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Abstract: Drug repurposing aims to identify new therapeutic uses for drugs that have already been
approved for other conditions. This approach can save time and resources compared to traditional
drug development, as the safety and efficacy of the repurposed drug have already been established.
In the context of cancer, drug repurposing can lead to the discovery of new treatments that can target
specific cancer cell lines and improve patient outcomes. Vasodilators are a class of drugs that have
been shown to have the potential to influence various types of cancer. These medications work by
relaxing the smooth muscle of blood vessels, increasing blood flow to tumors, and improving the
delivery of chemotherapy drugs. Additionally, vasodilators have been found to have antiproliferative
and proapoptotic effects on cancer cells, making them a promising target for drug repurposing.
Research on vasodilators for cancer treatment has already shown promising results in preclinical
and clinical studies. However, additionally research is needed to fully understand the mechanisms
of action of vasodilators in cancer and determine the optimal dosing and combination therapy for
patients. In this review, we aim to explore the molecular mechanisms of action of vasodilators in
cancer cell lines and the current state of research on their repurposing as a treatment option. With the
goal of minimizing the effort and resources required for traditional drug development, we hope to
shed light on the potential of vasodilators as a viable therapeutic strategy for cancer patients.

Keywords: vasodilators; repurposing drugs; in vitro

1. Introduction

Vasodilators encompass several classes of drugs that relax blood vessels. These drugs
are used to treat cardiovascular problems such as hypertension, angina pectoris, and
cardiac failure [1,2]. Vasodilators include medications that are categorized as angiotensin-
converting enzyme inhibitors (ACEIs), angiotensin receptor blockers (ARBs), calcium
channel blockers (CCBs), nitrates, direct vasodilators, calcium sensitizers, and phosphodi-
esterase 5 (PDE5) inhibitors (Figure 1). ACEIs are primarily used to treat hypertension and
heart failure, preventing ACE-mediated conversion of angiotensin I to angiotensin II and
the resulting increase in blood pressure. The reduction in plasma levels of angiotensin II
by ACE inhibitors leads to increased plasma renin activity and decreased blood pressure,
vasopressin secretion, sympathetic activation, and cell growth [3–5]. ARBs block the action
of angiotensin II by selectively binding of angiotensin type 1 (AT1) receptors in tissues,
which intermediates all the typical effects of angiotensin II such as vasoconstriction. CCBs

Cells 2023, 12, 671. https://doi.org/10.3390/cells12040671 https://www.mdpi.com/journal/cells

https://doi.org/10.3390/cells12040671
https://doi.org/10.3390/cells12040671
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0003-2434-5874
https://orcid.org/0000-0002-1283-1042
https://doi.org/10.3390/cells12040671
https://www.mdpi.com/journal/cells
https://www.mdpi.com/article/10.3390/cells12040671?type=check_update&version=1


Cells 2023, 12, 671 2 of 25

promote vasodilation by reducing calcium flux into cells. These drugs are the most typi-
cally used in cardiovascular medicine for the treatment of not only hypertension but also
angina and tachyarrhythmias [4,6]. CCBs or calcium antagonists promotes vasodilation
(and reduce blood pressure) by reduction of calcium flux into cells. These drugs are the
most usually used in cardiovascular medicine in the management not only of hypertension
but also for tachyarrhythmias and angina [7]. The main roles of CCBs include dilatation
of coronary and peripheral arterial vasculature, a negative inotropic action, reduction in
heart rate, and slowing of atrioventricular conduction [8]. There are two classes of CCBs:
dihydropyridines (DHPs), which have eminent selectivity for vascular smooth muscle cells
than for cardiac myocytes, and non-DHPs, which have selectivity for cardiac myocytes and
are used for treat cardiac arrhythmias [9–11]. Direct vasodilators are dilators of resistance
vessels with little action on venous beds, used for severe refractory hypertension, malignant
hypertension, and hypertensive emergencies [12]. Nitrate vasodilators embrace a group
of organic nitrate esters that cause vasodilation by nitric oxide (NO) liberation [13,14],
which can be used as monotherapy or add-on therapy in combination with other anti-
angina drugs [15,16]. The molecular basis of nitrate pharmacotherapy is mediated through
activation of endogenous NO-cGMP signaling pathways [17]. NO stimulates the solu-
ble form of the enzyme guanylate cyclase in the smooth muscle cells of blood vessels.
Guanylate cyclase produces cyclic guanosine monophosphate (cGMP) from guanosine
triphosphate (GTP). cGMP in turn activates cyclic nucleotide-dependent protein kinase G
which phosphorylates various proteins that play a role in decreasing intracellular calcium
levels, leading to relaxation of the muscle cells and, thus, to dilation of blood vessels [14].
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Figure 1. General mechanisms of action of vasodilators. Vasodilators may activate receptors that
open potassium channels, produce hyperpolarization of the endothelium, and enhance calcium influx
through receptor-operated calcium channels. Stimulation of β2 and D1 receptors causes smooth
muscle relaxion, while α-adrenoceptor antagonists, endothelin antagonists, and angiotensin receptor
blockers prevent the binding of norepinephrine, endothelin, and angiotensin II, respectively. Nitrates
increase the amount of NO in vascular tone, causing vasodilation. PCE3 inhibitors prevent the
phosphodiesterase enzymes from breaking down cAMP and cGMP in the cell, causing vasodilation
and smooth muscle relaxation. The exact mechanism of direct vasodilators is still unknown.
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Calcium sensitizers are a recent class of inotropic drugs. They act on contractile pro-
teins without increase intracellular calcium load, improving myocardial performance [18].
PDE5 inhibitors are commonly used in the management of erectile dysfunction [19].

