32) p

Sneezing Visit 2 1.69 (0.77) 1.61 (0.67) 1.49 (0.79) 1.75 (0.64) 0.527
Visit 3 1.61 (0.71) 1.20 (0.57) a 1.43 (0.83) 1.67 (0.67) 0.045 e

Visit 4 1.68 (0.75) 1.19 (0.70) a 1.41 (0.83) 1.40 (0.65) 0.090
Visit 5 1.51 (0.74) 1.02 (0.66) a 1.35 (0.96) 1.50 (0.66) 0.049 e

Visit 6 1.33 (0.76) 1.08 (0.68) a 1.06 (0.82) ab 1.56 (0.82) 0.033 e

Rhinorrhea Visit 2 1.83 (0.55) 1.81 (0.68) 1.69 (0.70) 1.95 (0.60) 0.435
Visit 3 1.71 (0.67) 1.73 (0.83) 1.51 (0.86) 1.95 (0.75) 0.170
Visit 4 1.69 (0.71) 1.42 (0.80) a 1.39 (0.76) 1.65 (0.66) 0.252
Visit 5 1.37 (0.73) 1.20 (0.72) ab 1.24 (1.00) 1.59 (0.69) 0.203
Visit 6 1.42 (0.81) 1.11 (0.67) ab 1.24 (0.99) 1.44 (0.75) 0.320
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Table 4. Cont.

Subscale Examination A Group
(n = 28)

B Group
(n = 31)

C Group
(n = 31)

PLC Group
(n = 32) p

Nasal pruritus Visit 2 1.73 (0.70) 1.72 (0.53) 1.69 (0.67) 1.70 (0.79) 0.997
Visit 3 1.54 (0.83) 1.42 (0.73) 1.35 (0.67) 1.65 (0.80) 0.415
Visit 4 1.43 (0.81) 1.34 (0.78) a 1.24 (0.59) a 1.51 (0.72) 0.466
Visit 5 1.24 (0.64) a 1.09 (0.64) a 1.11 (0.78) a 1.47 (0.75) 0.123
Visit 6 1.08 (0.77) a 1.08 (0.80) a 1.09 (0.75) a 1.33 (0.89) 0.520

Nasal congestion Visit 2 2.10 (0.63) 1.97 (0.66) 2.04 (0.71) 2.04 (0.61) 0.880
Visit 3 1.87 (0.74) 1.87 (0.82) 1.86 (0.88) 2.07 (0.76) 0.663
Visit 4 1.87 (0.81) 1.60 (0.78) 1.72 (0.64) 1.84 (0.72) 0.476
Visit 5 1.33 (0.71) ab 1.35 (0.88) a 1.47 (0.89) a 1.77 (0.84) 0.154
Visit 6 1.29 (0.73) abc 1.15 (0.88) abc 1.19 (0.90) abc 1.48 (0.84) a 0.414

TNSS Visit 2 7.34 (1.44) 7.11 (1.74) 6.92 (1.57) 7.44 (1.56) 0.559
Visit 3 6.74 (2.01) 6.23 (2.21) 6.15 (2.51) 7.35 (2.24) 0.135
Visit 4 6.68 (2.45) 5.54 (2.50) a 5.77 (1.95) a 6.40 (2.05) 0.174
Visit 5 5.44 (2.13) a 4.67 (2.41) ab 5.18 (2.97) a 6.33 (2.36) 0.066
Visit 6 5.12 (2.44) abc 4.42 (2.39) ab 4.57 (3.00) abc 5.56 (2.49) 0.286

# Severity of each symptom was measured on a 4-point scale: 0 = absent; 1 = mild; 2 = moderate; 3 = severe. Scores
for each symptom were added to obtain the TNSS. Data were presented as mean (standard deviation). a p < 0.05,
intragroup comparisons (visit 6 vs. visit 2, visit 5 vs. visit 2, visit 4 vs. visit 2, visit 3 vs. visit 2 in each group).
b p < 0.05, intragroup comparisons (visit 6 vs. visit 3, visit 5 vs. visit 3, visit 4 vs. visit 3). c p < 0.05, intragroup
comparisons (visit 6 vs. visit 4, visit 5 vs. visit 4). e p < 0.05, intragroup comparisons (difference between the
four groups).
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Table 5. Differences in sneezing, rhinorrhea, nasal pruritus, nasal congestion, and TNSS among the
four groups after five visits based on the GEE model.

A Group (n = 28) B Group (n = 31) C Group (n = 31) PLC Group (n = 32) p

Subscale n Value
(95% CI a) n Value (95% CI) n Value (95% CI) n Value

(95% CI)

Sneezing 28 0.028
(−0.321, 0.377) 31 −0.229

(−0.536, 0.077) 31 −0.250
(−0.604, 0.104) 32 Referent 0.041 b

Rhinorrhea 28 −0.014
(−0.404, 0.376) 31 −0.332

(−0.677, 0.012) 31 −0.202
(−0.627, 0.223) 32 Referent 0.104

Nasal
pruritus 28 −0.258

(−0.671, 0.155) 31 −0.250
(−0.662, 0.161) 31 −0.242

(−0.643, 0.159) 32 Referent 0.414

Nasal con-
gestion 28 −0.192

(−0.583, 0.199) 31 −0.330
(−0.750, 0.089) 31 −0.289

(−0.713, 0.136) 32 Referent 0.441

TNSS 28 −0.436
(−1.663, 0.791) 31 −1.142

(−2.328, 0.044) 31 −0.983
(−2.324, 0.357) 32 Referent 0.070

a CI, confidence interval. b p < 0.05, intergroup comparisons (difference between four groups).

