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Abstract: Nicotinamide adenine dinucleotide (NAD) and its 2′-phosphorylated cousin NADP are
precursors for the enzymatic formation of the Ca2+-mobilizing second messengers adenosine diphos-
phoribose (ADPR), 2′-deoxy-ADPR, cyclic ADPR, and nicotinic acid adenine dinucleotide phos-
phate (NAADP). The enzymes involved are either NAD glycohydrolases CD38 or sterile alpha
toll/interleukin receptor motif containing-1 (SARM1), or (dual) NADPH oxidases (NOX/DUOX).
Enzymatic function(s) are reviewed and physiological role(s) in selected cell systems are discussed.
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1. Main Text

In 1993, Elaine and Mike Jacobson published a seminal paper in Science in which they
described the role of NAD glycohydrolases (NAD-GHs) in the formation of NAD-derived
Ca2+-mobilizing second messengers [1]. The authors discovered that a 39 kDa membrane
protein metabolized nicotinamide adenine dinucleotide (NAD) to either cyclic adenosine
diphosphoribose (cADPR) or to adenosine diphosphoribose (ADPR); these two enzymatic
activities carried out by the same enzyme are an ADP-ribosyl cyclase (ADPRC) and a
NAD-GH activity (Figure 1). Further, the hydrolysis of cADPR to ADPR by a cADPR-
hydrolase activity was also catalyzed by the purified NAD-GH [1] (Figure 1). This was
an essential discovery in the fields of both NAD metabolism and Ca2+ signaling. Being
an active researcher in both these areas, it is a great pleasure for me to contribute to this
special issue of Cells in honor of Elaine and Mike Jacobson.

While cADPR was identified as a Ca2+-mobilizing second messenger through the
pioneering work of Hon Cheung Lee in the late 1980s [2,3], ADPR was considered merely
an inactive degradation product of NAD in 1993. However, the notion of the 39 kDa
membrane NAD-GH as a second-messenger-producing enzyme was revived when ADPR
was identified as one of the nucleotides activating the cation channel transient receptor
potential, melastatin type 2 (TRPM2) [4].

The above scheme summarizes the formation of ADPR and 2′-deoxy-ADPR through
NAD-GH as the main reaction, and the formation of cADPR or 2′-phospho-cADPR via the
minor ADPRC activity of NAD-GH. Moreover, the hydrolysis of cADPR by the cADPR-
hydrolase activity of NAD-GH is indicated.

In addition to the synthesis of cADPR and ADPR, there is, at least in the cell-free
system, a third enzymatic reaction of the promiscuous 39 kDa membrane NAD-GH, using
nicotinamide adenine dinucleotide phosphate (NADP) as a substrate and resulting in the
product nicotinic acid adenine dinucleotide phosphate (NAADP) [5] (Figure 1).

In this review, I will start from Elaine’s and Mike’s mechanistic scheme of NAD-GHs
and discuss and summarize findings regarding the enzymology of the growing super-
family of Ca2+-mobilizing second messengers derived from NAD, namely ADPR and
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its analogue 2′deoxy-ADPR, cADPR and its derivative 2′-phospho-cADPR, and NAADP
(Figure 1).
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Figure 1. Formation of Ca2+-mobilizing second messengers from (2′-deoxy-NAD).

2. NAD-GHs

Soon after the Science paper published by Elaine and Mike Jacobson [1], the membrane-
bound NAD-GH was identified as leukocyte antigen CD38 by Maureen Howard, Hon
Cheung Lee, and members of their labs, again a seminal paper that was published in
Science [6]. Another, more recently discovered NAD-GH is sterile alpha toll/interleukin
receptor motif containing-1 (SARM1) [7]. SARM1 catalyzes the same reactions known from
CD38, using NAD(P) as substrates. Of note, the two proteins appear structurally unrelated.
In the following, the key papers for CD38 and SARM1 will be reviewed.