All these characteristics and types of vasodilators represent ways they can affect cancer
cells by increasing blood flow to the tumor, inhibiting the formation of new blood vessels,
activating macrophages, or affecting several important signaling pathways. Therefore,
despite the progressive research and recent advances in the development of effective drug
treatments to treat solid tumors, the number of cases and deaths in cancer patients re-
mains a major health problem. Drug repurposing aims to give to existing Food and Drug
Administration-approved (FDA-approved) drugs new indications, rather than the original
indication. Currently, the profile of drug reuse has essentially increased for three main rea-
sons [20,21]. Firstly, the use of existing drugs for new purposes reduces drug development
time by using what is already known about these drugs, including their pharmacodynam-
ics, pharmacokinetics, uncommon and common toxicities, dosing scheme, and mechanism
of action. This means, secondly, that most preclinical and Phase 1 (determine if the effects
observed in animal tests also occur in humans) clinical development steps can be shortened.
In this way, drug repurposing grants a significantly faster path to Phase 2 (determining
therapeutic efficiency for the target disease) and Phase 3 (comparison of the new drug with
existing and marketed drugs) trials compared to traditional drug discovery and develop-
ment, where dosing, safety, and toxicity profiles are not fully known. Thirdly, as a result of
the above, the financial investment related to development is substantially lower [22,23].
Moreover, these drugs, which have been used for other indications previously, already have
reliable data on drug safety and are often inexpensive [23]. In additional to this, in silico
drug repurposing has gained great prominence as a complement to in vitro and in vivo
studies. These studies have the advantage of being quick to perform, low-cost, and able to
reduce the use of animals in toxicity tests [24,25]. Treating cancer can be a complex and
challenging task due to the many different types of cancer since each has its unique set
of characteristics and behaviors. For example, some cancers are highly aggressive and
fast-growing, while others are slow-growing and less aggressive. Some cancers respond
well to traditional treatments such as chemotherapy and radiotherapy, while others do
not [4,20]. Additionally, many cancers are characterized by genetic mutations or other
abnormalities that make them resistant to treatment. One way to address the difficulties of
treating different types of cancer is to focus on the mechanism of action of a given treatment.
In other words, understanding how a particular treatment works at a molecular level can
help identify which types of cancer are most likely to respond to that treatment [21,22].
Therefore, it is important to note that the effects of vasodilators on cancer cells vary depend-
ing on the specific drug and the type of cancer being studied (see Table 1). The effects of
vasodilators on cancer cells in a laboratory setting may not necessarily translate to the same
effects in humans. Further research is needed to fully understand vasodilators’ impact on
cancer cells and determine their potential as a treatment for cancer. In the next section of
this review article, we examine the literature on the effects of each class of vasodilators in
various cell lines, highlighting how these drugs can exhibit both protumor and antitumor
properties, depending on the specific drug and cancer type being studied.

Table 1. Vasodilator drugs against different types of cancer. The table shows only the vasodilator
drugs tested on tumor cell lines.

Drug Drug Class Clinical Use Cell Lines Effects In Vitro References

Enalapril ACE inhibitor Hypertension and heart
failure

HCT116, SW620, CT26, HT29,
SW40, and HL60

Inhibits cell proliferation,
suppresses EMT, and

induces apoptosis
[26–32]

Captopril ACE inhibitor Hypertension and
congestive heart failure DU145, HCT116, and Hs578T Inhibits mitosis, growth,

and migration [33–42]
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Table 1. Cont.

Drug Drug Class Clinical Use Cell Lines Effects In Vitro References

Trandolapril ACE inhibitor

Hypertension,
congestive heart failure,

and after myocardial
infarction

K562, KU812, U937, and HL60 Inhibits cell growth and
induces apoptosis [43]

Sildenafil PDE5 inhibitor
Erectile dysfunction and

pulmonary
hypertension

HT-29, SW489, SW620,
HCT116, SW116, PC-3, DU145,
4T1, MCF-7, A549, HeLa, SiHa,

RD, and RH30

Inhibits proliferation,
migration, and invasion;

induces apoptosis, cell-cycle
arrest at G1 phase, and
accumulation of ROS

[44–55]

Tadalafil PDE5 inhibitor Erectile dysfunction PC-3, UM1, UM47, UM6,
CAL27, A549, and SK-MES-1 Inhibits proliferation [56–59]

Azilsartan ARB Hypertension HepG2, A549, MCF-7, and
MDA-MB-231

Induces oxidative stress,
cytochrome c release,

cytotoxicity, cell-cycle arrest,
and suppression of

NF-kB/IL-6/JAK2/STAT3
signaling pathway

[60–62]

Candesartan ARB Congestive heart failure
and hypertension

CT-26, SW480, HOS, MG63,
and U-2OS

Induces E-cadherin,
downregulation of MMP3/9,

inhibits Wnt/β-catenin
signaling, and induces

apoptosis

[63–68]

Irbesartan ARB Hypertension

HCCLM3, HMHCC97-H,
HMHCC97-L, SMMC-7721,

Huh-7, Hep-3B, PLC, MCF-7,
T47D, ZR-75-30, MDA-MB-231,

MDA-MB-435, and
MDA-MB-468

Inhibits adhesion of HCC cells
to endothelial cells and

suppresses cell proliferation
[69,70]

Losertan ARB Hypertension
MCF-7, CT-26, Huh-7, JHH-6,

MHCC97H, HepG-2, and
SMMC-7721

Induces apoptosis and G1
cell-cycle arrest [71–78]

Olmesartan ARB Hypertension
A549, HeLa, MCF-7, Me 4405,

Sk-Mel-28, PC-3, Du145,
MDA-MB-468, and HEK

Inhibits growth; induces
apoptosis and ROS [79–85]

Telmisartan ARB Hypertension GIST-T1, PC-3, MDA-MB-468,
and DU145

Induces cell-cycle arrest in the
G0/G1 phase and apoptosis;

inhibits cell proliferation
[86–94]

Valsartan ARB Hypertension CNE-2 Inhibits growth [95]

Levosimendan Calcium sensitiser
Acute and advanced

heart failure and
hypertension

SU-DHL-8 Inhibits RIOK1 [96]

Amlodipine CCB
Hypertension, angina
and coronary artery

disease

MDA-MB-231, MCF-7, A549,
and A431

Inhibits proliferation, invasion,
colony formation, and

cell-cycle arrest at G0/G1
phase

[97–104]

Nicardipine CCB Hypertension and
angina

PC-3, 4T1, JC, and
MDA-MB-231

Inhibits cell migration and
colony formation and increases

Nrf2 expression
[105–107]

Felodipine CCB

Hypertension, chronic
stable angina pectoris
and congestive heart

failure

Mz-ChA-1, KMCH, CC-LP-1,
and TFK-1

Increases caspase 3/7 and
decreases cell viability [108–110]

Nifedipine CCB Hypertension DLD1 and MDA-MB-231

Suppresses cancer progression,
migration, and immune escape;
reduces expression of NFAT2;
induces cell-cycle arrest at S

phase

[111–114]

Diltiazem CCB
Hypertension, angina,
and congestive heart

failure

MCF-7, JC, 4T1, MDA-MB-231,
and A549

Attenuates colony formation,
cell migration, and EMT [115–117]

Verapamil CCB Hypertension and
angina

HT-29, G292, L3.6pl, AsPC-1,
G-UVW, G-CCM, G-MCF, P388,

and A549

Promotes intracellular drug
accumulation, fragmentation
of chromatin; decreases cell

viability and migration;
increases cell apoptosis

[117–131]
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Table 1. Cont.

