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Abstract: The Drosophila lymph gland is an ideal model for studying hematopoiesis, and unraveling
the mechanisms of Drosophila hematopoiesis can improve our understanding of the pathogenesis of
human hematopoietic malignancies. Bone morphogenetic protein (BMP) signaling is involved in a
variety of biological processes and is highly conserved between Drosophila and mammals. Decapen-
taplegic (Dpp)/BMP signaling is known to limit posterior signaling center (PSC) cell proliferation
by repressing the protooncogene dmyc. However, the role of two other TGF-β family ligands, Glass
bottom boat (Gbb) and Screw (Scw), in Drosophila hematopoiesis is currently largely unknown. Here,
we showed that the loss of Gbb in the cortical zone (CZ) induced lamellocyte differentiation by
overactivation of the EGFR and JNK pathways and caused excessive differentiation of plasmato-
cytes, mainly by the hyperactivation of EGFR. Furthermore, we found that Gbb was also required
for preventing the hyperproliferation of the lymph glands by inhibiting the overactivation of the
Epidermal Growth Factor Receptor (EGFR) and c-Jun N-terminal Kinase (JNK) pathways. These
results further advance our understanding of the roles of Gbb protein and the BMP signaling in
Drosophila hematopoiesis and the regulatory relationship between the BMP, EGFR, and JNK pathways
in the proliferation and differentiation of lymph gland hemocytes.
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1. Introduction

Recent studies have revealed that many signaling pathways controlling hematopoiesis
and innate immunity are highly conserved between mammals and Drosophila. The signaling
pathways that regulate mammalian bone marrow hematopoiesis, such as the Dpp/BMP,
JNK, Janus kinase/signal transducer and activator of transcription (JAK–STAT), and insulin
signaling pathways, were also found to control the regeneration and differentiation of
Drosophila lymph gland hematopoietic stem cells [1]. Moreover, some signaling pathways
that cause leukemogenesis, such as the activation of JAK–STAT, can induce a leukemia-like
phenotype in Drosophila, including the excessive growth of the lymph glands, an increased
number of circulating hemocytes, and melanoma production [2,3]. In addition, the BCR–
ABL, Tax-1, RUNX1, and NUP98–HOXA9 (NA9) fusion proteins associated with chronic
granulocytic leukemia (CML) and acute myeloid or lymphoid leukemia (AML/ALL) have
also been found to cause leukemia-like traits in Drosophila lymph glands [4–7]. As Drosophila
is amenable to genetic manipulation and has a short growth cycle, it has increasingly
become a genetic model for studying hematopoiesis, leukemia, and natural immunity [1].

Similar to that in vertebrates, hematopoiesis in Drosophila occurs in two stages of
development. The first type of hematopoiesis is derived from the mesoderm of the em-
bryonic head, and the second stage of hematopoiesis occurs in the lymph glands of the
larvae [8,9]. The lymph gland is the hematopoietic organ of Drosophila and contains a pair
of primary lobes and a series of posterior lobes. There are three distinct zones within the
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anterior lobe: the cortical zone (CZ), the medullary zone (MZ), and the posterior signaling
center (PSC). The mature plasmatocytes and crystal cells are located in the CZ and can be
defined by the expression of Nimrod1 (NimC1/P1) and Hindsight (Hnt), respectively [10].
The prohemocytes (stem cell-like precursor blood cells) within the MZ can be defined
by markers such as Domeless (Dome), Patched (Ptc), and DE-cadherin (DE-cad), whose
differentiation fate depends on intrinsic factors and extensive intercellular interactions in
the microenvironment [10,11]. The PSC region serves as a hematopoietic niche to maintain
the normal differentiation of prohemocytes [12]. The lamellocytes are also a type of mature
blood cells; they are not present in normal lymph glands and are only induced by an
immune response to an infection [13]. Moreover, the autonomic activation of immune
signals, such as the JAK/STAT, JNK, Toll, and Ras/EGFR signaling pathways, can also
induce the generation of lamellocytes [14–17].