3. CD38

CD38 was formerly known as the T10 antigen and in 1981 described as an integral
membrane protein of human thymocytes [8]. Twelve years later, in 1993, the enzymatic
nature of CD38 was identified by the groups of Hon Cheung Lee and Antonio De Flora [6,9].
A few months earlier, in 1993, the production of cADPR and ADPR from NAD on the
surface of erythrocytes was observed, suggesting that the NAD-GH involved might be
an ectoenzyme [10]. CD38 was then characterized regarding its ability to catalyze cADPR
formation from NAD and to hydrolyze cADPR to ADPR [6]. When realizing that the
active site of the type II membrane protein CD38 is located in the extracellular space, the
authors stated, “The concept of outer membrane expression by a large proportion of lymphocytes of
an enzyme that metabolizes NAD+ presents certain intriguing, unresolved issues. In particular,
what is the physiological mechanism for regulating this extracellular enzyme and how does its
activation lead to intracellular signaling?” [6]. This question, later termed the ‘topological
paradox of CD38 signaling’ by Antonio De Flora and co-workers (reviewed in [11,12]), led
to the discovery that (i) CD38 may act as a transporter for cADPR into the cytosol [13],
and, in addition, (ii) that CD38 rapidly undergoes endocytosis upon extracellular addition
of NAD and produces cADPR in endocytotic vesicles [14]. Briefly thereafter, connexin
43 was identified to transport NAD either through the plasma membrane into the extra-
cellular space or more likely into endocytotic vesicles [15]. De Flora and co-workers also
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developed and experimentally established the concept of autocrine and paracrine roles
for cADPR [16–19], which were later confirmed by others [20]. Of note, equilibrative and
concentrative nucleoside carriers also transport cADPR into cells, e.g., fibroblasts, myocytes,
neurons, hemopoietic progenitor cells, and intestinal stem cells [21–23]. Concentrative
nucleoside carriers, encoded by Slc28a1, a2, and a3 [24], are assumed to play a major role
since the Na+ symport mechanism allows effective cADPR concentrations to build up
inside target cells, even from dilute extracellular cADPR solutions (reviewed in [25]).

After these initial years of research on CD38 as a principal mammalian NAD-GH,
the expression, enzymatic activity, and role of CD38 in many different cell types were
investigated. Moreover, CD38 has been found as a tumor antigen and as a target for
tumor therapy in many different tumor cells, e.g., lymphoma (reviewed in [26]), myeloma
(reviewed in [27]), and in solid tumors [28]. Using the search term ‘(CD38) AND (NAD-GH)’
3280 results are currently found in PubMed (20 November 2022), making it impossible
to review all the published work. However, a couple of studies using Cd38−/− mice
or Cd38−/− cells are of interest since the results disentangle the physiological function
of CD38.

Hiroshi Okamoto and co-workers created a C57Bl6 Cd38−/−mouse and showed (i) that
glucose-evoked cADPR formation, Ca2+ signaling, and insulin secretion in Cd38−/− pancre-
atic beta cells were decreased [29]; (ii) that, in Cd38−/− pancreatic acinar cells, Ca2+ signal-
ing in response to stimulation of the muscarinic acetylcholine receptor was diminished [30],
and (iii) that aortal contraction in Cd38−/− mice evoked by α-adrenergic stimulation was
reduced [31], suggesting an important role for CD38 in all these Ca2+-dependent processes.
Using the same Cd38-knockout model, Uh-Hyun Kim and co-workers reported that in
comparison to wildtype cells (i) in Cd38−/− lymphokine-activated killer cells, interleukin-8
evoked, cADPR-dependent Ca2+ signaling and migration were impaired [32,33], and that
(ii) the angiotensin-II-induced proliferation of Cd38−/− liver stellate cells and synthesis of
fibronectin and other extracellular matrix proteins were reduced [34].

