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Abstract: Despite significant advances in understanding nephron segment patterning, many ques-
tions remain about the underlying genes and signaling pathways that orchestrate renal progenitor
cell fate choices and regulate differentiation. In an effort to identify elusive regulators of nephron
segmentation, our lab conducted a high-throughput drug screen using a bioactive chemical library
and developing zebrafish, which are a conserved vertebrate model and particularly conducive to
large-scale screening approaches. 17β-estradiol (E2), which is the dominant form of estrogen in
vertebrates, was a particularly interesting hit from this screen. E2 has been extensively studied in
the context of gonad development, but roles for E2 in nephron development were unknown. Here,
we report that exogenous estrogen treatments affect distal tubule composition, namely, causing an
increase in the distal early segment and a decrease in the neighboring distal late. These changes were
noted early in development but were not due to changes in cell dynamics. Interestingly, exposure to
the xenoestrogens ethinylestradiol and genistein yielded the same changes in distal segments. Further,
upon treatment with an estrogen receptor 2 (Esr2) antagonist, PHTPP, we observed the opposite
phenotypes. Similarly, genetic deficiency of the Esr2 analog, esr2b, revealed phenotypes consistent
with that of PHTPP treatment. Inhibition of E2 signaling also resulted in decreased expression of
essential distal transcription factors, irx3b and its target irx1a. These data suggest that estrogenic
compounds are essential for distal segment fate during nephrogenesis in the zebrafish pronephros
and expand our fundamental understanding of hormone function during kidney organogenesis.
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1. Introduction

The kidney is a vital organ that facilitates waste excretion, osmoregulation, and fluid
homeostasis [1]. Kidney development is a complex process, giving rise to specialized
epithelial functional units called nephrons [2,3]. While nephron numbers can greatly vary
across species, nephron segmentation and overall function remain highly conserved in
vertebrates [4,5]. Namely, the glomerulus functions to filter blood while the subsequent
tubular segments modify the filtrate to assure proper secretion and reabsorption, and finally,
waste is excreted through the collecting duct [6–15]. Each of the tubular segments carry
out specialized tasks [8–15]. For example, the proximal convoluted tubule is responsible
for secreting ammonia, which functions to adjust filtrate pH [8–15]. Later segments, such
as the distal convoluted tubule, facilitate sodium and chloride reabsorption [8–15]. While
the function and expression signatures of each segment are becoming increasingly better
characterized [16], the molecular cues required to guide differentiation of these discrete
nephron cell types remain poorly understood.

The zebrafish embryonic kidney, or pronephros, is highly amenable to parsing out
these genetic components for several reasons. The architecture of the pronephros is simple,
comprised of only two nephrons [17]. The nephrons possess a similar array of functional
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segments that contain cell types which are analogous to the mammalian nephron [18].
This is consistent with a high degree of genetic conservation between zebrafish and hu-
mans [5,19,20]. Coupled with rapid ex utero development, the zebrafish serves as a suitable
model for high-throughput genetic and biochemical screens, specifically in the context of
renal development to study renal progenitor patterning [21–26]. Using the zebrafish, for
example, studies have identified novel regulators of nephron segmentation, including the
Iroquois transcription factor Irx3b, which is essential for distal early (DE) segment forma-
tion [27]. A recent forward genetic screen identified the transcription factor AP-2 alpha
(Tfap2a) and its downstream target irx1a as key factors in the DE terminal differentiation
program [28,29]. Formation of the distal late (DL) segment is known to involve several
transcription factors and signaling pathways [30–37]. Even with these advances, there
remain significant gaps in our understanding of the mechanisms that drive progenitor cell
fate decisions.

In an effort to uncover novel regulators of nephron segmentation, a recent study
conducted a high-throughput screen of known bioactive molecules [38,39]. Results from
this screen suggested that 17-beta (β) estradiol (or E2, the most dominant form of estrogen
in vertebrates) could be a player in nephron development [39]. Here, we follow-up with
these results, and report that indeed, estrogen signaling contributes to the processes of
nephron segmentation. More specifically, E2 operates throughout development, as early
as the 20 somite stage (ss), and contributes to DE/DL segment patterning. From a screen
of selective estrogen receptor modulators (SERMs) and genetic studies, we found that E2
specifically operates through esr2b to promote DE fate at the expense of the DL. Finally,
we found that esr2b works upstream of essential transcription factors, irx3b and irx1a, to
confer distal cell fate. Together, these findings implicate estrogen signaling as an essential
regulator of nephron segmentation.

