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Abstract: The bone marrow niche plays an increasing role in the pathophysiogenesis of myelodysplas-
tic syndromes. More specifically, mesenchymal stromal cells, which can secrete extracellular vesicles
and their miRNA contents, modulate the fate of hematopoietic stem cells leading to leukemogenesis.
Extracellular vesicles can mediate their miRNA and protein contents between nearby cells but also in
the plasma of the patients, being potent tools for diagnosis and prognostic markers in MDS. They can
be targeted by antisense miRNA or by modulators of the secretion of extracellular vesicles and could
lead to future therapeutic directions in MDS.
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1. Introduction

Myelodysplastic syndromes (MDS) are a heterogeneous group of clonal diseases
characterized by ineffective hematopoiesis due to dysmyelopoiesis, progressive cytopenias,
and increased risk of developing acute myeloid leukemia (AML) in elderly patients. Disease
evolution leads to the emergence of mutant genetically instable clones and transformation
to AML in approximately 30% of the cases [1]. Prognosis is determined by the international
prognostic scoring system (IPSS), recently refined as IPSS-R, allowing classification in two
main stages: low- and high-risk MDS [2,3], according to the risk of progression to AML.

After diagnosis and risk status classification, additional factors determine the treat-
ment the patient will take. For low-risk (LR) MDS, if asymptomatic, the patient will likely
undergo a period of watchful waiting. However, patients with LR MDS and symptomatic
cytopenias (neutropenia, anemia, and thrombocytopenia) will typically receive supportive
care, namely, erythropoiesis-stimulating agents such as erythropoietin (EPO) and/or red
blood cells/platelet transfusions for supportive care or recombinant granulocyte colony
stimulating factor (G-CSF) therapy for patients who are neutropenic. Patients who have
an excess of ring sideroblasts (RS) and low to intermediate risk who receive red blood cell
(RBC) transfusions are also able to receive luspatercept (approved by the Food and Drug
Administration [FDA] and the European Medicines Agency [EMA] in April 2020 for MDS)
if they had previously failed, were intolerant to, or ineligible for EPO. Patients who receive
transfusions are also likely to receive iron chelators and anti-fibrinolytic drugs (to help with
blood clotting).

Most patients with higher-risk disease receive active therapy, with hypomethylating
agents being the most commonly used modality, but allogeneic hematopoietic stem cell
transplant may also be used for fit patients. Most patients with MDS, regardless of risk
status, will require RBC transfusions at some time during their illness, with some patients
becoming transfusion-dependent (TD). The transfusion burden is associated with the
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prognosis in patients with MDS. Those patients are susceptible to transfusion iron overload,
which can adversely affect hepatic, cardiac, and endocrine functions. LR MDS patients will
eventually progress to either higher-risk (HR) MDS or AML.

Several studies demonstrated that MDS were triggered by clonal abnormalities arising
in the hematopoietic stem cells. Karyotype abnormalities are present in around 50–60%
of de novo MDS and in 80 to 90% of secondary MDS [4,5]. Gene mutations are present in
more than 90% of patients. The most frequent mutations identified in MDS occur in genes
encoding components of the spliceosome or in epigenetic regulators [6,7]. Myelodysplastic
syndromes result from the sequential acquisition of mutations in hematopoietic stem cells
that will be responsible for clonal expansion and damage to myeloid differentiation.

In the last few years, the importance of the bone marrow (BM) microenvironment in
the physiopathology of MDS has been highlighted. Normal and pathological hematopoiesis
takes place in a specialized niche within the bone marrow microenvironment. A majority
of the cells constituting this niche are derived from the bone marrow mesenchymal stro-
mal cell (MSC), but there are also numerous other cells different from the hematopoietic
cells defining the bone marrow niche. The recent studies in murine models show that
abnormalities of MSC contribute to the physiopathology of MDS.

In this review, we will summarize the studies establishing a causal relationship be-
tween deregulation of the hematopoietic niche and MDS pathogenesis, stressing on the
central role of mesenchymal stromal cells, their crosstalk between MSC and hematopoietic
stem cells (HSCs), and especially, on the extracellular vesicles (EVs) and their contents, the
microRNA (miRNA). In a second part, we will stress the importance of EVs and miRNA as
diagnostic and prognostic tools. In the last part, we will finish on the therapeutic avenues
using these innovative concepts of EVs and miRNAs.

2. Crosstalk between the Bone Marrow Niche and Hematopoietic Stem Cells: Role of
Extracellular Vesicles
2.1. The Bone Marrow Niche and the Mesenchymal Stromal Cells

The two main architectural scaffolds of the bone marrow are the bone and the vessels.
Classically, an endosteal niche in contact with bone tissue and a vascular niche in contact
with endothelial cells are described. Lord et al. [8] observed that the hematopoietic stem
cells were localized in the sub-endosteal sector in contact with the bone, suggesting that
the osteoblast cells could regulate hematopoiesis. Indeed, osteoblasts are able to produce
granulocyte colony-stimulating factor (G-CSF) [9] and interleukin 6, promoting the preser-
vation of the immature character of hematopoietic stem cells [10]. In fact, the osteoblast
was the first cell in the hematopoietic niche described to be able to influence HSCs. The
osteoblasts that mainly make up the endosteal niche are derived from the same cell, the
mesenchymal stromal cell.