Another Cd38−/− mouse model on a C57BL/6J background was developed in Mau-
reen Howard’s group [35]. Initially, in this model, it was shown that CD38 is neither
involved in hematopoiesis nor in lymphopoiesis [35]. Of note, B-lymphocyte activation,
proliferation, and cytokine secretion evoked by CD38 signaling require the ectodomain
of CD38, but do not depend on CD38′s NAD-GH activity [36]. Two years later, Frances
Lund, who was already involved in producing and characterizing Cd38−/− mice [35,36],
discovered an innate immune function mechanistically dependent on enzymatically active
CD38: the fMLP-induced chemotaxis of neutrophils during bacterial infections, described
in a seminal paper published in Nature Medicine [37]. Lund and co-workers showed (i) the
higher susceptibility of Cd38−/− mice to Streptococcus pneumoniae infection; (ii) reduced
endogenous cADPR content in the spleen, thymus, and bone marrow myeloid cells, but
not in other organs, such as the lung, kidney, heart, and brain; (iii) diminished chemotaxis
in response to fMLP (but not to interleukin-8); (iv) loss of ADP-ribosyl cyclase activity,
and (v) largely decreased Ca2+ entry [37]. Of note, in a follow-up publication, it was
demonstrated that in addition to cADPR, also ADPR played a pivotal role as an activating
ligand of the Ca2+-permeable cation channel TRPM2 in neutrophil migration [38]. This
important result became possible with the development of the first specific antagonist of
TRPM2, 8-Br-ADPR, by Tim Walseth and co-workers: 8-Br-ADPR blocked Ca2+ entry and
chemotaxis in response to fMLP in neutrophils [38]. Moreover, the fact that ADPR acts
as a second messenger that activates TRPM2 resulting in Ca2+ entry during neutrophil
chemotaxis was an important step to prove that, in addition to cADPR, or perhaps even
instead of cADPR, ADPR affects Ca2+ signaling through TRPM2 activation in cells in
general. This change in view of the importance of the CD38 products towards ADPR is
supported by results from the thorough biochemical characterization of CD38 by Francis
Schuber and Philippe Deterre, showing that ADPR is the main product of CD38, whereas
cADPR represents a minor side product: “The results obtained here are not compatible with the
prevailing model for the mode of action of CD38, according to which this enzyme produces first cyclic
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ADP-ribose which is then immediately hydrolysed into ADP-ribose (i.e., sequential ADP-ribosyl
cyclase and cyclic ADP-ribose hydrolase activities). We show instead that the cyclic metabolite was
a reaction product of CD38 rather than an obligatory reaction intermediate during the glycohydro-
lase activity” [39]. End-point enzyme assays confirmed that ADPR is the main product of
CD38 [40–42]. Regarding the physiological role of the nucleotides produced by CD38, it
should be noted that in many of the earlier studies TRPM2 was not even known to exist,
since it was first described as an ADPR-activated cation channel in 2001 [4]. Obviously, the
signaling axis CD38→ ADPR→ TRPM2 must be taken into account in all Ca2+ signaling
studies in which CD38 has been identified as a crucial enzyme, as exemplarily done by Rah
and colleagues [43], who demonstrated a crucial role of Ca2+ entry through TRPM2 for the
polarization of cytolytic granules and degranulation involved in the antitumor activity of
NK cells. Along these lines, CD38 was also identified to use 2′-deoxy-NAD as a substrate
to synthesize 2′-deoxy-ADPR; this ADPR derivative is much more potent in activation of
TRPM2 as compared to ADPR, and is thus termed a TRPM2 superagonist [44].

Another important aspect in CD38 research relates to its orientation within the plasma
membrane and also other membranes. As pointed out above, as a type II membrane
protein with its active catalytic site in the extracellular space, transport functions for both
substrate(s) and product(s) are required for intracellular signaling; this remains true also for
CD38 on endocytotic vesicles. However, using specific antibodies against the N-terminus of
CD38, it was shown in HL-60 and U937 cell lines, as well as in human primary monocytes,
that a small portion of CD38 also exists in the type III orientation [45]. Type III CD38
was shown to be activated through one of the products of NADPH oxidase 4 (NOX4),
H2O2, thereby providing a link between signaling via reactive oxygen species and Ca2+