Drug Drug Class Clinical Use Cell Lines Effects In Vitro References

Hydralazine Direct vasodilator Hypertension

Jurkat, MOLT-4, CEM-6,
DU145, LNCaP, 22Rv1, PC-3,
HeLa, CaSki, SiHa, A549, and

H1703

Loss of mitochondrial
membrane, ROS production,

and reduced colony formation,
invasion, and migration

capabilities

[132–135]

Minoxidil Direct vasodilator Hypertension
PC-3, LNCaP, LaPC4, HepG2,
MDA-MB-231, MDA-MB-468,

and OVCAR-8

Increases ROS accumulation;
induces apoptosis [136,137]

Nitroglycerin Nitrate

Angina pectoris,
hypertension,

congestive heart failure,
and for induction of
surgical hypotension

HCT116, SW480, SW620, and
PC-3

Decreases concentration of
cardiolipin, downregulates
respiratory chain complex

activities, releases cytochrome
c into the cytosol, and activates

caspase-9 and caspase-3

[138–142]

Isosorbide
minitrate Nitrate

Angina pectoris, acute
myocardial infraction,
and congestive heart

failure

HCT116, SW620, SKOV3, and
HO8910

Inhibits cell growth and
proliferation; induces
apoptosis, chromatin

condensation, ROS production,
and mitochondrial damage

[143–145]

Sodium
Nitroprusside Nitrate Acute hypertension and

vascular surgery

SGC-7901, AGS, MKN45,
MKN28, U343, U251, and

LN-Z308

Apoptosis induction and cell
growth inhibition [146,147]

ACE: angiotensin-converting enzyme; ARB: angiotensin receptor blockers; CCB: calcium channel blockers; EMT:
epithelial-to-mesenchymal transition; ROS: reactive oxygen species; HCC: hepatocellular carcinoma.

2. Angiotensin-Converting Enzyme (ACE)
2.1. Enalapril

Enalapril is an active angiotensin-converting enzyme inhibitor, used in clinical practice
for the treatment of several conditions, including heart failure and hypertension [148]. This
substance can reduce cell proliferation and cause cell death, activating cell signaling path-
ways that involve TGF-β as the main regulator and tumor suppressor factor in epithelial
cells [26–28]. Yang et al. showed that enalapril can be used as a chemotherapy sensitizer,
strongly restoring chemotherapeutic sensitivity and improving the efficacy of 5-FU in col-
orectal cancer (CRC). In this study, through MTT assays, it was demonstrated that the use
of enalapril in CRC cell lines had a limited effect even at high concentrations (100–2000 µM)
for 72 h. However, the combination of enalapril with 5-FU extremely decreased cell viability
in HCT116 and SW620 cell lines at 72 h. As tumor invasion, metastasis, and therapeu-
tic resistance are closely related to epithelial–mesenchymal transition (EMT), Yang et al.
assessed the effect of the combination use of these two drugs on EMT, finding that the
cotreatment had a synergistic effect on suppressing EMT by upregulating the epithelial
cell marker E-cadherin and downregulating the mesenchymal cell markers Vimentin and
Snail, suggesting that inhibition of the EMT process may be considered as another possible
mechanism via which enalapril potentiates the antitumor effect of 5-FU in CRC. The results
of this study confirm that the synergistic effect between enalapril and 5-FU enhanced the
chemosensitivity of CRC cells to 5-FU mainly through inhibition of cell proliferation [29].
Similar to this article, Mostafapour et al. exhibited the therapeutical impact of enalapril and
its combination with 5-FU in the treatment of CRC. Studying three CRC cells (CT26, HT29,
and SW40), they demonstrated that an increase in the enalapril concentration could lead
to a decrease in cell growth, being more efficiently combined with 5-FU. Furthermore, the
effects of enalapril on migratory behaviors have been investigated, and the results revealed
a substantial reduction in the migration of CRC cells after 20 h [30]. Ozlem et al. examined,
in the first phase of their study, the possible apoptotic and cytotoxic effects of enalapril in
HL60 cells, as well as the potential mechanisms involved in cell death. Enalapril reduced
the viability and proliferation of HL60 cells in a time- and dose-dependent manner, having
an IC50 value of 7 µM. When they studied the possible apoptotic effect in these cells, the
results showed that necrotic cells were in abundance compared to apoptotic cells. In the
second phase of this study, Ozlem et al. intended to identify the pathway(s) involved in the
cytotoxicity of enalapril in HL60 cells. Therefore, because STAT proteins play an important
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role in cellular processes and the dysregulation of the STAT pathway can lead to formation
of malignant cells [31], they investigated the expression gene levels of STAT3, ATAT5, and
STAT5B by qRT-PCR. The results showed that only changes in expression levels of STAT3
and STAT5A were statistically significant, whereas these proteins can play a significant role
in enalapril-induced leukemia cell death [32].

2.2. Captopril

Captopril (D-3-mercapto-2-methylpropanoyl-L-proline) is an orally active competitive
inhibitor of ACE, approved by the FDA in 1981 as an antihypertensive drug [33,149]. Capto-
pril is prescribed in the management of congestive heart failure and hypertension [150–152].
Captopril has been described to inhibit mitosis in some cell types including canine renal
epithelial cells [34], human neuroblastoma cells [35], human lung fibroblasts [36], hamster
pancreatic carcinoma cells [37], and a cell line derived from a human salivary gland carci-
noma [33]. Captopril was proven to be highly cytotoxic to HCT116 and DU145 cancer cells
with IC50 values of 1.5 and 1.2 mg/mL. The cells, after 24 h of treatment, became granulated
and rounded, dethatching the monolayer along with an increase in drug concentration.
Captopril was also able to inhibit the migration of cancer cells in a concentration-dependent
manner [38]. Another study was able to prove that, in the presence of sub-physiologic
concentrations of CuCl2, captopril inhibits proliferation, thymidine incorporation, and
mitochondrial dehydrogenase activity of Hs578T carcinoma cells in culture [33] Shen et al.
demonstrated that captopril increases the antitumor effects of bevacizumab via inhibi-
tion of fibroblast contraction and extracellular matrix deposition, thereby reducing liver
metastases stiffening [39]. Treatment of CRC with this vasodilator resulted in downregula-
tion of Wnt/β-catenin signaling pathway [40]. Another study using captopril to deplete
the overexpression of extracellular matrix (ECM) proved that this delivery significantly
downregulated ECM by blocking the TCF-B1/Smad2 signaling pathway in pancreatic
cancer [41]. In gliosarcoma cells, captopril decreased the expression of protein MMP-2 and,
consequently, the migratory capacity [42].

2.3. Perindopril

Perindopril is used alone or in combination with other drugs to prevent heart at-
tacks and to treat patients with high blood pressure. Perindopril can be highlighted in
the group of ACE inhibitors due to its dose-dependent and long-lasting blood pressure-
lowering effect, via the protection of blood vessels (improves endothelial function and
decreases wall stiffness) and a decrease in variability of blood pressure [153,154]. Con-
centrations of VEGF mRNA and the expression of VEGF protein in human solid tumors
correlate positively with malignant progression [155]. Yoshiji et al. reported that this
ACE inhibitor considerably inhibited tumor growth and angiogenesis in hepatocellular
carcinoma cells, along with suppression of the vascular endothelial growth factor (VEGF)
level [156]. Another study demonstrated that 1 µM perindoprilat greatly inhibited VEGF
expression, although it did not suppress the proliferation of KB cell line [157]. Zakaria
et al. revealed that perindopril increased the antitumor effect of sorafenib via downreg-
ulation of EpCAM and leptin/Wnt/β-catenin pathway and overexpression of aldehyde
dehydrogenase 1 (ALDH1) [158].