2. Materials and Methods
2.1. Ethics Statement and Zebrafish Husbandry

The Center for Zebrafish Research at the University of Notre Dame maintained the
zebrafish used in these studies and experiments were performed with the approval of the
University of Notre Dame Institutional Animal Care and Use Committee (IACUC), under
protocol numbers 19-06-5412, 20-09-6240, and 22-07-7335.

2.2. Animal Models

Tübingen strain wild-type (WT) zebrafish were used for the reported studies unless
otherwise noted. The esr2b mutant line, Uab127, was graciously provided by Dr. Gorelick’s
lab at the University of Alabama at Birmingham [40,41]. Zebrafish were raised and staged
as described [42]. For all experiments, embryos were incubated in E3 medium at 28 ◦C
until the desired developmental stage, anesthetized with 0.02% tricaine, and fixed using 4%
paraformaldehyde/1x PBS (PFA) [43,44]. Embryos were analyzed before sex determination,
so we cannot report the effect of sex and gender in the context of this study.

2.3. Whole Mount and Fluorescent in situ Hybridization (WISH, FISH)

WISH was performed as previously described [45–49] with antisense RNA probes, ei-
ther digoxigenin-labeled (cdh17, odf3b, slc20a1a, trpm7, slc12a1, slc12a3, kcnj1a.1, tbx2b, irx1a,
irx3b) or fluorescein-labeled (smyhc), using in vitro transcription from IMAGE clone tem-
plates, as previously described [18,27]. FISH was performed as described using TSA Plus
Fluorescein or Cyanine Kits (Table 1) [45–49]. For gene expression studies, every analysis
was performed in triplicate for each genetic model with sample sizes of n > 20 per replicate.
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Table 1. Reagents and resources used in this study.

Reagent or
Resource Name Source Catalog

Number

Antibodies

Anti-Ph3 Millipore 06–570
Anti-Caspase3 BD Biosciences 559565

Goat anti-Mouse, Alexa Fluor 568 Invitrogen A11031
Goat anti-Rabbit, Alexa Fluor 594 Invitrogen A11037
Goat anti-Mouse, Alexa Fluor 488 Invitrogen A11029
Goat anti-Rabbit, Alexa Fluor 488 Invitrogen A11034

Chemicals
and Stains

17β-Estradiol (E2) Cayman Chemical 50-28-2
DPN Santa Cruz SC-203431

PHTPP Santa Cruz SC-204191
MPP Santa Cruz SC-204098
PPT Santa Cruz SC-297946

Genistein Sigma Aldrich 446-72-0
Ethinylestradiol Sigma Aldrich 47-63-6

BPA
DAPI

Sigma Aldrich
Invitrogen

80-05-7
D1306

Commercial
Assays

mMESSAGE mMACHINE SP6 kit Ambion AM1340
TSA Plus Cyanine Akoya Biosciences NEL744001KT

TSA Plus Fluorescein Akoya Biosciences NEL741001KT

Software

https://www.graphpad.com, URL
accessed on 15 April 2019 Prism v9 GraphPad

https://imagej.nih.gov/ij/, URL
accessed on 2 August 2020 ImageJ Fiji

2.4. Immunofluorescence (IF)

Whole mount IF experiments were completed as previously described on PFA-fixed
embryo samples, with primary and secondary antibodies as listed in Table 1 [43,50–52].
Proliferating cells were marked with anti-PH3 diluted 1:200 and apoptosis was marked
with anti-activated Caspase3 at 1:50.