signaling through products of CD38 enzyme activity [46]. Through the specific inhibition
of type II CD38 using the covalently bound NAD-GH inhibitor ara-F-NAD [47], and
wash-out of excess of the inhibitor followed by permeabilization of plasma membranes,
minor residual enzymatic activity of CD38 in type III orientation was also confirmed in
Jurkat T cells [44]. These results, although not confirmed in many cell systems, indicate
that if a small amount of CD38 in type III orientation exists in a particular cell type, fast
formation of the superagonist 2′-deoxy-ADPR or ADPR, followed by TRPM2 activation,
is the first downstream pathway to be tested. Whether also cADPR is involved in such
pathways needs to be analyzed, e.g., by comparing RYR2 and/or RYR3 knockout models
vs. TRPM2 knockouts.

In addition to cADPR, 2′-deoxy-ADPR, and ADPR, there is a fourth second messenger
produced by CD38, NAADP (Figure 1). The reaction involved is termed the ‘base-exchange
reaction’: NADP is used as a substrate and the reaction proceeds at pH 4 to 5 in the presence
of a high excess of nicotinic acid [48], immediately raising the question of whether such
conditions would exist in the cellular context. However, endo-lysosomes are intracellular
organelles known for their acidic pH (pH 4 to 5) and thus would be an a priori niche for
the base-exchange reaction to take place. Experimentally, this was tackled by directing
CD38 to endo-lysosomes, or by engineering a CD38 variant for lysosomal expression [49].
Endogenous NAADP levels increased under such conditions; the extracellular addition
of nicotinic acid further raised NAADP levels [49], indicating that CD38 may produce
NAADP in endo-lysosomes. These findings were confirmed later in lymphokine-activated
killer cells [50]. In addition, evidence for a physiological role of CD38 in the production
of NAADP was also obtained through the knockout of Cd38 in mouse coronary arterial
myocytes stimulated via the Fas receptor [51], lymphokine-activated killer cells stimulated
by IL-8 [32], pancreatic acinar cells stimulated by cholecystokinin [52], and mouse cardiac
myocytes stimulated via the ß-adrenoceptor [53]. In contrast, in other tissues/cell types,
opposing effects of the deletion of Cd38 were also observed: Cd38−/− myometrial cells
were not different in terms of their endogenous NAADP levels, neither unstimulated
nor stimulated by histamine [54]. Furthermore, tissue samples from the thymus and
spleen of Cd38−/− mice had similar and somewhat increased endogenous NAADP levels,
suggesting that CD38 degrades NAADP to 2′-phospho-ADPR rather than producing this
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second messenger [55]. Taken together, the role of CD38 in NAADP metabolism remains
controversial and, according to the experimental data obtained so far, appears to be variable
in different cell types. Novel aspects of NAADP’s enzymology will be discussed below,
following the section on SARM1.

4. SARM1

The toll/interleukin receptor (TIR) domain has been known as a scaffold protein
involved in signaling processes of innate immunity. However, sterile alpha toll/interleukin
receptor motif containing-1 (SARM1) was found to posses NAD-GH activity, metabolizing
NAD(P) to the products ADPR, cADPR, and NAADP, as detailed above for CD38. In
neurons, NAD degradation by SARM1 was first described for TIR domains as a central
process resulting in axon degeneration [56–60]. However, NAD-GH activity is also found
in TIR domains from archaea, bacteria, and plants, as reviewed in [61].