2.4. Trandolapril

Trandolapril is a nonsulfhydryl prodrug that has been used after myocardial infarction
and in the treatment of congestive heart failure and hypertension [159]. Trandolapril was
described to inhibit the cell growth of K562, KU812, and U937 cell lines at 1 mM and
HL60 cells at 0.02 mM. Additionally, trandolapril induced cell apoptosis, increasing the
percentage of apoptotic cells in the K562 cell line [43].
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3. Angiotensin Receptor Blockers (ARBs)
3.1. Azilsartan

Azilsartan was the eighth approved ARB for the management of hypertension in
February 2011 [160,161]. Azilsartan medoxomil (potassium salt) is a prodrug that, when
hydrolyzed, liberates azilsartan, its active form [162]. Furthermore, azilsartan was shown
to induce ROS production, cytochrome c release, and cytotoxicity in HepG2 and A549
cell lines [60,61]. In another study, azilsartan exhibited inhibition of cell growth, as well
as induced apoptosis and cell-cycle arrest in breast cancer cell lines MCF-7 and MDA-
MB-231. In addition, azilsartan treatment was shown to reduce the expression of NF-κB
mRNA and IL-6, JAK2, and STAT3 proteins, thus promoting many cellular pathways in
malignant tumors such as proliferation, metastasis, invasion, and angiogenesis, resulting in
the suppression of the NF-κB/IL-6/JAK2/STAT3 signaling pathway in breast cancers [62].

3.2. Candesartan

Candesartan cilexetil is classified as an ester prodrug that, during absorption in the gas-
trointestinal tract, is converted to candesartan [163]. This vasodilator was approved by the
FDA in June 1998 for the treatment of congestive heart failure and hypertension [164–166].
Candesartan is also used off-label to treat conditions including cerebrovascular accident or
stroke, diabetic nephropathy, left-ventricular hypertrophy, and migraines [166]. A study
reported that candesartan treatment inhibits the migratory behavior of CRC cells (CT-26
and SW480) via downregulation of MMP3/9 and induction of E-cadherin. Additionally,
candesartan inhibits Wnt/β-catenin signaling via downregulation of cyclin D1, surviving,
and MMP mRNA levels [63]. Recently, inhibition of the Wnt/β-catenin signaling pathway
was shown to be related to suppressing tumor cell migration and metastasis [64], while
the MMP enzymes were reported to be involved in cell migration and invasion [65,167].
Another study proved that candesartan combined with TRAIL, a member of the TNF family
of cytokines that promotes apoptosis, was able to upregulate DR5, leading to apoptotic cell
death in HCC-15 and A549 lung cancer cell lines. Candesartan had an effect on increasing
autophagosome formation and caused defective lysosomal degradation. Furthermore,
inhibition of AMPK phosphorylation via treatment with this vasodilator confirmed that
defective autophagy triggers apoptosis by conferring cellular oxidative stress [66]. Another
study proved that this vasodilator had an antitumor effect on breast cancer, enhancing
liposome penetration and depletion of the tumor stroma [67]. Irbesartan inhibited the pro-
duction of MCP-1 and the accumulation of CCR2+ inflammatory fibrocytes and monocytes
in the inflamed colon, preventing the development of colitis-associated tumors [68].

3.3. Irbesartan

Irbesartan was the third ARB approved by the FDA; it is a potent and selective
angiotensin II subtype 1 receptor antagonistic indicated for treatment of hypertension,
including patients with type 2 diabetes mellitus and nephropathy [168,169]. A study
demonstrated that irbesartan has the ability to inhibit metastasis by disrupting angiotensin
II-induced adhesion of tumor cells to endothelial cells in hepatocellular carcinoma (HC-
CLM3, HMHCC97-H, HMHCC97-L, SMMC-7721, Huh-7, Hep-3B, and PLC) [69]. Another
study revealed that irbesartan could suppress the cell proliferation effects of angiotensin II
in breast cancer cells by inhibiting AT1R signaling [70].

3.4. Losartan

Losartan is as angiotensin AT1 receptor antagonist approved by FDA for the treatment
of hypertension [170]. Zhao et al. exhibited that, through inhibition of the PI3K/AKT
pathway, losartan could induce apoptosis in the MCF-7 cell line [71]. Another study, in
agreement with the previous study, demonstrated that this vasodilator could induce apop-
tosis via inhibition of the PI3K/AKT pathway and expression of p53 and BAX levels in
the CT26 cell line. Losartan administration increased MDA levels and reduced total thiol
concentration and catalase activity, suggesting that changes in oxidant/antioxidant status
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may be one of the mechanisms underlying the antitumor activities of the drug losartan
against colon cancer cells [72]. In another study, Takagi et al. provided evidence that
losartan potently augmented the anticancer properties of lenvatinib against human liver
cancer cell growth. The results showed that this ARB efficiently inhibited AT-II-stimulated
cell growth and induced apoptosis in numerous human liver cancer cell lines [73]. It is
known that AT-II can promote tumor growth in hepatocellular carcinoma (HCC) [74,75].
Losartan could reduce the ECM, leading to an increase in antitumor immunity, as exempli-
fied by the reduction in tumor size and lung metastasis [76]. The combination of losartan
with radiotherapy enhanced tumor control and inhibited metastasis of breast cancer via
reducing tumor hypoxia [77]. On the other hand, cotreatment of losartan and chemotherapy
enhanced the chemotherapy effects and decreased ascites in ovarian cancer [78]. This ARB
inhibited cell growth and caused cell-cycle arrest at the G1 phase in CRC cell lines. Addi-
tionally, the tumor growth was reduced, and tumor cell necrosis was enhanced. Moreover,
angiogenesis and metastasis were reduced via the inhibition of MM2 and MMP9 [72].

3.5. Olmesartan

Olmesartan is an oral inhibitor of angiotensin AT1 receptor, used to manage blood
pressure and treat cardiovascular disease [171]. Kurikawa et al. described that olmesartan
suppresses cell proliferation in hepatic cells [79]. Olmesartan inhibited cell growth in mice,
being considered a good candidate in pancreas cancer treatment [80]. It has also been
reported that olmesartan has cytotoxic activity against MCF-7 and HeLa cell lines [81,172].
Another study showed that olmesartan significantly increased intercellular ROS, which can
be considered as a possible mechanism in olmesartan-induced toxicity in MCF-7 and HeLa
cell lines, thus corroborating the documented information that an excessive amount of ROS
can cause oxidative damage to proteins, DNA, and lipids and can lead to mitochondrial
dysfunction, provoking oncogenic transformation, as well as increased metabolic activity,
necrosis, and apoptosis [82–84]. The combination of telmisartan and docetaxel was shown
to inhibit growth in tumor cells (PC-3, DU145, MDA-MB-468, and HEK cell lines) and
reduce the expression levels of Snail and Slug genes [85].