Considering the localization of HSCs near blood vessels, attention has also focused
on the mesenchymal stromal cells that surround the blood vessels at the level of the
vascular niche. These perivascular mesenchymal cells express CD146 [11], CXCL12 [12],
and Nestin [13]. CXCL12 positive reticular cells (CAR cells) adjacent to sinusoids are shown
to co-localize with HSCs [12]. Subsequently, bone marrow MSCs that express Nestin are
shown to localize around blood vessels in contact with HSCs and, furthermore, express
high levels of stem cell factor (SCF) and CXCL12 [13]. These studies demonstrate that MSCs
are one of the components of the perivascular niche for HSCs and that MSCs are ubiquitous
within the hematopoietic niche and have a major role in the regulation of hematopoiesis.
The perivascular stromal cells and endothelial cells that synthesize CXCL12 are the same
cells and represent the primary source of SCF within the bone marrow [14]. Those cells
produce multiple factors and are crucial components of the hematopoietic niche.

Mesenchymal stromal cells are a non-hematopoietic bone marrow cell population
considered a key component of the hematopoietic microenvironment.

According to the international society for cell therapy [15], mesenchymal stromal cells
are defined by three criteria:
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• The ability to adhere to plastic,
• Expression of CD73, CD90, and CD105 with concomitant lack of expression of CD45,

CD34, CD14 or CD11b, CD79α or CD19, and HLA-DR,
• The ability to differentiate into osteoblasts, chondrocytes and adipocytes in vitro. This

definition was recently updated by the ISCT MSC committee, but it is recommended
to mention the tissue-source origin of the cells to confirm evidence for stemness associ-
ated with a robust matrix of functional assays to demonstrate MSC properties [16].

Bone marrow is also constituted of other non-hematopoietic cell types such as os-
teoblasts, endothelial cells, pericytes, adipocytes, Schwann cells, and nerves and hematopoi-
etic cell types such as macrophages, osteoclasts, and lymphocytes [17].

2.2. Exosomes and Microvesicles: Different Kinds of Extracellular Vesicles (EVs)

Microparticles and exosomes are classically separated by size criteria but there is
actually a significant size overlap, and evidence of intra-cellular origin should be provided
in order to stringently define exosomes [18] (Figure 1).

Large EVs or microvesicles are released during cell-surface budding, and their sizes
range from 100 to 1000 nm in diameter. They are composed of an outer lipid bilayer that
surrounds the inner content, composed of mRNA, miRNA, non-coding RNAs, proteins, and
lipids. By contrast, smaller EVs or exosomes are derived from the endosomal membrane
compartment. This leads to the formation of endosomes that contain intraluminal vesicles,
named endosomal multivesicular bodies, which can release their contents in small exosomes
after fusion with the plasma membrane into the extracellular space. Exosomes are defined
by homogeneous membranous vesicles lined by a lipid bilayer and produced by the inner
budding of the endosomal membrane during maturation of the multivesicular body (MVB).
They are secreted by fusion of MVB with the cell surface. Their sizes vary from 50 to 150 nm
in diameter. They contain a set of proteins, lipids, and nucleic acids (including miRNAs)
that allow them to operate as cargo and signaling platforms for short-range or long-range
delivery of information to other cells [19]. In cancer, they can modulate stromal, endothelial,
inflammatory, and immune responses, thus, reprogramming the microenvironment that
favors tumor progression and metastatic dissemination [20]. Exosomes, and more generally,
small EVs (sEVs), are potent platforms for signaling and exchange of materials between
MSCs and HSCs in the extremely promiscuous network of interactions of the medullary
microenvironment (Figure 1) [21].

However, there is currently no consensus for the nomenclature of extracellular vesicles.
Differential ultracentrifugation is the most widely used technique to separate and collect
secreted vesicles. The different vesicles can be defined as a result of the centrifugation speed
used: the microvesicles correspond to the pellet obtained at 10,000× g and the exosomes
obtained at 100,000× g [22]. In addition, exosomes were conventionally described as
having a cup-shaped morphology and a size of 50 to 100 nm under electron microscopy.
However, this characteristic appearance was shown to be due to an experimental artefact,
probably due to the drying process. Initially, a proteomic analysis of the different fractions
obtained during the differential centrifugation steps was carried out. A categorization of
extracellular vesicles was proposed, which could be applied to all sources of extracellular
vesicles (cultured cells or biological fluids) [23]. Nevertheless, the origin and the production
route are extremely difficult to determine on the vesicles themselves. The tetraspanin
markers and others, for example, which were considered specific to exosomes, are, in fact,
also present on microvesicles [24].