The enzymology of SARM1 was analyzed in detail by HPLC using recombinantly
expressed SARM1 missing the N-terminal mitochondrial localization signal (Figure 4 of
reference [62]). NAD was mainly metabolized to ADPR, whereas cADPR was a minor
product; comparison of normalized enzyme activities resulted in an approximately 10-fold
higher NAD-GH as compared to the ADPRC activity of SARM1 [62]. The cADPR-hydrolase
activity was weak for both CD38 and SARM1, amounting to approximately 2–3% of NAD-
GH activity. At pH 4.5 and with an excess of nicotinic acid (2.5 mM), both CD38 and
SARM1 converted NADP to NAADP; this base-exchange activity reached >80% of the
NAD-GH activity of CD38 and approximately 40% of the NAD-GH activity of SARM1 [62].
Recently, the base-exchange activity of SARM1 was also described to proceed at a neutral
pH [63]. Taken together, the major differences between SARM1 and CD38 appear to be
(i) the much higher production of cADPR by SARM1, and (ii) the formation of NAADP by
SARM1 also at a neutral pH. This indicates that SARM1 might be a much better cellular
source for cADPR than CD38. Of note, a few earlier papers described the production of
cADPR also in CD38 knockout models [37,64] or soluble ADPRC activity was detected [65].
Thus, re-evaluation of these data in light of SARM1′s ADPRC activity appears reasonable.

The activation of SARM1 is triggered by an increase in nicotinamide mononucleotide
(NMN), a process that can be mimicked by a membrane-permeable mimetic of NMN,
termed CZ-48 [62]. Very recently, the activated state of SARM1 was analyzed by cryo-
electron microscopy using a novel nanobody that recognizes activated SARM1 [66]. NMN
is a breakdown product of NAD, formed by pyrophosphatase activity. In addition, NMN
serves as an intermediate in the biosynthesis of NAD, but requires sufficient activity of
nicotinamide mononucleotide adenylyltransferase 2. Whereas NAD at a normal cellular
concentration inhibits SARM1 activation, due to the autoinhibitory activity of the ARM
domain, a decrease in NAD resulting in NMN formation activates SARM1 enzymatic
activity (reviewed in [61]).

Adaptation to axonal damage is of major importance for nervous function. SARM1
plays a central role in this process by orchestrating neurons’ responses, including cytokine
release, the induction of oligodendrocyte death, and the cessation of axon regeneration
(reviewed in [67]). Further, SARM1 drives the Wallerian degeneration of the distal stump of
the injured axon [68] and is involved in the phagocytosis of remnants of the stump. Finally,
neighboring neurons that sense the injured neuron’s activity, e.g., cytokine release, start a
stress response in which SARM1 is involved, too (reviewed in [67]). The signaling processes
related to adaptation to axonal damage range from the disturbed metabolism of NAD,
specifically a decrease in the cellular NAD concentration, and Ca2+ signaling evoked by the
Ca2+-mobilizing second messengers produced by SARM1, ADPR, cADPR, and NAADP
(see paragraphs above). Since ADPR is the major enzymatic product of SARM1, Ca2+

entry operated by its target channel TRPM2 is central for the processes following axonal
degeneration. Further, Ca2+ release by cADPR and NAADP contributes to these processes
(reviewed in [67]). Of note, other signaling mechanisms, including Jun N-terminal kinases,
are involved as important players (reviewed in [67]). This complex situation caused by
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both diverse signaling processes and cell responses is currently beginning to be understood
in full detail.

5. NAADPH/NAADP Redox Cycle: (Dual) NADPH Oxidases (NOX/DUOX) and
Glucose 6-Phosphate Dehydrogenase (G6P-DH)

While the cellular formation of ADPR by NAD-GH activity, e.g., catalyzed by CD38 or
SARM1, can be regarded as confirmed, the physiological relevance of the base-exchange
reaction as a biosynthetic pathway for NAADP is still under debate (Figure 2).
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Figure 2. Enzymology of NAADP metabolism: hypothetical and confirmed pathways. Hypothet-
ical pathways are marked by dotted lines in gray. Solid, bold lines indicate confirmed pathways.
Abbreviations used: Glc 6-P DH, glucose 6-phosphate dehydrogenase; Pi, inorganic phosphate.