3.6. Telmisartan

Telmisartan, a nonpeptide blocker of the angiotensin II AT1 receptor, is approved
for the management of hypertension [173,174]. Telmisartan was shown to inhibit cell
proliferation in a time- and dose-dependent manner in prostate cancer [175]. A study
showed that telmisartan induced cell-cycle arrest at the G0/G1 phase in human GIST-T1
cells, via a reduction in the expression of cyclin D1 [86]. Another study showed that
telmisartan inhibits cell growth by inducing apoptosis in many types of cancer, including
gynecological [87] and urological [88]. On the other hand, two different studies showed
that telmisartan inhibited cell proliferation through the induction of cell cycle arrest in
cholangiocarcinoma cell lines [89] and human esophageal squamous cell carcinoma [90].
Cotreatment of telmisartan with ADH-1 resulted in a reduction in cell attachment to N-
cadherin-coated plates on PC-3, MDA-MB-468, and DU145 cell lines. Another cotreatment
of telmisartan with docetaxel reduced cell migration only in PC-3 and MDA-MB-468 cell
lines [91]. Another study demonstrated that this ARB could inhibit proliferation in a dose-
and time-dependent manner and induce cell-cycle arrest at the S phase in two glioma cell
lines (U87 and U251) [92]. Mielczarek-Puta et al. demonstrated that the use of telmisartan
in CCR influences the antiproliferative activity of linoleic acid [93]. Another study showed
that telmisartan inhibited cell growth in a dose-dependent manner and caused cell-cycle
arrest at the G0/G1 phase in gastric cancer [94].

3.7. Valsartan

Valsartan is a nonpeptide tetrazole that selectively inhibits angiotensin II AT1 used
in the treatment of hypertension [176]. Wang’s research revealed that valsartan reduced
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proliferation, prevented invasion, and increased the radiation sensitivity of the CNE-2
cell line [95].

4. Calcium Channel Blockers (CCBs)
4.1. Amlodipine

Amlodipine, a DHP CCB, is normally used to cardiovascular diseases such as angina
and hypertension [177]. Amlodipine was shown to induce apoptosis and cell-cycle arrest,
as well as suppress the growth of cancerous cells, in various studies [97–99]. A study
showed that amlodipine treatment reduced MDA-MB-231 and MCF-7 cell viability in a
dose-dependent manner, with IC50 values for amlodipine in these cells of 8.66 and 12.60 µM,
respectively. The mechanism underlying the cytotoxic effects of amlodipine on the MDA-
MB-231 cell line appears to be caspase activation, thus leading to increased caspase-3/7
activity. Amlodipine suppressed the clonogenic proliferation in a dose-dependent manner
in MCF-7 cells over a prolonged period of time. On MDA-MB-232 cells, amlodipine
demonstrated downregulation of expression in p-ERK1/2 and integrin B1 protein [99]. The
anticancer effects of amlodipine were assessed in non-small-cell lung cancer. Amlodipine
suppressed the growth of the A549 cell line in a concentration-dependent manner, with
an IC50 value of 9.641 µM. This inhibition was mediated by the induction of cell-cycle
arrest at the G0/G1 phase, without marked apoptosis induction. The molecular mechanism
underlying this inhibition was explained by the decrease in phosphorylation levels of PDK1,
Akt (both Ser473 and Thr308), mTOR, p70 S6K, and GSK-3β, without changes in total PDK1,
Akt, and mTOR levels. Cell migration was also lower in the treated cells compared with
the untreated group, exhibiting a concentration-dependent effect. The phosphorylation
levels of ERK and c-Raf were reduced in a concentration-dependent manner in amlodipine-
treated cells, with no variation detected in total ERK, when compared with untreated
cells. Amlodipine significantly suppressed the level of p-EGFR in non-small-cell lung
cancer comparatively with the untreated control group, with no change detected in total
EGFR [100]. Another study conducted with amlodipine on A431 cells confirmed the
results obtained in the previous study [101]. Shiozaki et al. showed that amlodipine
could suppress the proliferation of gastric cancer stem cells [102]. The use of amlodipine
enhanced the anticancer effect of doxorubicin, inhibiting the proliferation of gastric cancer
cells. Furthermore, this combination of amlodipine and doxorubicin could inhibit cell
proliferation and spheroid formation in gastric cell lines [103]. Amlodipine could also
improve the effect of regorafenib in CCR [104].

4.2. Nicardipine

Nicardipine belongs to the DHP class of L-type CCBs mostly used in the treatment of
hypertension and angina [178]. Nicardipine increases the expression of Nrf2 and enhances
the expression of HO-1. The products of HO-1 subsequently result in inhibition of MMP-9
and cell migration in breast cancer cells [105]. Cotreatment of TNP-470 and nicardipine
considerably decreased the growth of the human prostate cancer cell line, PC-3, and
inhibited the formation of colonies in a dose-dependent manner [106]. Nicardipine could
enhance the cytotoxic effect of temozolomide in glioblastoma stem cells. This cotreatment
inhibited autophagy and induce apoptosis [107].

4.3. Felodipine

Felodipine is a DHP calcium antagonist indicated for patients with hypertension,
chronic stable angina pectoris, and congestive heart failure [179]. Felodipine was capable
of decreasing Mz-ChA-1 cell growth in a concentration-dependent manner, with an IC50
value of 26 µM. Similar results were observed in the KMCH, CC-LP-1, and TFK-1 cell
lines. The results of the study showed an increase in caspase 3/7 following treatment with
felodipine, indicating that the cytotoxicity of this agent likely involves the induction of
apoptosis [108]. Another study demonstrated a significant reduction in the number of
MYO10-induced filopodia in breast cancer cells using this vasodilator. Related results were
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obtained in pancreatic cancer cells [109]. Filopodia stimulate cell migration in many cell
types, and increased filopodia density has been described in cancer, being relevant for
cancer progression [110].

4.4. Nifedipine

Nifedipine (NIFE) is a DHP L-type calcium channel blocker. This drug inhibits Ca2+

influx and is appropriate for the treatment of all types of hypertension [111]. Wu et al.
reported that nifedipine suppresses the progression, migration, and immune escape of CRC
via a reduction in the expression of NFAT2, inhibiting its nuclear translocation [111]. Lee
and colleagues reported that dihydropyridines, such as nifedipine, are able to inhibit the
growth of human brain tumor cells [112]. Another study showed that application of 10 µM
or 100 µM of nifedipine for 24 h significantly decreased the growth rate of DLD1 cells, but
no change in the migratory capacity of these cells was recorded. In these cells, a significant
albeit small difference in the S phase of the cell cycle was detected in nifedipine-treated
cells compared to untreated cells. In breast cancer cells (MDA-MB-231), treatment with
100 µM nifedipine was able to induce a significant decrease in proliferation and a small
decrease in migration [113]. Nifedipine was also shown to potentiate the proapoptotic
effect of the chemotherapeutic cisplatin in glioblastoma cells [114].