Bone morphogenetic proteins (BMPs) are a functionally well-conserved class of growth
factors belonging to the TGF-β superfamily. In Drosophila, there are three BMP ligands:
Decapentaplegic (Dpp), which is the ortholog of vertebrate TGF-β superfamily ligands BMP
2/4; Screw (Scw), which appears to be a distantly related BMP with similarity to the activins;
and Glass bottom boat (Gbb), which is the ortholog of the mammalian BMP 5/6/7/8 [18].
Dpp can bind to the BMP type I receptor Thickveins (Tkv), or Saxophone (Sax) and the type
II receptor Punt, and it is involved in a variety of biological processes, including oogenesis,
the patterning of the embryonic mesoderm, morphogenesis of the midgut, the imaginal
disc and ventral head, and stem cell maintenance [19–27]. Of note, Dpp signaling also
regulates hematopoiesis of the lymph gland via the limitation of PSC cell proliferation by
antagonizing the activity of wingless (Wg)/Wnt signaling [28]. Similar to Dpp, Gbb has
also been shown to regulate wing disc development, midgut formation, neuromuscular
junctions, stem cell maintenance, and fat body metabolism [27,29–33]. However, Gbb is
not required for PSC niche size control; the number of PSC cells was not changed in a gbb
mutant [28]. Apart from this study, no other experiments have investigated the role of Gbb
in the hematopoiesis of Drosophila.

In this study, we knocked down gbb in the hematopoietic system and determined the
role of Gbb in the CZ. Our results showed that the loss of Gbb in CZ induced lamellocyte
differentiation by the overactivation of the EGFR and JNK pathways and caused the
excessive differentiation of plasmatocytes, mainly by the hyperactivation of the EGFR
signaling pathway. Moreover, we found that Gbb was also required for preventing the
hyperproliferation of the lymph glands by inhibiting the overactivation of the EGFR and
JNK pathways. These results further advance our understanding of the roles of the Gbb
protein and BMP signaling in hematopoiesis.

2. Materials and Methods
2.1. Fly Stocks and Culture

We used the following lines in this study: gbb RNAi#1(THU201501092), gbb RNAi#2
(THU1480), EGFR-DN, and Hml-Gal4, which were obtained from the Tsinghua Fly Center;
Hml-Gal4; UAS-2xEGFP, which was a gift from Utpal Banerjee; UAS-puc, which was a gift
from José Carlos Pastor-Pareja; gbb-GFP (BDSC:63056), w1118, Cg-Gal4, and Da-Gal4, which
were obtained from the Bloomington Drosophila Stock Center (BDSC); Pxn-Gal4; UAS-GFP,
which was a gift from Norbert Perrimon; dome-Gal4; and UAS-2xEGFP, which was a gift
from Jiwon Shim. The crosses involving RNAi lines were reared at 29 ◦C, and the other
strains and crosses were reared at 25 ◦C. All strains and crosses were cultured on standard
cornmeal–yeast media.

2.2. Immunostaining

For antibody staining, the lymph glands and circulating hemocytes of third-instar
larvae were fixed and stained as described previously [11,34]. Briefly, 5–6 third-instar
larvae (96 h after egg laying) were opened via an incision at both the posterior and anterior
ends in 20 µL of phosphate-buffered saline (PBS), and the circulating hemocytes were bled
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and allowed to attach to a glass slide for 30 min. The following primary antibodies were
used: rabbit anti-GFP (1:100, Thermo Fisher Scientific, Waltham, MA, USA), mouse anti-L1
(1:50), and mouse anti-P1 (1:50), which were gifts from I. Ando; rabbit anti-p-Erk (1:50,
Cell Signaling Technology, Danvers, MA, USA); and rabbit anti-p-JNK (1:200, Promega,
Madison, WI, USA). Mouse anti-dorsal (1:50, Developmental Studies Hybridoma Bank,
Iowa City, IA, USA); rat anti-Stat92E (made in our lab); rabbit anti-PPO1 (1:100, a gift from
Erjun Ling); rabbit anti-PH3 (1:200, Millipore, Burlington, MA, USA); Alexa Fluor 488-,
Alexa Fluor 568-, and Alexa Fluor 594-conjugated secondary antibodies (Thermo Fisher
Scientific, USA) and Hoechst (1:500, Sigma-Aldrich, Burlington, MA, USA) were used. All
staining was performed in at least three independent experiments.