2.5. Chemical Treatments

Chemical treatments were completed as previously described, with chemicals as
listed in Table 1 [34,38,39]. Chemicals were dissolved in DMSO to make a 10 mM stock
solution. Stocks were aliquoted and stored at −80 ◦C. Aliquots were thawed at room
temperature and protected from light. Working solutions were diluted in E3 and distributed
to 6- or 12-well plates. Chemical treatments were completed beginning at the shield stage
(6 h post-fertilization (hpf)) until the 24 hpf stage, unless otherwise noted. We chose to
treat at the shield stage, as the animals were already undergoing gastrulation. Thus, this
timepoint prevents interference with the onset of gastrulation. The dose for each chemical
was decided by treating at doses consistent with previous studies or slightly increased
concentrations to maximize penetrance while minimizing morphological defects. Animals
treated with E2 exhibited distal segmentation phenotypes at both 20 µM and 25 µM. As
most animals had a curved body axis at 25 µM, we proceeded with 20 µM treatments.
We treated with 400 µM DPN, 400 µM MPP, and 75 µM PPT, however the animals did
not exhibit changes in distal nephron segmentation. When exposed to higher doses,
the animals exhibited morphological defects or mortality. PHTPP exhibited the highest
penetrance of distal segmentation without morphological defects at 18 µM. Xenoestrogens
genistein and ethinylestradiol exhibited the highest penetrance of distal segmentation
without morphological defects at 20 µM. Treatments were conducted in triplicate with
at least n > 20 embryos per replicate at various doses (Table 2). All experiments were
conducted with a DMSO vehicle control. DMSO control animals are demarcated as “WT”
in all graphics and schematics.

https://www.graphpad.com
https://imagej.nih.gov/ij/
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Table 2. Zebrafish embryo treatment dosages for chemical studies.

Chemical Dose

17β-Estradiol (E2) 20 µM or 25 µM
DPN 400 µM

PHTPP 18 µM
MPP 400 µM
PPT 75 µM

Genistein 20 µM
Ethinylestradiol 20 µM

BPA 50 µM

2.6. Genetic Models

Antisense morpholino oligonucleotides (MOs) were obtained from Gene Tools, LLC
(Philomath, OR, USA). MOs were solubilized in DNase/RNase-free water to generate 4 mM
stock solutions, which were stored at 20 ◦C. Zebrafish embryos were injected at the 1-cell
stage with 5 nL of diluted MO. Optimal dosage was determined by previously published
doses and our own experience [53]. esr1 was targeted with 5′–catgtaaaacaggctggtcacCTTG–
3′ (0.4 mM). Esr2a was targeted with 5′–agagagtcttacCTTGTATACTC–3′ (0.8 mM). Esr2b
was targeted with 5′–ttgaccatgagcattacCTTGAATG–3′ (0.8 mM) [53]. Uab127 embryos were
genotyped with the forward primer 5′–GTCCCGCTTAGTCCCACAAT–3′ and the reverse
primer 5′–TGACAGCTGCCACCTAAAGA–3′ [54].

2.7. Image Acquisition

A Nikon Eclipse Ni with a DS-Fi2 camera was used to image WISH samples and live
zebrafish. Live zebrafish were mounted in methylcellulose with trace amounts of tricaine
present. IF and FISH images were acquired using a Nikon C2 confocal microscope or a
Nikon A1R confocal microscope.

2.8. Quantification and Statistical Analysis

Each experiment was completed in a minimum of triplicates. Analysis of all experi-
mental work was performed in a blinded manner. From these measurements, an average
and standard deviation (SD) were calculated, and t-tests or ANOVA tests were completed
to compare control and experimental measurements using GraphPad Prism 9 software.
Statistical details for each experiment are located in the corresponding figure legend.