Table 6. Investigator Global Assessment Scale scores at baseline and follow-up visits among the
four groups a.

Subscale Examination A Group
(n = 28)

B Group
(n = 31)

C Group
(n = 31)

PLC Group
(n = 32)

p-Value
4 Groups

Global
Assessment Visit 3 2.43 (0.88) 2.42 (0.62) 2.58 (0.56) 2.47 (0.72) 0.795

Visit 4 2.61 (0.63) 2.61 (0.67) 2.71 (0.69) 2.44 (0.76) 0.471
Visit 5 3.00 (0.61) bc 2.94 (0.81) b 2.77 (0.76) 2.53 (0.84) 0.083
Visit 6 2.96 (0.74) c 2.97 (0.71) b 3.16 (0.86) d 2.59 (0.91) 0.049 e

a Data are presented as mean (standard deviation). b p < 0.05, intragroup comparisons (visit 6 vs. visit 3, visit 5 vs.
visit 3, visit 4 vs. visit 3 in each group). c p < 0.05, intragroup comparisons (visit 6 vs. visit 4, visit 5 vs. visit 4).
d p < 0.05, intragroup comparisons (visit 6 vs. visit 5). e p < 0.05, intragroup comparisons (difference between the
four groups).

Table 7. Serum biomarker and sensitization levels at baseline and at the end of treatment #.

Biomarker Examination A group
(n = 28)

B group
(n = 31)

C group
(n = 31)

PLC group
(n = 32) p

Total IgE (kU/L) a Baseline 652.58 (1366.19) 547.66 (530.99) 614.81 (661.08) 405.68 (384.19) 0.642
Visit 6 648.73 (1466.52) 449.69 (469.01) 599.39 (677.36) 419.52 (529.22) 0.833

IFN-γ (ng/mL) a Baseline 436.96 (366.48) 494.73 (760.74) 302.30 (442.22) 383.25 (498.97) 0.331

Visit 6 467.10 (915.50) 1042.03
(3006.39) b 740.28 (2020.84) 515.89 (1830.42) 0.480

# Measurements were performed in month 3. a p < 0.05, intragroup comparisons (visit 6 vs. baseline in each
group). b Data are presented as means (standard deviations).

Additional well-designed clinical trials are warranted to identify the most effective
dosage of GM-080.

4. Discussion

Lactobacillus spp. alleviate allergic diseases through different mechanisms. In mice, the
oral administration of Lactobacillus reuteri for 9 days increased CD4+CD25+FoxP3+ regula-
tory T (Treg) cell numbers in the spleen; moreover, the adoptive transfer of these Treg cells
from L. reuteri-treated mice reduced airway inflammation induced by antigen challenge [40].
Zhong et al. demonstrated that in OVA-sensitized rats, the administration of a mixture of
probiotic genomic DNA derived from L. rhamnosus GG (LGG) and Bifidobacterium longum
BB536 or that of a synthetic CpG-ODN reduced the production of Th2 cytokines and in-
creased the Treg cell population in the spleen or mesenteric lymph nodes on the basis of
increased toll-like receptor 9/nuclear factor kappa B activity [41]. CpG-ODN and LGG
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DNA containing TTTCGTTT, which is an IM, also demonstrated antiallergic potential in
mice; specifically, they downregulated OVA-specific IgE production and increased systemic
Th1 responses [42]. In the current study, the predicted IMs from BCRC 16100 did not
display any Th1 cytokine induction capabilities and only IM5 in GM-080 exhibited IL-12
induction activity in mouse splenocytes (Table 2). Although the frequency of IMs in the
genomes of probiotics may be associated with their antiallergic potential [43], the observed
immunomodulatory activities of the predicted IMs warrant experimental examination. In
the present study, we could not predict the relationship between the antiallergic activity
of GM-080 and the associated changes in Th1 cytokine induction in vitro (Figure 2B,F) or
the reduction in Th2 cytokine levels in vivo (Figure 5F). Given the Th1 cytokine induction
activity of GM-080 IM5 and GM-080 ODN1 and ODN2 (Table 2), CpG-ODN and IMs in the
GM-080 genome may underlie the beneficial effects of GM-080 against AHR.