2.3. Image Analysis and Quantification

All images used for quantification were captured with a Zeiss Axioplan 2 microscope,
and all quantification analyses were performed as described previously [11,34]. The total
intensity value of p-Erk and p-JNK in each ROI (region of interest) with an identical
threshold was captured and measured with ImageJ 1.47v. The ROIs in the fluorescent
images were captured using the freehand tool and then converted to 8-bit images. For the
quantification of the area of GFP+ and P1+ cells, the images were converted to eight bits
and adjusted to obtain an identical threshold using ImageJ 1.47v. The area with an identical
threshold was measured as the fluorescence+ area. For the quantification of the crystal
cells index, the number of PPO1+ cells per relative unit area (the total number of PPO1+

cells/anterior lobe area) was calculated. For the quantification of the numbers of PH3+ cells,
the total number of PH3+ cells in each primary lobe was counted with ImageJ. The third-
instar larvae (96 h after egg laying) were used in all image analysis and quantification except
for the quantification of PH3+ cells. For each genotype in each independent experiment, at
least 10 lymph glands or at least 10 images of hemocytes were analyzed.

2.4. Quantitative Real-Time PCR

Total RNA from third-instar larvae was isolated with TRIzol (Invitrogen, Waltham, MA,
USA). The obtained total RNA was used to generate cDNA with M-MLV Reverse Transcriptase
RNase H Minus Point Mutant (Promega, Madison, WI, USA). Real-time PCR amplification
was performed using a LightCycler 480 real-time PCR system (Roche, NY, USA) with FastStart
Universal SYBR Green Master Mix (ROX) (Roche, USA). The following primers were used:
gbb: F-GAGTGGCTGGTCAAGTCGAA and R-GAAGCCGATCATGAAGGGCT; rp49: F-
AGTCGGATCGATATGCTAAGCTGT and R-TAACCGATGTTGGGCATCAGATACT. The
results were normalized to the level of rp49 mRNA in each sample. Three experiments per
genotype were averaged.

2.5. Statistical Analysis

For the statistical analyses, the p-values were calculated with two-tailed unpaired
Student’s t-tests or one-way ANOVAs using GraphPad Prism 6.0 software. The thresholds
for statistical significance were established as * p < 0.05, ** p < 0.01, and *** p < 0.001, and a
p-value > 0.05 indicated a nonsignificant difference. The data in all bar charts are shown as
the means ± SD (error bar).

3. Results
3.1. Gbb Is Widely Expressed in the Drosophila Lymph Gland

To investigate the role of Gbb in the Drosophila lymph gland, we first identified
the expression of the gbb gene and Gbb protein in the lymph gland. Bumsik et al.’s
previously processed datasets of single-cell RNA-seq (http://big.hanyang.ac.kr/flyscrna
(accessed on 25 July 2020)) were used to search the expression pattern of the gbb gene
at the transcriptional level in the whole lymph gland [35], and we found that the gbb
gene was widely expressed in most cell types of the lymph gland (Figure 1A,B). The
endogenous localization of Gbb was surveyed using Gbb-GFP. Similar to the expression at
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the transcriptional level, we found that the Gbb protein was also expressed in the entire
lymph gland, especially the posterior lobes, and was mainly located in the cytoplasm of
hemocytes (Figure 1C,C′).

Cells 2023, 12, x FOR PEER REVIEW 4 of 15 
 

 

processed datasets of single-cell RNA-seq (http://big.hanyang.ac.kr/flyscrna (accessed on 
25 July 2020)) were used to search the expression pattern of the gbb gene at the transcrip-
tional level in the whole lymph gland [35], and we found that the gbb gene was widely 
expressed in most cell types of the lymph gland (Figure 1A,B). The endogenous localiza-
tion of Gbb was surveyed using Gbb-GFP. Similar to the expression at the transcriptional 
level, we found that the Gbb protein was also expressed in the entire lymph gland, espe-
cially the posterior lobes, and was mainly located in the cytoplasm of hemocytes (Figure 
1C,C′). 