3. Results
3.1. Exogenous E2 Treatment Alters Nephron Segmentation

The zebrafish has long been established as a valuable high-throughput model to
interrogate various biological processes using small molecules [38,55–57]. The zebrafish
is particularly amenable to studying kidney development, as the functional units, called
nephrons, are comprised of highly conserved segments that are patterned by 24 h post-
fertilization (hpf). In a chemical screen using known bioactives, researchers identified
potential regulators contributing to nephron segmentation [39]. Among the screen hits,
17-beta estradiol (E2, the most dominant form of estrogen in vertebrates) treatment resulted
in changes in segmentation [39]. This was particularly interesting, as previous work has
established that estrogen response elements (ERE) are active in the pronephros at 18 h
post-fertilization (hpf) [58]. Furthermore, estrogen is present in the yolk, at a rate almost
7 times higher than the rest of the animal [58]. We therefore hypothesized that this potent
chemical diffuses into the adjacent intermediate mesoderm, thereby influencing pronephric
development, specifically segmentation of the nephron by 24 hpf (Figure 1A). To test
this, we examined if nephron segmentation was influenced by exogenous E2. We treated
embryos at different doses of E2 beginning at the shield stage, then allowed animals to
develop to the stage of interest. At an E2 dosage of 20 µM, animals exhibited changes in
the distal nephron as early as the 20 ss (Figure 1B). Specifically, the DE segment expanded
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(Figure 1C) while the DL was shortened (Figure 1D). This phenotype persisted to the 28 ss
when the nephron segments were initially patterned (Figure 1B,E,F).
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(bottom). 17β-estradiol (E2) is present in the yolk ball and diffuses to surrounding tissues. By 28 ss,
the nephron is comprised of discrete segments with unique somite addresses: podocytes and neck
(P&N, somites 3–4), proximal convoluted tubule (PCT, somites 5–8), proximal straight tubule (PST,
somites 9–11), distal early (DE, somites 12–13), and distal late (DL, somites 14–18). (B) 20 ss (top two
rows) and 28 ss (bottom two rows) WT control animals treated with DMSO as a vehicle control, and
siblings treated with 20 µM of E2 from the shield stage to 24 hpf, stained via WISH for the DE marker
(slc12a1, left) or the DL marker (slc12a3, right) with the somite marker (smyhc). Scale bar = 100 µm for
lower magnification, scale bar = 50 µm for higher magnification. (C,D) DE and DL domain lengths
at 20 ss in micrometers. (E,F) DE and DL domain lengths at 28 ss in micrometers. (G) The 20 ss WT
(left) and 20 µM E2 (right) nephrons (outlined with dotted line) stained for the DE (slc12a1) via FISH
and proliferating (PH3, top) or apoptotic (Caspase3, bottom) cells via immunofluorescence. Arrow
heads denote double-positive cells. Scale bar = 50 µm. (H) Number of PH3-positive cells in the DE
at the 20 ss. (I) Number of Caspase3-positive cells in the DE at the 20 ss. (J) The 20 ss WT (left) and
20 µM E2 (right) nephrons (outlined with dotted lines) stained for the DL (slc12a3) via FISH and
proliferating (PH3, top) or apoptotic (Caspase3, bottom) cells via immunofluorescence. Arrow heads
denote double-positive cells. Scale bar = 50 µm. (K) Number of PH3-positive cells in the DL at the
20 ss. (L) Number of Caspase3-positive cells in the DL at the 20 ss. Data presented on graphs are
represented as mean ± SD. * p < 0.05, *** p < 0.001, and **** p < 0.0001 (t-test).

To confirm that these changes were a true change in cell identity rather than changes
in slc12a1 or slc12a3 independently, we used additional markers for the DE and DL (kcnj1a.1
and tbx2b, respectively). Indeed, we found that the observed DE and DL domain changes
were recapitulated with these alternative cell type markers (Figure S1). Additionally,
treatment of E2 did not result in changes in the PCT (slc20a1a) or PST (trpm7) (Figure S1).
Additionally, the time of addition did not appear to affect the penetrance of the observed
phenotypes (Figure S2). However, we chose to continue with treatment at 6 hpf for
subsequent treatments, as this time is most conducive to a high-throughput workflow. We
also treated animals at increased concentrations, including 25 µM. Overall, the increased
concentration phenocopied those observe at 20 µM, including increased DE and decreased
DL (Figure S3). Animals treated at 25 µM did not exhibit changes in other cell types
or the overall nephron length, suggesting that the observed phenotypes were segment-
specific rather than affecting the formation of the entire tubule (Figure S3). However, the
25 µM treatment did result in greater morphological differences, such as body curvature
(Figure S3). Therefore, we continued with treatments at 20 µM as we observed the highest
penetrance of phenotypes, while still producing animals with overall morphologically
normal-appearing body plans.

As the observed changes in DE and DL formation may be caused by alterations in cell
dynamics or changes in cell fate decisions, we next investigated cell death and proliferation
in the segments of interest. We chose to evaluate these characteristics at the 20 ss, the
earliest time point at which we observed altered segmentation. Interestingly, there was no
significant difference in proliferating cells, as marked by Phospho-Histone H3 (PH3) in the
DE segment (Figure 1G,H). Additionally, no changes in cell death as marked by activated
Caspase3 were detected (Figure 1G,I). Similarly, there was no significant difference in
proliferating cells nor cell death in the DL segment (Figure 1J–L). These data suggest that
exogenous E2 treatment does not affect cell dynamics, but rather, influences nephron
patterning, specifically of the DE and DL.