Moreover, it is difficult to separate exosomes from microvesicles technically. However,
when studying the biological effects of the cell secretome in order to mimic the in vivo
situation, we should evaluate the biological impacts of these different vesicles together.
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Figure 1. Definition of exosomes and microvesicles in the context of MSC to HSC communication.
Large EVs or microvesicles are released during cell-surface budding, while smaller EVs or exosomes
are derived from the endosomal pathway. All cells produce EVs. Here, we show the example of EV
production by mesenchymal cells because they play an important role in hematopoiesis and are in
close interaction with hematopoietic stem cells (HSC). EVs are an important means of communication
between cells and deliver signals in the form of nucleic acids, including miRNAs, lipids, proteins, or
metabolites. The mechanisms of non-viral EV transfer are not yet fully elucidated. EVs may have
ligands capable of binding to corresponding receptors on target cells. These trigger signaling cascades
and can induce receptor-mediated endocytosis. Despite the fact that the mechanisms by which
receptor cells take up exosomes have not been fully elucidated, there are some studies demonstrating
that integrins, lectins/proteoglycans, T cell immunoglobulin, and mucin structural domain protein 4
(Tim4) may contribute to cellular targeting specificity [25,26]. EV entry may also involve endocytosis
mediated by clathrin-coated pits, lipid rafts, phagocytosis, caveolae, and micropinocytosis [27].
Finally, the entry of EV contents may also involve membrane fusion or macropinocytosis to spill
their contents into the cytoplasm. Thus, bioactive molecules contained in EVs can also be transferred
into the cytoplasm of the target cell and exert activity there. EVs can also simply be degraded, thus,
becoming a source of nutrients for the recipient cells [28]. Moreover, EVs can mediate the interaction
of secretory cells with the surrounding extracellular matrix (ECM). In mainly tumor contexts, EVs
were shown to function also in long-distance communication.

2.3. MicroRNA

MicroRNAs (miRNAs) are short non-coding RNAs that regulate gene expression
post-transcriptionally [29]. To date, more than 2600 human mature miRNAs have been
identified, each with the potential to regulate hundreds of target genes [30]. MicroRNAs
play key regulatory roles in all biological processes, including cell proliferation, cellular
differentiation, cell cycle control, apoptosis, and angiogenesis. MicroRNAs can act as either
oncogenes or as antioncogenes. MicroRNAs are important regulators of the differentiation
and maintenance of hematopoietic stem cells, and changes in their expression levels can be
correlated to the development of myeloid and lymphoid neoplasms.

Mature miRNA is 19–22 nucleotides in length, and its formation is a multistep process
involving a large number of enzymes. The miRNA genes are first expressed as a long
precursor by a polymerase II or III. This precursor, called pri-miRNA, has a polyA tail
contributing to its stability. Then, this pri-miRNA will be processed by a protein complex
composed of Drosha (an endonuclease) and its cofactor DiGeorge syndrome critical region
8 (DGCR8). This protein complex will cleave the pri-miRNA and generate an RNA of
60 to 100 nucleotides with a hairpin structure: pre-miRNA. The latter will be exported
out of the nucleus to the cytoplasm by exportin 5. In the cytoplasm, the pre-miRNA will
be processed by RNA III endonuclease (DICER1), which will cleave the hairpin structure
and generate an RNA double strand of 21 to 23 nucleotides [31]. Subsequently, DICER1
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will associate with other proteins, in particular with the Argonauts family (Ago1 or Ago2)
and trans-activation response RNA binding protein (TRBP) to form the complex RNA-
induced silencing complex (RISC), which will support double-stranded RNA. A helicase
will separate the two strands of RNA and only keep one of the two, which will be called
the mature miRNA [32].

Mature miRNAs are often suffixed “5p” or “3p” to denote the functional miRNA
strand.

The strand with the 5′ uracil is called “the guide strand” and can be incorporated into
the RNA-induced silencing complex (RISC), leading to the post-transcriptional regulation
of target genes, while the other strand, called “the 3′ passenger strand”, undergoes rapid
degradation. The target gene is silenced by mRNA cleavage at 10–11 nt upstream of
the 5′-end of the guide strand. This cleavage is mediated by the activity of the Ago2
protein, one of the main components of the RISC complex. In most cases, miRNAs interact
with the 3′-UTR of target mRNAs. The degree of complementarity determines what will
happen: Ago2-dependent cleavage of the target mRNA or translational suppression [33].
Perfect complementarity allows Ago2-catalyzed cleavage of the mRNA strand. However,
mismatches exclude cleavage and promote repression of mRNA translation. RISC can
inhibit mRNA translation by interfering with the eiF4F complex, then the polyadenylase
PAN2/3 and CCR4-NOT complex deanylate the mRNA, removing the m7G cap of the
target mRNA. The decapped mRNA then undergo 5′-3′ degradation via the exoribonuclease
XRN1 [34]. The miRNA incorporated into RISC complex (miRISC) can also repress a post-
initiation stage of translation by inducing ribosomes to drop off prematurely [35]. In most
cases, miRNAs interact with the 3′-UTR of target mRNAs; however, interactions of miRNAs
with other regions, including the 5′-UTR, the coding sequence, and gene promoters, were
also reported [36]. Currently, there are information resources (miRTarBase, TargetScan,
mirDB, miRWalk, miRanda) that can predict in silico the genes targeted by miRNAs [37].