 
Figure 1. Gbb is widely expressed in the Drosophila lymph gland. (A) The t−SNE plot shows the 
two−dimensional projection of major cell type subclusters identified in the scRNA−seq of normal 
120 h AEL (after egg laying) lymph glands. (B) Relative expression level of gbb selected in 
scRNA−seq of normal 120 h AEL lymph gland dataset corresponding to the t−SNE plot in A. (C–
C″) Immunostaining against GFP shows that Gbb is expressed in the entire lymph gland. Scale bars: 
100 μm (C–C″). 

3.2. Knockdown of Gbb in the CZ Can Induce Lamellocyte Differentiation by Activating the 
EGFR and JNK Pathways 

According to the expression pattern of Gbb in the lymph gland shown in the above 
results, Gbb is dramatically expressed in plasmatocytes, which are the major hemocyte 
type in the CZ. Thus, we first investigated the role of Gbb in the CZ. We knocked down 
gbb using the differentiated hemocyte-specific driver Hml-Gal4 in the CZ and evaluated 
the changes in hemocyte differentiation. The anti-L1 antibody was used to examine the 
lamellocytes. We found that large numbers of lamellocytes appeared in the circulating 
hemolymph and lymph glands of Hml > gbb RNAi#1 and Hml > gbb RNAi#2 larvae (Figures 
2A,B,E,F and S1A–D). Moreover, we used another differentiated hemocyte-specific driver, 
Cg-Gal4, to knock down gbb and found lamellocytes in the circulating hemolymph (Figure 
S1E–G). To further determine whether the lamellocyte differentiation shown in the larvae 
with gbb gene knockdown depends on the expression levels of gbb, the transcription level 
of the gbb gene in gbb knockdown larvae was quantified. We used the ubiquitous driver 
da-Gal4 to knock down gbb and found that the transcription level of gbb was reduced by 

Figure 1. Gbb is widely expressed in the Drosophila lymph gland. (A) The t−SNE plot shows the
two−dimensional projection of major cell type subclusters identified in the scRNA−seq of normal 120 h
AEL (after egg laying) lymph glands. (B) Relative expression level of gbb selected in scRNA−seq of normal
120 h AEL lymph gland dataset corresponding to the t−SNE plot in A. (C–C”) Immunostaining against
GFP shows that Gbb is expressed in the entire lymph gland. Scale bars: 100 µm (C–C”).

3.2. Knockdown of Gbb in the CZ Can Induce Lamellocyte Differentiation by Activating the EGFR
and JNK Pathways

According to the expression pattern of Gbb in the lymph gland shown in the above
results, Gbb is dramatically expressed in plasmatocytes, which are the major hemocyte
type in the CZ. Thus, we first investigated the role of Gbb in the CZ. We knocked down
gbb using the differentiated hemocyte-specific driver Hml-Gal4 in the CZ and evaluated
the changes in hemocyte differentiation. The anti-L1 antibody was used to examine
the lamellocytes. We found that large numbers of lamellocytes appeared in the circu-
lating hemolymph and lymph glands of Hml > gbb RNAi#1 and Hml > gbb RNAi#2 larvae
(Figures 2A,B,E,F and S1A–D). Moreover, we used another differentiated hemocyte-specific
driver, Cg-Gal4, to knock down gbb and found lamellocytes in the circulating hemolymph
(Figure S1E–G). To further determine whether the lamellocyte differentiation shown in the
larvae with gbb gene knockdown depends on the expression levels of gbb, the transcription
level of the gbb gene in gbb knockdown larvae was quantified. We used the ubiquitous
driver da-Gal4 to knock down gbb and found that the transcription level of gbb was reduced
by nearly tenfold in the gbb knockdown larvae (Figure S2). These results confirmed that
the loss of gbb can induce the generation of lamellocytes. Next, we further investigated the
mechanism underlying lamellocyte differentiation after gbb knockdown. It is known that
the excessive activation of some classical signaling pathways, such as Toll, JAK–STAT, JNK,
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and Ras/EGFR, can induce the generation of lamellocytes. Thus, we detected the activation
of these pathways in the lymph glands and circulating hemolymph, respectively. The Toll
signaling transcription factor Dorsal and the JAK–STAT transcription factor Stat92E were
detected via antibody staining. We found that the localization and expression of Dorsal and
Stat92E in Hml > gbb RNAi#1 were not changed compared with those found in the control
(Figure S3A–D). Then, we focused on the Ras/EGFR and JNK pathways and stained lymph
glands and circulating hemocytes with the anti-p-Erk antibody and anti-p-JNK antibody to
detect the expression of the target of EGFR, p-Erk, and the target of the JNK pathway, p-JNK,
respectively. Notably, both the p-Erk and p-JNK signals were significantly increased in the
circulating hemocytes and lymph glands of Hml > gbb RNAi#1 (Figure 2I–T). To further
determine whether the generation of lamellocytes in Hml > gbb RNAi#1 is caused by the
overactivation of the EGFR and JNK pathways, the Hml > gbb RNAi#1 line was crossed with
UAS-puc, which is the negative regulator of the JNK pathway, and UAS-EGFR-DN, which
expresses a dominant-negative EGFR. We found that the inactivation of the EGFR or JNK
pathway effectively inhibited the formation of lamellocytes in the circulating hemocytes
and lymph glands of Hml > gbb RNAi#1 (Figure 2C,D,G,H). These results indicate that
Gbb in the CZ restricts lamellocyte differentiation by preventing the hyperactivation of the
EGFR and JNK pathways.