Early on, researchers discussed and experimentally approached alternative pathways.
The ‘easiest’ way to produce NAADP from NADP would be an NADP deamidase reac-
tion, whereby the nicotinamide group of NADP is converted to nicotinic acid and NH4

+

leaves the molecule, either as free NH4
+ or by transfer onto an acceptor molecule. Of

note, the deamidation of nicotinamide mononucleotide (NMN) to nicotinic acid mononu-
cleotide (NaMN) was previously reported for prokaryotes, e.g., Azotobacter vinelandii [69],
Salmonella typhimurium [70], Escherichia coli [71], or Vibrio cholerae [72]. Following
these characterizations in single bacterial species, a broadly conserved deamidase (=amido-
hydrolase; EC 3.5.1.42) enzyme family among prokaryotes was discovered and its gene,
termed pncC, cloned by Nadia Raffaelli and colleagues [73]. However, deamidases are only
found in prokaryotes. Further, deamidases translated from pncC do not accept NADP as a
substrate, and, to the best of my knowledge, other NADP-deamidating enzymes have not
yet been published (Figure 2).

Another potential pathway for NAADP production would be NAD kinase. However,
NAD kinase accepts NAD as a substrate, but does not phosphorylate nicotinic acid adenine
dinucleotide (NAAD) [74] (Figure 2).
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A study published by Armando Genazzani’s laboratory showed that NAADP can be
reduced to NAADPH by endogenous cellular enzymes, e.g., glucose 6-phosphate dehydro-
genase [75]. Further, NAADPH did not release Ca2+ in sea urchin egg homogenates [75],
suggesting that NAADP’s reduced form, NAADPH, is an inactive derivative that may be
converted by an oxidase to NAADP during Ca2+ signaling in cells. My own laboratory has
been working on the identification of the respective oxidase for a couple of years. Given
the fact that NADPH oxidases (NOX; reviewed in [76]) have been known for many years
to oxidize the structurally closely related NADPH to NADP, we tested whether NOX5,
one of the isozymes of the NOX enzyme family, would oxidize also NAADPH to NAADP.
In fact, NAADP was identified in HPLC analysis as a product (Figure 2); this was true
not only for NOX5, but also for the isozymes DUOX1 and DUOX2, members of the dual
NADPH oxidase subfamily [77]. Enzymatic characterization of NOX5 revealed that both
NAADPH and NADPH showed similar Km values and maximal velocities [77]. In contrast
to the previous main candidate for NAADP production, CD38, the NOX and DUOX en-
zymes produce NAADP in the cytosol immediately beneath the plasma membrane, and
this enzyme reaction proceeds at an optimal pH of approximately 7.5 [77], only slightly
above the cytosolic pH. Since NAADP’s role in the activation of Ca2+ microdomains evoked
by T cell receptor/CD3 and CD28 stimulation was reported [78], a role for isozymes of
the NOX/DUOX family was investigated in this cell system. Regarding expression on
mRNA level, mainly NOX1 and NOX2 are expressed in mouse T cells; however, T cells
devoid of Nox1 or Nox2 showed no Ca2+ phenotype upon T cell receptor/CD3 and CD28
stimulation [77]. In contrast, in T cells from Duoxa1−/−/Duoxa2−/− mice, a functional
double knockout of DUOX1 and DUOX2 [79,80], both initial Ca2+ microdomains as well
as global Ca2+ signaling were significantly decreased [77]. Single-gene knockouts in rat
effector T cells produced by using Crispr/CAS technology revealed a major role of DUOX2
in the first seconds of T cell activation [77]. Of note, deletion of Duox2 also decreased global
Ca2+ signaling and specifically decreased IL-17 production upon stimulation of rat effector
T cells by antigen-presenting cells [77]. In contrast, in Cd38−/− T cells, neither initial Ca2+

microdomains nor global Ca2+ signaling were affected, when compared to wildtype control
T cells [77].