3.2. Xenoestrogen Treatment Recapitulates E2 Pronephros Segment Phenotypes

Xenoestrogens are potent teratogens that have been previously shown to activate E2
signaling pathways similarly to E2 [58,59]. We treated with three compounds: genistein,
found in soy products, ethinylestradiol, commonly used in contraceptives, and bisphenol
A (BPA), a hardening agent in plastic. As seen with E2 treatment, 20 µM of ethinylestradiol
and genistein resulted in an increase in the DE domain (Figure 2A,B). These two xenoestro-
gens also caused a coordinated decrease in the DL domain (Figure 2A,C). Similar to that
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of E2, treatment of ethinylestradiol and genistein also altered the expression of other DE
and DL markers (Figure S4C–E), while the more proximal segments remained unchanged
(Figure S4F–H). Unlike ethinylestradiol and genistein, BPA did not affect the DE domain
length (Figure S4A,B).
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To assure the drug was not degraded, we evaluated other previously identified phe-
notypes induced by BPA, such as otolith malformations [60]. Indeed, 50 µM treatment
of BPA induced altered otolith formation, suggesting that while the chemical was active,
it does not phenocopy E2 in the kidney (Figure S4). BPA has been previously shown to
bind preferentially to Esr1 in the zebrafish and exhibits less potent phenotypes in other
tissues, suggesting that the lack of a distal phenotype may be due to chemical–receptor
interactions [58,59]. Nonetheless, estrogen signaling, regardless of its activating agent (E2,
ethinylestradiol, or genistein), appears to influence distal nephron segmentation.

3.3. E2 Acts through Esr2b to Confer Distal Segment Changes in the Nephron

As ethinylestradiol, genistein, and E2 appeared to alter the distal cell fate, we next
interrogated the mechanism by which this occurs. Since EREs are active in the nephron
early in development, we specifically explored estrogen receptors that operate as ligand-
activated transcription factors. In the zebrafish, this includes Esr1, Esr2a, and Esr2b. We
first used a targeted chemical screen of selective estrogen receptor modulators (SERMs),
including MPP (Esr1 antagonist), PPT (Esr1 agonist), PHTPP (Esr2 antagonist), and DPN
(Esr2 agonist). From this screen, an 18 µM treatment of PHTPP, a pan-antagonist of
Esr2a and Esr2b, resulted in a decrease of the DE domain and an increase in the DL
(Figure 3A–C). Interestingly, DPN, the putative pan-agonist for Esr2a and Esr2b, did
not result in an increase in the DE domain (Figure S5). While DPN has been shown to
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clearly antagonize human ESR2, recent studies have revealed that subtle differences exist
between the activation of ESR2 in humans and Esr2a and Esr2b in zebrafish, specifically
regarding activation by SERMs [59]. Interestingly, DPN has been shown to preferentially
activate Esr1 over Esr2a or Esr2b in zebrafish, which may have prevented an observable
phenotype in the DE [59]. Similarly, neither MPP nor PPT resulted in altered distal segments
(Figure S5A,B). We further confirmed that PHTPP was specifically affecting the distal
segments by measuring the kcnj1a.1 and tbx2b domains, alternate markers for the DE and
DL, respectively. Similar to slc12a1, the kcnj1a.1 domain was significantly decreased while
the tbx2b domain recapitulated the slc12a3 domain, which was significantly increased
(Figure S6). Additionally, the proximal segments (PCT and PST) remained unchanged
(Figure S6). Together, the results from the SERM screen suggest that estrogen signaling may
be acting via esr2a or esr2b in nephron segmentation.
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Figure 3. Chemical and genetic inhibition of Esr2b results in altered distal segmentation. (A) The 28 ss
WT (top) and 18 µM PHTPP (bottom) treated animals stained via WISH for the DE marker (slc12a1)
(left) or the DL marker (slc12a3) (right). Scale bar = 100 µm for lower magnification, scale bar = 50 µm
for higher magnification. (B,C) DE and DL domain lengths at 28 ss in micrometers. (D) The 28 ss
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WT (top), esr2b MO-injected (second row), esr2a and esr2b double-MO-injected (third row), and
esr2b mutant (bottom row) animals stained via WISH for the DE marker (slc12a1) (left) or the DL
marker (slc12a3) (right). Scale bar = 100 µm for lower magnification, scale bar = 50 µm for higher
magnification. (E,F) DE and DL domain lengths at 28 ss in micrometers. Data presented on graphs are
represented as mean ± SD. * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001 (t-test or ANOVA).