Here in this review, we will develop the role of extracellular vesicles secreted by the
mesenchymal stromal cells and the role of miRNA cargoed by EVs in the physiopathology,
diagnosis, prognosis and their possibility of modulation for therapeutic purposes, in
myelodysplastic syndromes.

2.4. Medullar Microenvironment Contribution to MDS Physiopathology (Figure 2)

The physiopathology of MDS is complex. Clonal hematopoiesis and the microenvi-
ronment could play complementary roles. Raaijmakers et al. [38] have demonstrated in
a murine model that the deletion of DICER1 in MSC-derived osteoprogenitors not only
affected their differentiation but also resulted in the generation of myelodysplasia and
secondary leukemia. These results demonstrate that specific molecular alterations in the
bone marrow microenvironment could result in clonally impaired hematopoiesis. We
have also demonstrated, as have other teams, that MSCs from MDS patients, compared
with healthy subjects, have a lower level of expression of DICER1 and DROSHA [39–41].
Furthermore, Moiseev et al., using DNA sequencing on bone marrow from high-risk MDS
patients, demonstrated that mutations in the miRNA processing genes were present in
approximately 50% of the patients [42]. Moreover, overexpression of beta-catenin in murine
osteoblasts was shown to cause aberrant activation of Notch and FOXO-1 signaling in
HSC, resulting in AML transition [43,44]. These observations establish a causal relationship
between deregulation in the bone marrow microenvironment and MDS pathogenesis.

The bone marrow niche also participates in the pathogenesis of MDS via a pro-
inflammatory climate. The TLR4/S100A8/S100A9 axis, leading to the activation of the
inflammasome, is triggered in HSCs by hematopoietic inhibitory myeloid-derived suppres-
sor cells (MDSCs) [45,46]. The alarmin S100A9 triggers pyroptosis through the generation
of reactive oxygen species, leading to assembly and activation of the redox-sensitive NLRP3
inflammasome and beta-catenin, assuring propagation of the MDS clone by DNA damage
and lesions in the HSCs. Zambetti et al. identified a mesenchymal-niche-induced inflam-
matory signaling axis that results in genotoxic stress in HSCs in MDS [47]. Innate immunity
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and miRNA play also an important role in a subtype of MDS, 5q deletion syndrome. MDS
with chromosome 5q deletion represents a distinct hematologic and pathologic subgroup
defined by the 2016 WHO classification that is characterized by an isolated 5q deletion or
del(5q) and specific features as the association of anemia with leukopenia and thrombocyto-
sis. This syndrome is characterized cytogenetically by the loss of part of the long arm (q arm,
band 5q33.1) of human chromosome 5 in myeloid progenitors [48]. The 5q deletion induces
the loss of two miRNAs that are normally overexpressed in hematopoietic stem/progenitor
cells (HSPCs), miR-145 and miR-146a. These miRNAs respectively target Toll-interleukin-1
receptor domain-containing adaptor protein (TIRAP) and tumor necrosis factor receptor-
associated factor-6 (TRAF6). Knockdown of that miRNA or overexpression of TRAF6 in
mouse HSPCs resulted in thrombocytosis, mild neutropenia, and megakaryocytic dysplasia,
which are several characteristic features of 5q deletion syndrome [49].

The MSCs in MDS are “pathologic” [50]. They harbor clonal chromosomal alterations
but are distinct from those commonly reported in HSCs [51,52]. In Blau et al.’s study [51],
the most frequently found abnormalities in MDS-derived MSCs are 7q deletion, a deletion
of chromosome 4 or Y, and the addition of chromosome 5. In this study, which also included
MSCs from patients with AML, interestingly, patients with cytogenetic abnormalities within
their MSC exhibited a poorer overall survival than patients with MSC free from cytogenetic
abnormalities. In addition, certain cytogenetic abnormalities present in MDS-derived MSCs
are said to be specific for a subtype of myelodysplastic syndrome [53].

MDS-derived MSCs show impaired osteogenic differentiation capacity, earlier senes-
cence, altered clonogenic capacity of MSCs, altered methylation pattern, Osteopontin,
jagged1 increased, kit ligand, and angiopoetin decreased [50]. Comparative gene ex-
pression profiling of MDS-derived MSCs versus healthy donor MSCs showed reduced
expression of DICER1, Drosha, SBDS, and various miRNA, including miR-155, miR-181a,
and miR-222 in MDS-derived MSC [41].

A permanent crosstalk takes place within the hematopoietic tumor niche between
the hematopoietic tumor cells and their microenvironment, especially mesenchymal stro-
mal cells [40,54]. These interactions participate in oncogenesis [38,55]. The intercellular
crosstalk involves direct intercellular contact, the release of cytokines, growth factors, as
well as extracellular vesicles, which contain different components, such as miRNA, mRNA,
proteins, and lipids, which can regulate important biological processes in the targeted
cells [56].