3.3. The Loss of Gbb in the CZ Can Induce Plasmatocyte Differentiation Primarily by Activating
the EGFR Pathway but Not the JNK Pathway

Next, we examined the changes in the CZ upon the knockdown of Gbb using
Hml > UAS-GFP, and the GFP-positive area represented the area of the CZ. The size of the
GFP-positive area was larger in the lymph glands of Hml > gbb RNAi#1 than those in the
control (Figure 3A,B,I). Subsequently, we used the antibody against the mature plasma-
tocyte marker P1 to detect plasmatocyte differentiation. Similar to the Hml-GFP-positive
area, the expansion of P1-positive plasmatocytes was also shown in Hml > gbb RNAi#1
(Figure 3E,F,J). Moreover, we used another differentiated hemocyte-specific driver, Pxn-
Gal4, to knock down gbb and found a similar expansion of Pxn-GFP-positive and P1-positive
cells (Figure S4A–H). These results suggest that Gbb in the CZ cell-autonomously controls
plasmatocyte differentiation. Next, we further investigated the regulatory mechanism of
Gbb in plasmatocyte differentiation. The above results show that the knockdown of Gbb in
the CZ can induce lamellocyte differentiation by activating the EGFR and JNK pathways.
We therefore first asked whether Gbb also controls the differentiation of plasmatocytes
via both signaling pathways. As expected, the inactivation of the Ras/EGFR pathway
can effectively inhibit the massive differentiation of plasmatocytes in Hml > gbb RNAi#1
(Figure 3C,G,I,J). However, inhibiting the activation of the JNK pathways did not rescue
the expansion of the Hml-GFP-positive area and only slightly prevented the expansion of
the P1-positive area in Hml > gbb RNAi#1 (Figure 3D,H,I,J). Taken together, these results
indicate that Gbb in the CZ cell-autonomously prevents the excessive differentiation of
plasmatocytes primarily by inhibiting the hyperactivation of the EGFR pathway but not
the JNK pathway.

3.4. Knockdown of Gbb in Intermediate Progenitors and Progenitors Resulted in the
Over-Differentiation of Crystal Cells and Plasmatocytes