To confirm the results of the SERM screen and further understand which receptor may
be the primary player in the kidney, we used morpholinos targeting esr1, esr2a, and esr2b
to knockdown each receptor, respectively. Each of these tools was previously validated
to interfere with splicing for each specific target, while off-target alterations in splicing
were not observed [53]. Knockdown of esr1 and esr2a did not result in changes to the
DE (Figure S7). However, esr2b deficiency resulted in a decreased DE, and increased the
length of the DL, which recapitulates the PHTPP phenotype, though this occurred at a
decreased penetrance compared to PHTPP treatment (Figure 3D–F). We hypothesized that
esr2b may be the major player in distal cell development. However, it is plausible that
esr2a may serve a redundant role. To address this, we knocked down esr2a and esr2b in
combination. The double-deficient animals did not exhibit more severe differences in DE
or DL segmentation compared to the single esr2b-deficient animals (Figure 3D–F). This led
us to hypothesize that Esr2a and Esr2b likely do not function redundantly in the context of
conferring nephron cell fate.

While morpholinos offer valuable insight to genetic mechanisms in development,
we were also interested in exploring the role of esr2b in the context of a stable genetic
mutant. We obtained the esr2buab127 line, which contains a 5 base pair deletion resulting in
a premature stop codon before the DNA-binding domain [40,41]. Interestingly, esr2b−/−

animals did not exhibit significant changes in the DE or DL domains (Figure 3D–F). From
pairwise matings of esr2b+/− parents, none of the progeny, including heterozygotes, were
significantly different from one another in the DE nor the DL (Figure 3, Figure S7). However,
we hypothesize that this is due to mature and robust maternally deposited transcripts
encoding Esr2b, which have been previously detected [58]. Due to a previously reported
fertility defect in homozygous esr2b−/− females, we could not evaluate maternal zygotic
mutant embryos [40]. However, the consistency between PHTPP treatment and esr2b MO
is consistent with our hypothesis that estrogen signaling influences distal segmentation.

3.4. Alterations in Estrogen Signaling Associated with Changes in Expression of Distal Segment
Transcription Factors Irx3b and Irx1a in the Pronephros

We next sought to explore the mechanism by which E2 and esr2b act in zebrafish
embryonic nephrogenesis. Previous work has established several roles for the transcrip-
tion factor Irx3b and its downstream target, Irx1a, in nephron segmentation [27–29,61–66].
Specifically, in the zebrafish, Irx3b is essential for adoption of the DE lineage identity, where
downstream expression of Irx1a is sufficient to support adoption of this identity [27,28].
Using WISH, we interrogated the effect of E2 and PHTPP on irx3b expression, respectively.
Interestingly, we found that E2 resulted in an expansion of the irx3b pronephros domain at
both 20 µM and 25 µM doses (Figure 4A–C, Figure S3). Conversely, PHTPP exhibited the
opposite phenotype with a truncation of the irx3b domain (Figure 4A–C, Figure S3). Simi-
larly, E2 treatment expanded the irx1a pronephros domain, while PHTPP decreased irx1a
expression. Together, these data suggest that E2 signaling acts through Esr2b, upstream of
Irx3b and Irx1a, to determine distal nephron segmentation.
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Figure 4. E2 signaling operates through Esr2b upstream of essential transcription factors to elicit distal
nephron cell fate. (A) The 28 ss WT (top), 20 µM E2-treated (second row), 18 µM PHTPP-treated (third
row), or esr2b MO-injected (bottom) animals stained via WISH for the transcription factor irx3b (left)
and its downstream target irx1a (right). Scale bar = 100 µm for lower magnification, scale bar = 50 µm
for higher magnification. (B,C) The irx3b and irx1a domain lengths at 28 ss in micrometers. Data
presented on graphs are represented as mean ± SD. * p < 0.05 and **** p < 0.0001 (ANOVA).