Considering their IFN-γ induction activity in vitro (Figure 2C,D), LTA and PGN, two
cell-wall components of GM-080, may be the key active ingredients involved in the im-
provement of AHR. Li et al. reported that PGN from Lactobacillus acidophilus inhibited IgE
production and regulated Treg–Th17 balance, thus preventing β-lactoglobulin allergy [44].
Mat et al. indicated that treatment with LTA from Staphylococcus aureus reduced IL-5
production in peripheral blood mononuclear cells from patients with asthma [45], sug-
gesting that LTA might have AHR-alleviating effects. However, the detailed molecular
mechanisms underlying IFN-γ upregulation due to GM-080-derived LTA or PGN warrant
further investigation.

In our WGS of GM-080 and BCRC 16100 (Tables 1 and S3), the undecaprenyl-phosphate
galactose phosphotransferase gene (rfbp) and alpha-D-GlcNAc alpha-1,2-L-rhamnosyltransferase
gene (rgpAc) involved in exopolysaccharide synthesis were noted only in GM-080. Wu et al.
reported that exopolysaccharides from B. longum BCRC 14634 suppressed LPS-induced
TNF-α production in J774A.1 macrophages [46]. Whether the immunomodulatory effect of
GM-080-derived exopolysaccharides is responsible for the antiallergic activity of GM-080
remains unclear. In Treg cells, glutathione (GSH) loss can reduce suppressor function,
thus inducing multiorgan autoimmunity. GSH-enriched yeast has been demonstrated to
alleviate CCl4-induced liver damage in rats. In our analysis of the GM-080 genome, we
noted the presence of pepA, an aminopeptidase that may be involved in GSH biosynthe-
sis [47]. Considering that oxidative stress is a hallmark of asthma [48], GM-080 may be a
GSH-enriched Lactobacillus that can improve the allergic condition.

In our in vitro analysis of the effects of GM-080 on Th1 cytokine (IL-12 and IFN-γ)
production, the induction effect was unaffected by the MOI (Figure 2). This result indicates
the presence of a therapeutic window of GM-080 dosage for the alleviation of airway allergic
conditions. One animal study even confirmed that for GM-080, immunoregulatory function
is determined by dehydrogenase activity [49]. In particular, the effectiveness of probiotics
in the human environment may be affected by factors related to the internal microbial
ecosystem, including intestinal colonization duration and changes in intestinal microbiota,
after the consumption of probiotics [49]. The optimization of GM-080 dosage based on
AHR severity warrants further investigation. In the OVA-induced asthma mouse model,
we found that the oral consumption of GM-080 at the sensitization phase could reduce
anti-OVA specific IgE at low doses (Figure 6A) or anti-OVA specific IgG2a at low and high
doses (Figure 6C) but did not change anti-OVA specific IgG1 levels (Figure 6B). As a result
of the general role of IgG1 or IgG2a for representing Th2 or Th1 responses, respectively [50],
the data on unchanged anti-OVA specific IgG1 may not reflect the downregulation of
Th2 responses by GM-080. Thus, we further examined OVA-induced IL-5 production
after GM-080 consumption and found that it could be reduced at both doses of GM-080
(Figure 6F). Indeed, several studies related to the improvement in OVA-induced asthma in
mouse models also reported the suppression of anti-OVA specific IgG2a [51,52]. The data of
reducing serum OVA-specific-IgE and OVA-induced IL-5 production by mouse splenocytes
in this study suggests that GM-080, at an optimal dose, could inhibit Th2 responses.
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In the current trial, the single live strain GM-080 was used, and its PAR-alleviating
effect appeared to be significant only in terms of symptom (sneezing) relief (Table 4)
and quality of life improvement (Table 6). Moreover, the effects of GM-080 on symptom
(sneezing) relief were not dosage-dependent. In the present study, the elevated serum IFN-γ
levels at the final visit were noted only in the patients who consumed a moderate amount of
GM-080 at the dose of 2 × 109 CFU per day (Table 7), indicating that IFN-γ induction may
serve as a predictive factor for the selection of antiallergic probiotics. Lin et al. reported that
in children aged 6–12 years, treatment with L. paracasei HF.A00232 at 5 × 109 CFU/capsule
combined with 5 mg of levocetirizine significantly ameliorated AR symptoms, including
sneezing, itching nose, and swollen, puffy eyes [53]. Therefore, the effects of GM-080 in
combination with antihistamines on AR symptoms should be investigated.

5. Conclusions

L. paracasei GM-080 induced Th1 cytokine production in mouse splenocytes and
improved airway inflammation in an OVA-induced asthma mouse model with Th2 cytokine
downregulation. This prospective, double-blind, placebo-controlled, randomized clinical
trial on PAR showed the ameliorating effects of GM-080 on symptoms, such as sneezing,
TNSS, and Investigator Global Assessment Scale score. Therefore, when given as a food
supplement, GM-080 can alleviate AR in children.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells12050768/s1, Table S1: CRISPR loci, prophage-like clusters,
and bacteriocin gene in the GM-080 genome; Table S2: Minimum inhibitory concentrations (MICs) of
L. paracasei GM-080 toward eight antimicrobials and their microbiological cutoffs; Table S3: EggNOG
functional annotations of L. paracasei GM-080; Table S4: Putative IM and CpG-containing ODN
contents in L. paracasei strains.
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