4.5. Diltiazem

Diltiazem, an FDA-approved drug to treat hypertension, is an L-type voltage-gated
CCB indicated also for the management of angina and congestive heart failure [180]. One
study addressed the antitumor effects of diltiazem, which reduced colony formation, cell mi-
gration, and EMT by increasing GDF-15 expression level through inhibiting its proteolytic
degradation in different breast cancer cell lines in vitro. Diltiazem administration in vivo
also upregulated the serum level of GDF-15, as well as reduced EMT and MMP-9/MMP-2
expression, leading to a decrease in metastasis of breast cancer [115]. Al-malky et al. proved
that diltiazem can improve doxorubicin therapy against breast cancer cells (MCF-7 cell
line).The results showed that treatment with this vasodilator improved cytotoxic activity,
significantly increased the cellular uptake of doxorubicin and aggregation of rhodamine
123, and reduced multidrug resistance [116]. Diltiazem cotreatment, with either 5-FU or
gemcitabine, reduced cell viability, induced apoptosis, and caused significant cell-cycle
arrest at the S phase in pancreatic cancer cells [181]. Wong et al. proved that diltiazem
could induce autophagy in the A549 cell line [117].

4.6. Verapamil

Verapamil is a calcium channel blocker that is utilized clinically to treat cardiac ar-
rhythmias, hypertension, and angina [182,183]. Verapamil was demonstrated to promote
intracellular drug accumulation when combined with chemotherapeutic agents [118]. This
was demonstrated in lung cancer, colorectal, leukemia, carcinoma, and neuroblastoma
cell lines [119–122]. A study confirmed that cotreatment of verapamil with hyperther-
mia resulted in chromatin fragmentation into nucleosomal oligomers in primary (HT-29)
and metastatic (SW620) human colon adenocarcinoma cells, suggesting programmed cell
death [123]. The same authors showed that the cotreatment of verapamil with hyperther-
mia caused a dramatic decrease in cell count [124]. Another study provided evidence that
verapamil had an inhibitory effect on G292 osteosarcoma cells. Verapamil could inhibit the
activity of G292 cells significantly in the absence of calcium. These results can be reflective
of both a decrease in cell viability (measured by membrane integrity) and an increase in cell
apoptosis (measured by caspase activity). Furthermore, the role of platelet-derived growth
factors was explored in the proliferation and metastasis of osteosarcoma, thus revealing
that growth factors can modulate cell migration and matrix metalloprotease production.
Moreover, verapamil could also inhibit activity induced by platelet-derived growth factor
(PDGF) and insulin-like growth factor (IGF) on this cell line [125]. Chemoresistance in pan-
creatic cancer appears to result from several mechanisms [126]. Tumors are heterogeneous,
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comprising a population of cancer stem cells (CSC) that are resistant to cytotoxic drugs
and responsible for tumor recurrence. The properties of CSCs that actively cause chemore-
sistance in cancer cells are not yet fully known, and further study is required [127–129].
Chemotherapy-resistant pancreatic cancer cells (L3.6pl and AsPC-1) can be treated with
verapamil. This vasodilator could improve the cytotoxic effects of chemotherapeutic drugs
and multidrug resistance by targeting the transport function of P-glycoprotein [130]. Vera-
pamil could also induce autophagy in A549 cells [117]. Metabolomics analysis showed that
this CCB reversed multidrug resistance in CCR [131].

5. Direct Vasodilators
5.1. Hydralazine

DNA methylation, histone modification, and noncoding RNA species are the three
pillars of epigenetic regulation that can lead to many types of diseases, including different
types of cancer [133,184]. These modifications can be inverted by pharmacological agents,
such as DNA methylation inhibitors. Hydralazine, a vasodilator and antihypertensive
drug, was recently shown to act as a DNA methylation inhibitor by reducing the expression
of the DNA methyltransferases DNMT1 and DNMT3a, enzymes responsible for cytosine
methylation in mammals [185,186]. An article proved that hydralazine stimulates apoptosis
and causes DNA damage in leukemic T cells. T-cell acute leukemia is a type of cancer with
a high frequency of mutations in genes encoding for epigenetic regulators. Hydralazine
induced apoptosis in a dose-dependent manner in Jurkat, MOLT-4, and CEM-6 cell lines via
activation of Bak and loss of mitochondrial membrane potential, followed by production
of ROS [133]. Prostate cancer is another type of cancer with frequent epigenetic changes.
In another study, DU145, PC-3, LNCaP, and 22Rv1 cell lines were tested with hydralazine
and panobinostat alone or as cotreatment to assess their therapeutical potential. Overall,
the drugs had a greater cytotoxic effect on the DU145 cell line. Synergy between these two
drugs was observed in DU145, PC-3, and LNCaP cell lines. The combined treatment only
affected colony formation in PC-3 and DU145, with the clonogenic capacity of the latter
cell line being dramatically reduced by exposure to hydralazine alone. When testing the
effect of these epidrugs on the invasive and migration capabilities of the cell lines, all cells
except LNCaP cells lost their invasive ability following combined treatment. Additionally,
in accordance with the invasion assay, DU145 cell’s exposure to hydralazine alone or in
combination reduced cell migration [132]. The cotreatment of hydralazine with enzalu-
tamine displayed synergistic effects. This combination in prostate cancer cell lines reduced
cell viability, clonogenic and invasive potential, and proliferation, as well as induced DNA
damage and apoptosis [134]. Ultrasound hyperthermia can be enhanced by this vasodilator
in HCC tumors through modulation of tumor blood flow [135].

5.2. Minoxidil

Minoxidil is an ATP-sensitive potassium channel opener and an antihypertensive
agent that promotes vasodilation and stimulates hair growth [187,188]. Treatment with
minoxidil was shown to decrease cell proliferation and induce proapoptotic effects in
ovarian cancer [136]. Qiu et al. showed that, in the breast cancer cell lines MDA-MB-
231 and MDA-MB-468, treatment with the vasodilator minoxidil had no effect on cell
viability and proliferation whether applied alone or in combination with ranolazine. On the
contrary, cell invasion was significantly reduced in a dose-dependent manner by minoxidil
and ranolazine, and their combination was additionally effective [137].

6. Nitrates
6.1. Nitroglycerin

Nitroglycerin (NTG), also called glyceryl trinitrate, is an organic nitrate causing va-
sodilation via donation of nitric oxide (NO). This vasodilator is used for prophylaxis and
treatment of angina pectoris, hypertension, and congestive heart failure, as well as for the
induction of surgical hypotension [189]. The interest in the potential use of NTG in cancer
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treatment arose mainly from studies on the increased vascular permeability exhibited by
solid tumors. This phenomenon, possibly related to inflammatory responses to injury or
infection [190], was seen by some researchers as a potential mechanism for the targeted
delivery of chemotherapeutic agents to solid tumors [138,191]. A study showed that the
use of NTG triggers caspase-dependent cell death in human colon carcinoma cell lines
(HCT116, SW480, and SW620) [192]. Human PC-3 prostatic adenocarcinoma cells were
treated with NTG, resulting in increased survival of these cells [139]. A study on the human
leukemia cell line showed that NTG caused a significant decrease in the concentration of
cardiolipin (a major mitochondrial lipid), downregulation of respiratory chain complex
activities, release of the mitochondrial protein cytochrome c into the cytosol, and activa-
tion of caspase-9 and caspase-3 [140]. Nagai et al. investigated the effects of NTG on the
tumor growth of Lewis lung carcinoma cells in a murine syngraft model. The cotreatment
with NTG and PEM significantly reduced tumor growth [141]. Cotreatment therapy with
NTG and pemetrexed enhanced the cytotoxic effect and cell growth inhibition in lung
cancer [142]. Another study proved that NTG could decrease the expression of TS in a
dose-dependent manner in A549 and H1703 cell lines. Moreover, NTG could also enhance
the cytotoxic effect and growth inhibition of cisplatin [193].