4. Discussion

While traditionally associated with women’s health, estrogen signaling has long been
established as a regulator of developmental processes. Outside of gonad development,
estrogen signaling also influences the development of the brain [67–72], hematopoietic
stem cell niche [58,73], kidney [74,75], prostate and lung [76], among others [77]. The
primary ligand of estrogen signaling in vertebrates is 17β-estradiol (E2), which can bind
three receptors in mammals (ESR1 (ERa), ESR2 (ERb), and GPER) and four receptors
in zebrafish (Esr1, Esr2a, Esr2b, and Gper). Notably, the highly conserved functional
domains (DBD and LBD) have sequence homology upwards of 70% between zebrafish
and humans [75]. Furthermore, zebrafish receptors are activated in a similar manner to
their human counterparts by the same ligands [59]. For these reasons, along with their
powerful genetics and tractability for developmental studies, zebrafish have been a useful
model for expanding our understanding of estrogen signaling in ontogeny. The results
from a recent bioactive screen completed by our lab were of particular interest, as they
suggested for the first time that estrogen may play an explicit role in the process of nephron
segmentation [39]. These initial observations were only superficial, however, and required
additional follow-up studies in order to elucidate the molecular details.

Here, we have used the zebrafish as a model for nephrogenesis to interrogate the role
of estrogen signaling, with a focus on E2 and early segmentation during the formation of
the first kidney, or embryonic pronephros. We found that exogenous E2 alters DE and DL
segment domains without changing cell death or proliferation in those areas, suggesting
that estrogen signaling contributes to the patterning of renal progenitors that generate
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these populations. This is rather surprising, as estrogen and related derivatives have been
shown to inhibit proliferation in the brain [78]. In contrast, our findings suggested that
E2 signaling may be controlling cell fate decisions, which has also been observed in other
tissues [54]. For example, in the liver, hepatocytes and biliary epithelial cells arise from a
common hepatoblast progenitor, and researchers found that E2 acting specifically through
the receptor Esr2b promoted commitment to the hepatocyte fate both in zebrafish and
human hepatoblast culture [54]. Previous studies have also demonstrated that estrogen
regulates key transporter expression and function (Aquaporin2) in the kidney, which is
consistent with our observations in altered transporters slc12a1 and slc12a3 expression [79].
Though, it remains unknown if these changes in transporter expression have an effect on
kidney physiology.

Additionally, consistent with prior work, we found that xenoestrogens ethiniylestra-
diol and genistein act similarly to E2 [58,59]. Xenoestrogens, or ‘foreign’ estrogens, are
widely found throughout our environment and in man-made products such as plastics.
Similar enough in structure to mimic naturally occurring estrogen, they can bind to estrogen
receptors and induce potentially harmful outcomes, such as birth defects. Thus, elucidating
the effects of these compounds is relevant to understanding environmental factors of condi-
tions such as congenital anomalies of the kidney and urinary tract (CAKUT) [80,81]. Our
work emphasized the ability of xenoestrogens to elicit potent effects on developing tissues.

Next, our targeted SERM screen further suggested that either Esr2a or Esr2b was
responsible for the segmentation changes, as PHTPP resulted in a decreased DE and
increased DL. Only knockdown of esr2b recapitulated the PHTPP phenotype, leading
us to hypothesize that Esr2b is the major player for estrogen signaling in the embryonic
kidney. Considering that the Irx family of transcription factors, specifically irx3b and its
downstream target irx1a, have been shown to regulate DE cell fate, we next investigated
if exogenous E2 or inhibition of Esr2 signaling affected their relative expression domains.
Indeed, E2 expanded both irx3b and irx1a domains, while PHTPP treatment resulted in a
truncation. Therefore, we hypothesize that E2 signaling works upstream of these factors
(Figure 5).
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Figure 5. Proposed mechanism by which E2 signaling contributes to nephron segmentation. When
E2 signaling is active (left), E2 diffuses from the yolk into the neighboring intermediate mesoderm
(IM) cells. E2 binds to Esr2b, which activates irx3b and irx1a, ultimately resulting in balanced DE and
DL fate. When E2 signaling is inactive (right) via morpholino knockdown or chemical inhibition
by PHTPP, esr2b activity is diminished, as well as expression of downstream targets irx3b and irx1a,
resulting in favored DL fate.