2.5. EVs Mediate miRNA to HSCs in MDS, Crosstalk between MSCs and HSCs into Bone
Marrow Niche (Figure 2)

Vesicles are a means of intercellular communication between cells and, especially,
between mesenchymal stomal cells and hematopoietic stem cells. Phenotypically, EVs by
themselves can influence the fate of HSCs. Meunier et al. showed that small EVs from MDS-
derived MSCs induced HSC apoptosis and can also promote an oxidative environment
with increased ROS level and induction of DNA damage. Whole genome sequencing of
healthy donor CD34+ cells incubated with sEVs from MDS-derived MSCs showed that
sEVs from MDS-derived MSCs are able to induce a mutational signature found in cancers
listed in the COSMIC cancer database (https://cancer.sanger.ac.uk/cosmic, accessed on 25
December 2022). The majority of mutations concerned the intergenic and intronic regions,
and very few gene mutations were observed in the coding regions. Genetic mutations
are not the sole explanations for the complete development of MDS, and those epigenetic
modifications might be the soil for further addictive gene mutations [39]. It was suggested
that MVs derived from human bone marrow MSC may act as mediators of cell-to-cell
communication through miRNA delivery [57]. These transferred micro-RNAs could play
an important role in the hematopoietic system.

Muntion et al. isolated microvesicles by two methods: ultracentrifugation and the
Exoquick system, with the globally same characterization of EVs by electronic microscopy
and CD63 and CD81 markers. They have shown that sEVs from MDS-derived MSCs could

https://cancer.sanger.ac.uk/cosmic
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induce better clonogenic capacity of CD34+ cells. They clearly demonstrated by confocal
microscopy that sEVs from MSCs are incorporated into CD34+ cells. MiR-10a and miR-15a
are two of the most overexpressed miRNAs in the MSC-derived EVs from MDS patients.
Those miRNA target cell cycle, TP53, and PI3K/AKT signaling. They suggested that the
increased erythroid progenitor apoptosis seen in MDS could be mediated by MVs from the
microenvironment carrying miRNAs acting on the TP53 pathway [40].

Our team confirmed that MDS-derived MSCs support an impaired hematopoiesis
compared to healthy donor stroma. We confirmed the underexpression of DICER1 in
low-risk human MDS MSCs via a total marrow flow cytometry technique [39]. This under-
expression was responsible for an abnormal profile of miRNAs expressed by MDS MSC
with 16 overexpressed miRs and 7 underexpressed between MDS MSCs and from healthy
subjects. We have demonstrated a miRNA of interest that is overexpressed in MDS MSC,
miR-486-5p. This miR is implicated in the acutization of MDS in acute leukemia in patients
with trisomy 21 [58] and in the blast transformation of chronic myeloid leukemia [59].
We confirmed that this miR could be secreted into small vesicles from MDS MSCs and
incorporated into HSCs. Using RNA sequencing of CD34+ cells from a healthy donor
overexpressing miR-486-5p, we found that the upregulation of this miRNA led to the
activation of TNFα, innate immune, and inflammatory pathways [39].

Moreover, another study from Saitoh et al. [60] demonstrated also the intercellular
communication into bone marrow niche via EVs. They observed that the EV content of
miR-101 was lower in EVs from bone marrow MSCs from high-risk MDS patients than
bone marrow MSCs from healthy donors and low-risk MDS patients. Interestingly, they
demonstrated that the level of miR-101was, on the contrary, higher in bone marrow MSCs
from high-risk MDS patients compared to bone marrow MSCs from healthy donors and
low-risk MDS patients. They suggested that some specific miRs from bone marrow MSCs
may be actively selected into EVs (intra-EV accumulation), and this phenomenon could be
linked with the increased blast number observed in patients with high-risk MDS.
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Figure 2. Schema of the role of EVs and miRNA in the physiopathology of MDS. The hematopoietic
niche is a complex structure that contains a number of different cell types: multipotent mesenchymal
stem cells (MSCs) and their progeny, a complex vascular network, nerve fibers, mature blood cells,
etc. These cell types modulate HSC function and are frequently disrupted or even abnormal in the
context of malignancies. It was shown that the components of the bone marrow niche and the HSC
communicate in different ways, including: intercellular communication, cytokines, growth factors,
mitochondria, and extracellular vesicles. In the context of the evolution of hematopoiesis during
MDS development, the exchange/communication delivered by EVs and their miRNA content may
influence genetic remodeling.
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3. Role of EVs and miRNA as Diagnostic Tools

There is evidence that miRNAs promote survival and growth of malignant cells,
notably in MDS and AML. Some miRNAs appear to be specifically deregulated in those
hemopathies. Some studies have demonstrated the presence of tumor-specific miRNAs
in plasma or serum, suggesting that those miRNA could be a potential biomarkers of
cancers [61]. The main diagnostic issue with myelodysplastic syndromes is the necessity
to perform bone marrow aspiration or bone marrow biopsy, which is quite invasive. The
interest in using miRNAs in MDS as a diagnostic tool would be to use only peripheral
blood to perform the diagnosis or to follow the disease without performing bone marrow
aspiration.