6.2. Isosorbide Mononitrate

Isosorbide mononitrate (ISMN), an organic nitrate approved by FDA in 1997, is
used for the treatment of cardiovascular disorders, comprising pectoris, acute myocardial
infarction, angina, and congestive heart failure. ISMN is a prodrug that can be activated
through in vivo metabolization into NO, a potent gas that produces vasodilation via the
eNos/NO/cGMP pathway [194,195]. A study conducted by Wang et al. showed that
cotreatment of aspirin and ISMN had a synergistic inhibitory effect on HCT116 and SW620
cell lines. ISMN treatment alone had a minimal effect on cell growth and proliferation. In
addition, this cotreatment improved the apoptosis-inducing effect on HCT116 cells, through
changes in nuclear morphology, phosphatidylserine translocation, caspase-3 activation, and
poly(ADP-ribose) polymerase (PARP) cleavage. A significantly larger amount of chromatin
condensation was also shown, along with an elevated apoptotic rate and increased caspase-
3 activity [143]. Furthermore, ISMN was shown to inhibit angiogenesis, tumor growth, and
metastasis in a chick model of the chorioallantoic membrane (CAM) and a mouse model of
Lewis lung carcinoma (LLC) [144]. In another study, codelivery of artesunate and ISMN in
ovarian cancer cells (SKOV3 and HO8910) was investigated. The results revealed that the
cotreatment could induce the production of ROS, contributing to mitochondrial damage.
Additionally, DNA damage and cell-cycle arrest at the G0/G1 phase leading to apoptosis
was verified [145].

6.3. Sodium Nitroprusside (SNP)

SNP is a complex anion that causes vasodilation, and it is used in the management
of acute hypertension and in vascular surgery [146,196]. In a study, the effect of TRAIL
was assessed in SGC-7901, AGS, MKN45, and MKN28 gastric cancer cell lines. TRAIL
was found to be able to inhibit cell growth and induce apoptosis in these cells in a dose-
dependent manner. In addition, the authors found that SNP could sensitize these gastric
cancer cells to TRAIL-mediated cytotoxicity by stimulating NO release and facilitating
apoptosis [146]. Blackburn et al. investigated the possible cytotoxic effects of SNP on U343,
U251, and LN-Z308 glioma cell lines. Only U251 and LN-Z308 cell lines demonstrated in-
creased cytotoxicity and decreased development in a dose-dependent manner. In addition,
apoptosis was seen in U251 and LN-Z308 cell lines when exposed to low concentrations
of 0.5 mM SNP. It was also possible to verify, in these cell lines, nuclear condensation and
fragmentation (apoptotic bodies), as well as cytoplasmic shrinkage and blebbing [147].
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7. Phosphodiesterase 5 (PDE5) Inhibitors
7.1. Sildenafil

Sildenafil is an inhibitor of phosphodiesterase type 5 (PDE5), an enzyme that affects
cell signaling. Sildenafil competitively binds to PDE5 with cyclic guanosine monophos-
phate (cGMP) due to their analogous structures, which improves the levels of cGMP to
activate protein kinase G, resulting in vasodilation and an increase in blood flow [197].
Overexpression of PDE5 has been detected in multiple types of cancer, including breast
cancer, prostate cancer, bladder cancer, colorectal cancer, and lung cancer [54,198–202]. It
was found that sildenafil suppressed B-cell chronic lymphocytic leukemia cell growth and
induced apoptosis [44]. Sildenafil was shown to enhance the efficacy of doxorubicin by
increasing the permeability of the blood–brain–tumor barrier [45]. Moreover, sildenafil in-
crease the efficacy of doxorubicin in breast cancer [47] and prostate cancer cells [46] without
toxicity increase. Additionally, codelivery of crizotinib and sildenafil with nanoparticles
showed a synergistic effect and enhanced anticancer therapy in the MCF-7 cell line [48],
while the combinatorial delivery of sildenafil–crizotinib–palbociclib could increase cancer
treatment in the A549 cell line [49]. Sildenafil also increased the effects of other chemother-
apeutic agents such as mitomycin C, doxorubicin, cisplatin, and gemcitabine in pancreatic
and bladder cancer cells [50]. Roberts et al. stated that this vasodilator could improve
the cytotoxicity of celecoxib, a nonsteroidal anti-inflammatory drug, in tumor cells, in-
cluding colorectal cancer, hepatoma, glioblastoma, and medulloblastoma, via activation
of CD95-induced cell death [51]. A study showed that sildenafil induced cell-cycle arrest
at the G1 phase and apoptosis with the increasing accumulation of intracellular ROS in a
concentration- and time-dependent manner in human colorectal cancer cell lines (HT-29,
SW489, SW629, HCT116, and SW116) [52]. Another study confirmed that sildenafil could
reduce the cell viability, number of colonies, and ability of HeLa and SiHa cells to migrate
and invade in a dose- and time-dependent manner [53]. Sildenafil was also tested against
RD and RH30 rhabdomyosarcoma cell lines. The results showed that this vasodilator
decreased cell migration and viability in a dose-dependent manner [55].

7.2. Tadalafil

Tadalafil was approved by the FD in 1998, and it is prescribed and used in the therapy
of erectile dysfunction [57]. The cotreatment with tadalafil and green tea in prostate cancer
was shown to reduce cell proliferation [58]. Similary, tadalafil enhanced the anticancer effect
of cisplatin with increased apoptosis in the PC-3 cell line [59]. Tuttle et al. demonstrated
that this vasodilator could decrease the viability of UM1, UM47, UM6, and CAL27 cell
lines [203]. Cotreatment of tadalafil and cisplatin showed efficiency in the treatment of
non-small-cell lung cancer (A549 and SK-MES-1) [56].

8. Calcium Sensitizers
Levosimendan

Levosimendan is a calcium sensitizer that has vasodilatory effects through the stimu-
lation of adenosine triphosphate-dependent potassium channels used for the management
of hypertension and heart failure [204,205]. Levosimendan has been applied to numerous
tumor cell lines across 19 different types of cancer. The cancer types sensitive to levosi-
mendan include stomach, endocrine, renal, colorectal, bladder, osteosarcoma, melanoma,
prostate, and sarcoma, with the most sensitive being hematopoietic lymphoma. Notably,
the EC50, IC50, and GI50 values for the SU-DHL-8 cell line were 0.604 µM, 0.604 µM, and
0.512 µM, respectively. According to this study, it was possible to understand that the
antitumor activity of levosimendan mainly originates from the modulation of the RNA
processing pathway via the inhibition of atypical kinase RIOK1 [96].