Interestingly, we did not observe a segmentation phenotype in esr2b−/− animals.
This is likely due to maternally deposited transcripts in the early embryo. Previous work
has established that both esr2a and esr2b expression drastically decrease shortly after
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fertilization, which is consistent with maternal deposition [58]. Due to the infertility of
esr2b−/− females, we are unable to test this with a stable genetic line. Further, the normal
distal segments of esr2b−/− animals may be, in part, due to genetic compensation from
other estrogen receptors, a common occurrence in stable genetic mutants [82]. Considering
our findings, future directions may be interested in the exact mechanism of E2 segmentation
for regulation. Here, we suggest candidates irx3b and irx1a, but it is unknown if Esr2b
directly binds the promoter of either of these factors or perhaps as a coactivator for their
respective downstream targets. For this reason, co-immunoprecipitation of Esr2b followed
by sequencing may be of particular interest.

Additionally, we chose to focus on nephron segmentation specifically, considering
how little is known about the role of estrogen signaling in this process. There have been
exciting, continued advances in our understanding of nephron segment patterning in
recent years [83,84]. The field has made important discoveries about the landscape of
kidney cell types, their expression profiles, and changes in various disease states [16].
Nevertheless, many knowledge gaps remain. For example, the complex interplays between
critical genes are not fully understood. The present study illuminates a role for estrogen
signaling, but much more research is needed in order to delineate how the activities of
this pathway interrelate to the other genetic mechanisms that influence the processes of
nephron segmentation.

Future studies may also be interested in how continued E2 treatment through early
larval stages affects mesonephric branching. Long-term exposure of E2 and similar es-
trogenic compounds has been noted to cause morphological defects in zebrafish larva,
as we observed in our studies as well, so it is likely that animals would display kidney
defects in this experiment [85]. Other studies, however, treated at lower concentrations
of estrogen modulators for longer periods of time and have avoided gross morphological
deficiencies [75,86]. Interestingly, when embryos are exposed to low concentrations of E2
followed by microarray analysis, researchers found transcriptomic changes in the renal
tissue at 3 dpf [75]. The upregulated genes found in this study span various functions,
including solute transport, ATP binding, and kinase activity, and many localize to the DE
region. While additional studies are required to parse out if these transcriptional changes
identified in whole-body lysates confer changes to cellular identity in the kidney, these
results still point to the ability of estrogen signaling to modulate pronephric expression pro-
files. Furthermore, studies regarding the effects of acute versus chronic estrogen exposure
may elucidate the nature of these transcriptional changes.

5. Conclusions

Embryonic E2 exposure is highly regulated during gestation, though additional estro-
genic compounds may be present depending on the environment. In particular, models of
oral contraception have been shown to disrupt fetal development [87]. However, the effects
of early estrogen exposure may span beyond early development. For example, even tran-
sient exposure of estrogenic compounds can alter osteoclast formation into adulthood [88].
Long-term effects may be due to alterations in epigenetics, as gestational administration of
E2 can affect DNA methylation even into adulthood [89]. In addition to the long-lasting
phenotypes resulting from E2 exposure in other tissues, estrogenic compounds have also
been noted as potential therapeutics in various kidney disorders. In proliferative kidney
diseases of fish, ethinyl estradiol exposure attenuated disease progression [90]. Estrogen
has also mitigated kidney ischemia and reperfusion injury by activating metabolic path-
ways through PPARγ [91,92]. Estrogen-based hormone replacement in postmenopausal
patients also appears to ameliorate kidney dysfunction and slow the progression of chronic
kidney disease symptoms [93,94]. Interestingly, estrogen inhibition with tamoxifen also
had beneficial effects, as treatment reduced renal fibrosis in human and rat kidneys [95].
Our current study further underscores the need to understand the mechanism by which
estrogenic compounds activate these changes in renal tissue. Estrogen, in its various forms,
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may be reno-protective or damaging, but the fundamental observations reported here are
essential in taking a step towards elucidating the role of hormonal signaling in the kidney.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells12040666/s1, Figure S1: Further characterization of nephron
segment development in E2-treated zebrafish embryos. Figure S2: Assessment of DE segment
development following E2 treatment with different times of addition in zebrafish embryos. Figure S3:
Characterization of pronephros development following exposure to 25 µM E2. Figure S4: Further
characterization of nephron segment development in xenoestrogen-treated zebrafish embryos. Figure
S5: Selective estrogen receptor modulators MPP, PPT, and DPN have no effect on DE segment
development in the zebrafish pronephros. Figure S6: Effects of Esr2 antagonist PHTPP on nephron
segmentation. Figure S7: Evaluation of DE segment development following esr1 and esr2 knockdown.
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