We further detected the differentiation of crystal cells with the anti-PPO1 antibody.
However, unlike the differentiation of plasmatocytes, the differentiation index of the crystal
cells in Hml > gbb RNAi lymph glands was significantly reduced compared with that in
the control (Figure 4A–C,G). Then, we used Pxn-Gal4 to knock down gbb and found that
the number of crystal cells in Pxn > gbb RNAi lymph glands was significantly increased
compared with that in the control (Figure 4D–F,H). These results indicate that the expression
pattern of Hml-Gal4 and Pxn-Gal4 may not be exactly the same, although both of them are
maturation markers of hemocytes. In addition to being expressed in mature hemocytes, Pxn
is also expressed in intermediate progenitors, initially described as being in a “transition
state”, as these cells are both Dome+ and Pxn+ [36,37]. We next used the MZ progenitor-
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specific driver dome-Gal4 to knock down gbb, and found that the loss of gbb in the MZ
resulted in the massive differentiation of crystal cells and plasmatocytes; especially, the
crystal cells were also observed in the posterior lobes of dome > gbb RNAi#1 lymph glands
(Figure 5A–H). Taken together, these results suggest that the knockdown of gbb only in the
CZ maturing hemocytes can prevent the differentiation of crystal cells, but the knockdown
of gbb in intermediate progenitors and progenitors results in the over-differentiation of
crystal cells and plasmatocytes.
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Figure 2. The knockdown of gbb in the CZ induces the differentiation of lamellocytes by activating the
EGFR and JNK pathways. (A–H) Immunostaining against lamellocyte marker L1 in the circulating
hemocytes (A–D) and lymph glands (E–H) of third-instar larvae. (I–L) The activity of the EGFR
pathway was detected with anti-p-Erk antibodies. Immunostaining of circulating hemocytes (I,J) and
lymph glands (K,L) showed high p-Erk (red) signals upon gbb knockdown. (M,N) Quantification of
p-Erk intensity in circulating hemocytes (M) and lymph glands (N). In this and similar subsequent
analyses, numbers of images of circulating hemocytes and numbers of lymph glands analyzed are
indicated on histograms. (O–R) The activity of the JNK pathway was detected with anti-p-JNK
antibodies. Immunostaining of circulating hemocytes (O,P) and lymph glands (Q,R) showed high
p-JNK (red) signals upon gbb knockdown. (S,T) Quantification of p-JNK intensity in circulating
hemocytes (S) and lymph glands (T). The arrows in B indicate the lamellocytes. Dashed white lines
in (I,J,O,P) outline the edges of circulating hemocytes. For all quantifications: ** p < 0.01; *** p < 0.001;
**** p < 0.0001 (Student’s t test). Scale bars: 50 µm (A–D), 100 µm (E–H,K,L,Q,R), 20 µm (I,J,O,P).
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Figure 3. The knockdown of Gbb in the CZ induces plasmatocyte differentiation by activating the
EGFR pathway but not the JNK pathway. (A–D) The Hml-GFP-positive area represents the area of
the CZ. (E–H) Immunostaining for the plasmatocyte marker P1 showed that the P1-positive area was
increased in the Hml > gbb RNAi#1 lymph gland (F), and the aberrant plasmatocyte differentiation
was rescued in Hml > gbb RNAi #1 > EGFR-DN (G) and Hml > gbb RNAi #1 > UAS-puc lymph glands
(H). (I,J) Quantification of the proportions of the anterior lobes occupied by the Hml-GFP + area
(I) and P1+ area (J), respectively. For all quantifications: ns, not significant; * p < 0.05; **** p < 0.0001
(Student’s t test). Scale bars: 100 µm (A–H).

3.5. Gbb in the CZ Is Required for Preventing the Hyperproliferation of Lymph Glands by
Inhibiting the Overactivation of EGFR and JNK Pathways