Two studies have evaluated the utility of miRNA to differentiate MDS patients and
healthy donors. Sokol et al. observed high levels of miR-222 and miR-10a and low levels of
miR-146a, miR-150, and Let-7e in MDS [62]. Vasilatou et al. showed that let-7a, miR-17-5p,
and miR-20a were overexpressed in low-risk MDS but underexpressed in high-risk MDS
patients compared to healthy donors [63]. If the sensitivity and specificity of miRNA
tools would be high enough to discriminate normal bone marrow from low-risk MDS,
they would be complementary to next generation sequencing (NGS) of the recurrent gene
mutations found in MDS.

Hypoplastic MDS and aplastic anemia are often difficult to diagnose as they are over-
lapped syndromes. Bone marrow biopsy and molecular biology testing cannot sometimes
discriminate between both diagnoses. Giuduce et al. examined the possible diagnostic
and prognostic values of exosomal miRNAs in aplastic anemia and myelodysplastic syn-
dromes [64]. Very interestingly, by performing a screening of 372 miRNAs in exosomal
plasma samples from patients at diagnosis, they observed 25 exosomal miRNAs that were
uniquely present in aplastic anemia and/or MDS patients. Analysis of the targets of these
25 miRNAs reveals that they are involved in several biological functions, such as HSC
differentiation, and intracellular functions, such as metabolism, cell survival, and prolifera-
tion (ERK5, PTEN, STAT3, VEGF signaling). In particular, the study reveals that fourteen
miRNA are unique in MDS. Four other miRNA are common in MDS and aplastic anemia:
miR-196a-5p, miR-196b-5p, miR-4267, and miR-378i. Clinical parameters (such as LDH,
Hb level, response to immunosuppressive therapy) and progression-free survival (PFS)
were correlated to miRNA expression levels in these patients. MiR-126-5p was negatively
associated with response to immunosuppressive therapy in aplastic anemia. A higher level
of miR-126-5p at diagnosis was associated with decreased PFS in patients with aplastic
anemia (5.5 months versus 22.7 months).

In addition, other studies in the context of patients with 5q deletion syndrome report
distinct miRNA expression profiles in CD34+ cells with overexpression of miR-34a and
downregulation of miR-146a [62,65]. These miRNA expression profiles participate in the
pathogenesis of 5q deletion syndrome.

Thol et al. analyzed mutations in miR-142 and associated miRs (miR-632 and miR-
891) in a large cohort of 935 patients with AML or MDS. MiR-142 was mutated in MDS
and in AML secondary to MDS [66]. Their study underlines the fact that miRNAs are
involved in the regulation of normal hematopoiesis, as expected. Therefore, it is not
surprising that a change in their expression may be responsible for the development of
hemopathies. Over the past ten years, several large-scale studies of MDS-specific miRNA
expression profiles (Table 1) have been published [67,68]. To better integrate the study of
miRNAs into the prognostic process of MDS, studies first need to characterize in parallel
the molecular abnormalities of MDS in order to make more detailed associations. This is
a current limitation of these studies, which, however, have the potential for interesting
clinical development incorporating miRNA profiles as a diagnostic tool.
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Table 1. Most described miRNAs in myelodysplastic syndromes (MDS) physiopathology.

miRNA of Interest Material Sampled References

miR-10a BM MNC, CD34+ cells, plasma EVS [40]
miR-10b BM MNC, CD34+ cells [69]

miR-17-3p BM MNC, PB [62,63]
miR-17-5p BM MNC, PB [62,63]
miR-150 BM MNC, plasma EVs [62]
miR-145 BM MNC [49]
miR-126 BM MNC, CD34+ cells [63]
miR-125a BM MNC, CD34+ cells, plasma EVs [70]
miR-222 BM MNC [64]
miR-34a CD34+ cells, plasma EVs [64,65]
miR-99b CD34+ cells, plasma EVs [70]

BM MNC: Bone marrow mononuclear cells, EVs: Extracellular vesicles, PB: Peripheral blood.

4. Role of EVs and miRNA as Prognostic Tools and Prediction of Resistance to
Therapy

Myelodysplastic syndrome prognosis is well characterized by IPSS-R score, which
includes percentage of blasts, cytogenetics, and number of cytopenias. However, molecular
biology has become increasingly used in MDS diagnosis and prognosis [71], and recently, a
new prognostic score was published integrating molecular biology data: IPSS-M (https:
//doi.org/10.1056/EVIDoa2200008, accessed on 25 December 2022).