9. Critical Appraisal of the Use of Vasodilators in Cancer in the Future

Currently, cancer represents the major public health problem and the second cause
of death worldwide [206,207]. Although there is no standard treatment scheme adopted,
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most patients are generally submitted to the primary treatments: radiotherapy, chemother-
apy, and surgery [208]. These treatments, although relatively effective, have associated
side-effects that can reduce the quality of life of the patient and, in some cases, lead to
interruption of treatment [209]. In this way, the use of repurposed drugs, such as vasodila-
tors, can improve the therapeutic ratio of already existing treatments, thus combining their
advantages while reducing the associated side-effects. Several in vitro and preclinical data
supporting the use of vasodilators against cancer have been carried out, with some but
little evidence provided by clinical trials to validate preclinical studies (Table 2).

Table 2. Clinical trials involving vasodilators against types of cancer.

Vasodilator Type of Cancer Clinical Trial Status
Identifier Trial Number
(https://clinicaltrials.gov)
accessed on 7 February 2023

Enalapril Woman breast Not applicable Completed (2015) NCT00895414

Captopril Lung Phase 2 Completed (2016) NCT00077064

Perindopril Colorectal Phase 2 Completed (2018) NCT02651415

Losartan

Pancreatic
Pancreatic
Breast
Pancreatic
Pancreatic

Phase 2
Phase 2
Phase 2
Phase 2
Phase 1

Active
Active
Active
Recruiting
Recruiting

NCT03563248
NCT01821729
NCT05097248
NCT05077800
NCT05365893

Amlodipine Breast
Breast

Phases 1 and 2
Phase 2

Completed (2021)
Recruiting

NCT02834403
NCT05660083

Verapamil Brain
Lymphoma

Phase 2
Phase 1

Completed (2017)
Active

NCT00706810
NCT03013933

Hydralazine

Breast
Ovarian
Lung
Rectal
Cervical
Breast
Refractory solid tumors
Cervical

Phases 1 and 2
Phase 3
Phase 1
Phases 1 and 2
Phase 3
Phase 2
Phase 2
Phase 3

Withdrawn
Completed (2009)
Completed (2013)
Withdrawn
Completed (2010)
Completed (2006)
Completed (2006)
Completed (2018)

NCT00575978
NCT00533299
NCT00996060
NCT00575640
NCT00532818
NCT00395655
NCT00404508
NCT02446652

Minoxidil Ovarian Phase 2 Recruiting NCT05272462

Nitroglycerin

Rectal
Lung
Prostate
Lung
Lung
Brain

Phase 1
Phase 2
Phase 3
Phase 2
Phase 2
Phase 2

Completed (2021)
Completed (2017)
Completed (2013)
Completed (2020)
Unknown (2009)
Completed (2020)

NCT01407107
NCT01210378
NCT01704274
NCT01171170
NCT00886405
NCT04338867

Sildenafil Lung
Solid tumor

Phases 2 and 3
Phase 1

Completed (2011)
Completed (2019)

NCT00752115
NCT02466802

Tadalafil

Pancreatic
Liver, pancreatic, and
colorectal
Head and neck
Head and neck
Pancreatic
Gastric
Pancreatic
Myeloma
Head and neck

Phase 2
Phase 2
Phases 1 and 2
Phase 2
Phase 1
Phase 2
Phase1
Phase 2
Phase 2

Recruiting
Completed (2022)
Completed (2021)
Active
Completed (2018)
Not yet recruiting
Completed (2018)
Completed (2014)
Completed (2014)

NCT05014776
NCT03785210
NCT02544880
NCT03993353
NCT01903083
NCT05709574
NCT01342224
NCT01374217
NCT01697800

https://clinicaltrials.gov
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Since ACEs and ARBs share a main mechanism of action, which is to act as renin–
angiotensin–aldosterone system (RAAS) antagonists, they inhibit angiogenesis and reduce
the induction of cancer growth, which may decrease cancer risk over time [210]. Other pos-
sible mechanisms of action of ACE inhibitors such as enalapril, captopril, and perindopril
against tumor cells may involve the inhibition of matrix metalloprotease activity, reduc-
tion in vascular endothelial growth factor expression, and interference with the RAAS
system [27]. For CCBs, a possible mechanism of action for the anticancer effect could be
related to the fact that these vasodilators may restore the dysregulation of Ca2+ homeostasis,
which has been implicated in the development and progression of cancer [211]. NO is a
molecule that affects numerous critical functions in the body. Therefore, in cancer therapy,
the application of nitrates is helpful as chemo- and radiotherapeutic sensitizing agents.
Malignancies are characterized by hypoxia, which stimulates pathways preparing cancer
cells for survival against cell death mechanisms including DNA damage, autophagy, and
apoptosis. NO donors, by increasing tumor perfusion, can reverse this effect [212,213].
In the last decade, an increased expression of PDE5 in various human cancers has been
reported [214–217]. Accordingly, PDE5 inhibitors can be a potent anticancer drug. The
mechanism of action underlying the anticancer effect of this vasodilator can be explained by
the activation of signaling pathways, mostly the PKG, which can inhibit growth, as well as
induce apoptosis and autophagy [218]. The mechanism of action against cancer underlying
the effects of direct vasodilators is not yet fully understood. One way in which these drugs
could be repurposed is through the use of synergistic combination models, which have been
described throughout the manuscript as potential treatments for cancer therapy. Synergistic
combinations of drugs generally overcome toxicity and other side-effects associated with
the administration of high doses of single drugs [219].

10. Conclusions

The use of vasodilators as a treatment for cancer is a promising area of research that
has the potential to improve outcomes for patients with cancer. These drugs can have both
protumor and antitumor effects depending on the specific drug and cancer type being
studied. On one hand, they can increase blood flow to the tumor, which can promote its
growth and proliferation. On the other hand, they can inhibit the formation of new blood
vessels in tumors, which can stop tumor growth. Additionally, vasodilators can enhance
the effectiveness of antineoplastic drugs already used for cancer therapy. Drug repurposing
is a promising approach in the fight against cancer, and vasodilators have shown potential
as repurposed drugs for treating various types of cancer (Figure 2), by increasing blood flow
to tumors and impacting cancer cell growth. However, more research is needed to fully
understand the effects of vasodilators on cancer cell lines and to determine their potential
as a treatment for cancer. It is important to note that the effects of vasodilators on cancer
cells in a laboratory setting may not necessarily translate to the same effects in humans.
Therefore, further research is necessary to fully understand the potential of vasodilators
as a therapeutic strategy for cancer patients, such as clinical trials, since only 11 of the
24 vasodilators mentioned on this study have reached clinical trials as anticancer agents.
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Figure 2. Summary of data evidence of anticancer activity of vasodilator drugs by cancer type, as 
reported in this review. 
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