An important aspect to consider when working with NOX/DUOX enzymes is the
fact that, in addition to product generation at the cytosolic side of the plasma membrane,
e.g., the formation of NAADP, there is also the generation of reactive oxygen species
(ROS) at the extracellular side. In the case of DUOX2, H2O2 is produced in an equimolar
concentration to NAADP. Since the cytosolic concentration of NAADP is low—e.g., before T
cell receptor/CD3 stimulation, approximately 5 nM, and upon stimulation, approximately
40 nM [81]—it is rather unlikely that the low extracellular H2O2 concentration would
stimulate Ca2+ signaling on its own. However, and of note, higher concentrations of H2O2
have been shown to activate Ca2+ entry channels, e.g., TRPM2 [82], and also to inhibit
sarcoplasmic and endoplasmic reticular Ca2+ ATPase 2 (SERCA2) by sulfonylation [83]. To
rule out any effects of the H2O2 produced during the first few seconds of T cell activation,
several control experiments were conducted in the presence of either (i) H2O2-degrading
catalase; (ii) a specific inhibitor of aquaporin3, the H2O2-transporting aquaporin expressed
in T cells; or (iii) the membrane-permeant ROS scavenger butylated hydroxyanisole [77].
None of these interventions had any significant effect on the initial Ca2+ microdomains
evoked by T cell receptor/CD3 and CD28 stimulation [77]. Furthermore, using HYPER7-
MEM for the imaging of potential H2O2 generation [84] evoked by T cell receptor/CD3
and CD28 stimulation did not result in any significant signals [77].

As already noted by Armando Genazzani and co-workers in 2004, cytosolic dehy-
drogenases, e.g., ubiquitously expressed glucose 6-phosphate dehydrogenase, can rapidly
reduce NAADP to NAADPH [75], thereby providing a novel cytosolic redox cycle for the
rapid generation and removal of Ca2+-mobilizing NAADP [77] (Figure 2). Since at least
some portion of NAADP may also be degraded to 2′-phospho-ADPR by type III CD38, or
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to NAAD by alkaline phosphatase [85], the NAADPH/NAADP redox cycle likely requires
fill-up reactions for NAADPH/NAADP.

Taken together, the NOX/DUOX enzyme family assumes a new role as producers of
the highly effective Ca2+-mobilizing second messenger NAADP and, in conjunction with
glucose 6-phosphate dehydrogenase, constitutes a novel cytosolic redox cycle involved in
early local Ca2+ signaling, at least in T cells [77].

6. Conclusions

NAD(P), for many decades known as a coenzyme of oxidoreductases, is also a precur-
sor for an entire family of Ca2+-mobilizing second messengers. The enzymes involved are
the NAD-GHs CD38 and SARM1, but also the NOX/DUOX family of NADPH oxidases.
While the former mainly produce ADPR under cytosolic conditions, thereby activating the
plasma membrane cation channel TRPM2, NOX/DUOX enzymes, at least NOX5, DUOX1,
and DUOX2, produce NAADP from its reduced form, NAADPH. Regarding the production
of the second messenger cADPR, SARM1 appears to generate more cADPR as compared
to CD38.

CD38 and the NOX/DUOX enzymes are regulated by phosphorylation and/or ele-
vated Ca2+ concentrations, whereas SARM1 is regulated by the cellular (cytosolic?) ratio
of NAD to NMN. Thus, the NOX/DUOX enzymes and CD38 conform to other second-
messenger-generating enzymes, e.g., phospholipase C, known to be activated via plasma
membrane receptors for hormones, paracrine mediators, neurotransmitters, etc. In contrast,
SARM1 seems to sense NAD loss, e.g., due to infection by certain viruses, leading to SARM1
activation followed by more NAD degradation, and finally resulting in cell death. The
latter is required to stop viral spread in the body. This situation raises many questions, e.g.,
can a cell distinguish between ADPR produced by CD38 and ADPR produced by SARM1?
Is it a question of potentially different cytosolic ADPR concentrations in response to CD38
and SARM1 activation, or is the higher co-production of cADPR and possibly also NAADP,
in the case of SARM1, involved in determining the cell’s fate?

Although many aspects have been clarified since the initial discovery of NAD-GH’s
enzymatic function by Mike and Elaine Jacobson in 1993 [1], many open questions remain
for the next generation of researchers in the adenine nucleotide and Ca2+ signaling field.
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