MiRNA have been evaluated as prognostic tools in MDS in numerous studies. For
example, some miRNAs are correlated to shorter survival: miR-125a [70], let-7a [72],
miR-194-5p [73], miR-22 [74], miR-661 [75], and others to disease progression: miR-422a,
miR-617, miR-181a, miR-210, and miR-196-5b [72]. Furthermore, Chengyao et al. screened
deregulated miRNA in the bone marrow sera of MDS patients. They demonstrated that
expression of the miR-320 family was upregulated in MDS, and high expression of miR-320d
was an independent prognostic factor for overall survival in MDS [69].

MiRNA could also be used as predictive factors of the response to therapy. Solly
et al. [76] compared the expression of 754 miRNAs in cells of high-risk myelodysplastic
syndromes resistant or sensitive to azacitidine. Azacitidine inhibits DNA methyltrans-
ferases, such as DNMT1. Seven miRNAs targeting the 3′UTR of DNMT1 are repressed
in azacitidine-resistant cells and correlate with higher levels of DNMT1. The specific in-
hibition of endogenous miRNAs targeting DNMT1 increases the expression of DNMT1,
thus, inducing resistance to azacitidine. Patients with low miR-126 had significantly lower
response rates and higher relapse rates, as well as shorter progression-free survival, after
treatment with azacytidine.

In a 5q deletion syndrome cohort treated with lenalidomide, transfusion independence
and prolonged response correlated with an increase in miR-145 expression [77].

A major advantage of using miRNA in MDS prognosis or predication to drug resis-
tance is that they can be isolated in blood without the necessity of blood marrow sam-
ples [78]. Nevertheless, the use of circulating and exosomal miRNAs in clinical practice
requires technical improvement and standardization. It is very important, especially for
the preparation of exosomes (differential ultracentrifugation or commercial kit), to extract
the RNA and to normalize the data. For circulating miRNAs, normalization is now fairly
consensual. It is performed using small nucleolar RNAs (snoRNAs), other miRNAS, or
small RNAS. Methods such as GeNormPlus, NormFinder, and global mean of miRNA
expression are used to define the better normalizer. Usually, two or three normalizers are
necessary to perform normalization. However, in the case of exosomal miRNAs, there are
no clear guidelines for data normalization. RNU6 is usually used for miRNA normalization,
but it is not a reliable endogenous control for frozen samples [79].

https://doi.org/10.1056/EVIDoa2200008
https://doi.org/10.1056/EVIDoa2200008
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5. Role of EVs and miRNA in the Chemoresistance

Currently, few data are available on the mechanisms induced by EVs and miRNAs leading
to chemoresistance. We will, therefore, present in this section the most relevant results.

5.1. Drug Efflux

Efflux pump mechanisms perform important resistance to chemotherapeutic agents.
For example, some tumor cells package P-glycoprotein (P-gp) in their secreted EVs, thus,
allowing it to be delivered to nearby and distant cells where it modulates drug resistance.
Vesicles released by drug-resistant cancer cells promote the incorporation of functional P-gp
into drug-responsive cells that subsequently become drug-resistant. This observation has
greatly contributed to understanding the molecular bases of drug resistance emergence in
new therapeutic strategies targeting vesicle-mediated P-gp transfer [80]. More specifically
in AML, EVs produced by leukemia cells can mediate the expression of drug efflux pump
multidrug resistance protein -1 (MRP-1), which provides increased resistance to daunoru-
bicin [81]. It is not clear how EVs increase MRP-1, but the mechanisms seem to involve
miR-19b and miR-20a, which activate Pi3K/AKT signaling, leading to the overexpression
of MRP-1 [82].

5.2. Signaling Pathway Modulation by microRNA

Extracellular miRNAs derived from cancer cells are transferred to cells in the bone
marrow microenvironment where they will target immune response, angiogenesis, metas-
tasis, and drug resistance, thus, promoting tumor development. The PTEN/PI3K/AKT
pathway is a frequently found target of exosomal miRNAs linked to drug resistance. In hep-
atocellular carcinoma, exosomes from cells resistant to 5-fluorouracil (5-FU) are enriched
in miR-32-5p. Overexpression of this miRNA inhibits PTEN expression and induces mul-
tidrug resistance. MicroRNA-21, miR-222, and miR-55 are associated with drug resistance
in lymphoma, colorectal, ovarian, breast, and lung cancer. MiRNA-21 can modulate cancer
cell chemosensitivity by targeting tumor suppressors such as PTEN [83] and FasL [84].
MiR-21 contributes to chemoresistance in acute myeloid leukemia by targeting PDCD4
and BTG2, which are pro-apoptotic genes [85]. Another study described exosomes from
bone marrow stromal cells derived from AML patients enriched in miR-155 and miR-375
that play a role in the resistance to the tyrosine kinase inhibitor AC220 [86]. In addition,
BMP-2 carried by extracellular vesicles and secreted by mesenchymal stromal cells induces
survival of leukemia cells and promotes osteogenic differentiation of MSCs. These effects
would be mediated by cell ER stress responses [87–89].