Of note, we observed that the loss of Gbb in the CZ resulted in a dramatic enlargement
of the anterior lobes of the lymph glands (Figure 6A–C,J), suggesting that Gbb may regulate
cell proliferation in the lymph gland. To confirm our speculation, the anti-PH3 antibody
was used to examine the mitotic activity of the lymph glands at different larval stages. The
increased PH3-positive cells were observed in the Hml > gbb RNAi#1 and Hml > gbb RNAi#2
lymph glands at 72 h and 96 h after egg laying (Figure 6D–I,K). The overactivation of the
EGFR and JNK signaling pathways can promote excessive cell proliferation and tumori-
genicity [16,38]. Thus, we asked whether Gbb regulates cell proliferation by inhibiting the
activation of the EGFR and JNK pathways. Consistent with this hypothesis, the inactivation
of the EGFR or JNK pathway dramatically reduced the overgrowth of the anterior lobes in
the Hml > gbb RNAi#1 lymph glands (Figure 7A–E). These results demonstrate that Gbb
expression in the CZ is required for preventing the hyperproliferation of the lymph glands
by inhibiting the overactivation of the EGFR and JNK pathways.
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Figure 4. The knockdown of gbb in the CZ using the Pxn-Gal4 driver causes the excessive differenti-
ation of crystal cells. (A–F) Immunostaining of the lymph gland with anti-PPO1 antibody showed
that using Hml-Gal4 to knock down gbb reduced the differentiation of crystal cells (A–C), but using
Pxn-Gal4 to knock down gbb induced the excessive differentiation of crystal cells (D–F). (G,H) Quan-
tification of the number of crystal cells. For all quantifications: * p < 0.05; ** p < 0.01; *** p < 0.001
(Student’s t test). Scale bars: 100 µm (A–F).
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Figure 5. The knockdown of gbb in the MZ using the dome-Gal4 driver results in the massive
differentiation of crystal cells and plasmatocytes. (A–C) Immunostaining of lymph gland with
anti-PPO1 antibody. (D–F) Immunostaining of lymph gland with anti-P1 antibody. The GFP signal
area represents the area of dome > GFP+ MZ. (G,H) Quantification of crystal cell number (G) and
P1-positive area (H). For all quantifications: ** p < 0.01; *** p < 0.001; **** p < 0.0001 (Student’s t test).
Scale bars: 100 µm (A–F).
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Figure 6. The loss of Gbb in the CZ induces the hyperproliferation of lymph glands. (A–C) Immunos-
taining of lymph glands with Hoechst showed that the anterior lobes of Hml > gbb RNAi#1 and
Hml > gbb RNAi#2 lymph glands were obviously enlarged. (D–I) Immunostaining of lymph glands
with anti-PH3 antibody showed increased PH3-positive cells in the Hml > gbb RNAi#1 and Hml > gbb
RNAi#2 lymph glands at 72 h (D–F) and 96 h (G–I) after egg laying. (J) Quantification of anterior lobe
size. (K) Quantification of PH3-positive cell number at 72 h (D–F) and 96 h (G–I) after egg laying.
For all quantifications: NS, not significant; *** p < 0.001; **** p < 0.0001 (Student’s t test). Scale bars:
100 µm (A–I).
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anterior lobes in the Hml > gbb RNAi#1 lymph glands. (A–D) Immunostaining of the lymph gland
with Hoechst showed that the enlargement of the anterior lobes of Hml > gbb RNAi#1 lymph glands
was obviously rescued by the inactivation of EGFR and JNK pathways. (E) Quantification of anterior
lobe size. For all quantifications: **** p < 0.0001 (Student’s t test). Scale bars: 100 µm (A–D).

4. Discussion

The BMP signaling pathway is highly conserved between Drosophila and mammals,
and Drosophila has become a valuable system to study BMPs due to the high functional
conservation of the pathway and the molecular genetic tools available. It has been shown
that BMP signaling is well known for its role in controlling proliferation in imaginal
tissues and maintaining germline stem cells in the ovaries [21,39–42]. Recent studies
have indicated that BMP signaling modulates the Drosophila immune response following
bacterial infection, wounding, and parasitic nematodes [43–45]. NF-κB transcription factors
are required for the activation of the BMP signaling pathway in nematode-infected flies [46].
Gbb and its receptor Wishful Thinking (BMPRII) are necessary for injury-induced allodynia
in Drosophila [47]. Furthermore, injury can stimulate the production of Dpp and Gbb,
which drive an expansion of intestinal stem cells (ISCs) by promoting their symmetric
self-renewing division in the adult Drosophila midgut [48]. The TGF-β signaling pathway is
involved in inflammation and tissue repair in mammals, and the lack of TGF-β signaling
can affect the function, proliferation, and differentiation of immune cells [49,50]. Moreover,
previous studies have suggested that suppressing BMP receptor 1A in mouse bone marrow
stroma can cause an increased osteoblast count [39], and BMP4 was shown to be expressed
in and regulate the mouse HSC [51]. Similarly, the BMP signaling pathway also controls the
size of the Drosophila hematopoietic niche PSC. Dpp antagonizes the activity of wingless
(Wg)/Wnt signaling, which positively regulates the number of PSC cells via the control of
Dmyc expression [28]. Furthermore, this study also suggests that Gbb is not required for
the size control of the PSC of the lymph gland.

Here, we further determined the role of Gbb in Drosophila hematopoiesis. We showed
that Gbb is mainly expressed in the cytoplasm of the lymph gland hemocytes and cell-
autonomously regulates the differentiation of the lymph glands in the CZ via multiple
regulatory mechanisms. Consistent with its subcellular localization in the lymph glands,
the cytoplasmic localization of Gbb has been found in neurons and intestinal cells in
previous studies [47,52]. We found that the knockdown of gbb in the CZ significantly
induced the abnormal differentiation of lamellocytes and plasmatocytes. However, the
crystal cell number was significantly reduced in the lymph glands of Hml > gbb RNAi,
probably because the knockdown of gbb triggers lamellocyte differentiation at the expense
of crystal cells. Similar to these results, our previous studies also have shown that the loss of
jumu or ectopic expression of col favors lamellocyte differentiation at the expense of crystal
cells [11]. Moreover, the knockdown of gbb in intermediate progenitors and progenitors
also induced the over-differentiation of crystal cells and plasmatocytes. Consistent with
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these results, a recent study showed that knocking down Dlp in the progenitors, which
regulate Dpp signaling by stabilizing Dpp at the cell membranes, also increased blood
cell differentiation and decreased the progenitor pool [53]. The role of Dpp in the PSC
and MZ has been evaluated [28,53]; however, the function of this ligand in CZ is still
unknown. In Drosophila, two other characterized BMP family ligands, Gbb and Scw, can
form heterodimers with Dpp to augment the level and increase the range of BMP signaling
in different cells and tissues [54]. Whether Gbb regulates the differentiation of the lymph
gland hemocytes by forming heterodimers with Dpp and the function of Dpp in the CZ
remain to be addressed.

Previous studies have shown that the JNK and EGFR signaling pathways participate
in lamellocyte formation [16,55]. Our recent study further elucidated the role of the JNK
and Ras/EGFR pathways in the CZ of the lymph glands [17]. Using UAS-hepAct to activate
the JNK signaling pathway in the CZ can induce the generation of lamellocytes. However,
the overexpression of bsk or Rasv12 (an activated form of Ras) in the CZ failed to induce
lamellocyte formation, but overexpressing both genes simultaneously could lead to the
production of lamellocytes [17]. These results indicated that the Ras/EGFR pathway in
the CZ can cooperate with the JNK pathway to regulate the differentiation of lamellocytes.
Here, we found that the loss of Gbb in the CZ promoted the phosphorylation of Erk
and JNK, and inhibiting EGFR or JNK activation can effectively rescue the lamellocyte
formation caused by the loss of Gbb. These results suggest that the BMP pathway may
control the differentiation of lamellocytes by preventing the hyperactivation of EGFR and
JNK signaling. Moreover, our study also showed that Gbb expression in the CZ is required
for preventing the hyperproliferation of the lymph glands by inhibiting the overactivation
of the EGFR and JNK pathways. It has been demonstrated that EGFR and JNK signaling
can promote growth and proliferation in many cell types, and genetic hyperactivation of
both signaling pathways can drive tumor formation [56–59]. Consistent with our results, a
recent study showed that the loss of BMP induced tumorigenesis and consequently led to
the aberrant activation of JNK/Mmp2 signaling, followed by intestinal barrier dysfunction
and commensal imbalance [60]. Our present results provide a better understanding of
the regulatory mechanism of the BMP signaling pathway in Drosophila hematopoiesis and
important insights into the regulatory relationships of the BMP, EGFR, and JNK pathways
in human hematopoietic malignancies. Furthermore, future studies will address the role of
other components of the BMP pathway in Drosophila hematopoiesis.
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