5.3. Protection of Leukemia Cells from Immunotherapy

Immune checkpoint molecules, including programmed cell death-1 (PD-1) and pro-
grammed cell death ligand-1 (PD-L1), play important roles in oncogenesis by maintaining
an immunosuppressive tumor microenvironment. AML cells can release exosomes contain-
ing PD-L1, preventing T and NK-cell from immune recognition [90]. Exosomal PD-L1 can
act as a decoy sequestering PD-L1 inhibitor, explaining partially the inefficacy of checkpoint
inhibitors as anti PD-1/ PD-L1 in myeloid malignancies as AML and MDS [91].

6. Use of EVs and anti-miRNA as Treatment in MDS
6.1. Targeting miRNA

It is possible to silence aberrantly expressed miRNA using various nucleic acid ana-
logues such as locked nucleic acids (LNAs) or peptide nucleic acids (PNAs) [92–94]. Nev-
ertheless, current antimiR technologies are dependent on the efficiency of specific cell
addressing. Cheng et al. [95] describe a novel antimiR delivery platform that targets the
acidic tumor microenvironment. However, mimicking physiology may be the best way
to deliver an antimiR [96,97], and several groups are working on specialized therapeu-
tic exosomes. Recently, Kamerkar et al. [98] have engineered exosomes derived from
fibroblast-like mesenchymal cells to carry siRNA to pancreatic cancer cells with a specific
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signal addressing the exosomes. In MDS, a chemically modified inhibitor of miRNA-21
promotes normal erythropoiesis and increases hematocrit [99].

Furthermore, other deregulated miRNAs could be potential targets for future therapy:
miR-125a, which has already been demonstrated to play an important role in MDS CD34+

with a fine tuning of the NFKB pathway [70]; miR-148b, which is down-regulated in CML
and can predict clinical behavior of patients stopping imatinib [100]; and miR-378, which is
found deregulated in 5q deletion syndrome and in polycythemia vera [101,102]. MicroRNA-
486-5p, by triggering innate immunity activation and oxidative stress in low-risk MDS,
could also be an interesting target.

6.2. Extracellular Vesicles as Therapeutics

Finally, extracellular vesicles could be used for therapeutic applications. EV com-
ponents derived from healthy donors are natural components with low immunogenic-
ity, low toxicity, and high stability, which may be engineered to improve targeting and
loading efficiency. MSC-derived EVs reduce ischemia and can be used in regenerative
medicine [103].They can also attenuate inflammation or promote immune responses. Ongo-
ing trials evaluate the efficacy of EVs isolated from dendritic cells to enhance immunother-
apy in metastatic melanoma [104] or colon cancer [105].

EVs are also ideal delivery vehicles with stability in circulation and escape from phago-
cytosis contrary to mesenchymal stromal cells. They can deliver therapeutic biomolecules
as nucleic acids. For example, EVs isolated from adipose-tissue-derived stromal cells, after
transfection with a plasmid expressing miRNA-122, induced sensitization of hepatocellu-
lar carcinoma cells to sorafenib both in vitro and in vivo [106]. Anti-miRNA can also be
delivered by EVs, as seen in a model of glioblastoma with anti-miRNA-9 [107].

Nevertheless, it is quite difficult to engineer in vitro extracellular vesicles. Bioinspired
or biomimetic EVs, including artificially synthesized, EV-like NPs, EV-mimetic nanovesicles,
or hybrid EVs were recently developed [108], but the main difficulty is to engineer a vesicle
able to target a specific cellular subtype. To attain such aims, the surface of EVs has to be
modified with molecules of interest to obtain reproducible results, while preserving vesicle
integrity and activity. In this way, MSC are indicated as a potential new important tool for
delivering anticancer agents, notably, by their ability to secrete extracellular vesicles [109].
Recently, O’Brien et al. have succeeded in engineering MSC to secrete EVs enriched with a
specific miRNA using lentiviral transduction [110]. Moreover, MSC could be used to deliver
active drugs through their secreted vesicles. For example, Pascucci et al. have demonstrated
that MSC from breast cancer after priming with Paclitaxel can secrete enriched Paclitaxel
EVs [111]. Those data suggest the possibility of using MSC as a factory to develop drugs
with higher cell-target specificity.

In myelodysplastic syndromes, targeting the miRNA cargoed in EVs, which play a
leading role in the pathophysiology of MDS, could be an interesting trail.

7. Conclusions

Unlike mRNAs, miRNAs embedded in extracellular vesicles are highly stable in the
plasma samples, allowing the bone marrow material to be accessible by simple plasma
analysis. An international IPSS-M score with molecular markers was recently presented
and will be useful to orientate therapeutic strategies in myelodysplastic syndromes. With
the emergence of non-coding RNA and the role of miRNA in the physiopathology of MDS,
additional molecular-genetic markers could be integrated in the diagnosis and prognosis of
MDS. Current data on the roles of miRNAs in MDS suggest that these molecules have the
potential to become tools for diagnosis, prognosis, and treatment response predictive factors.
The development of therapy targeting deregulated miRNA in the stromal hematopoietic
stem cells by specific EVs could be a future way forward in the treatment of myelodysplastic
syndromes.
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