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Abstract: Peroxisome proliferator-activated receptors (PPARs) α, β, and γ are nuclear receptors
that orchestrate the transcriptional regulation of genes involved in a variety of biological responses,
such as energy metabolism and homeostasis, regulation of inflammation, cellular development, and
differentiation. The many roles played by the PPAR signaling pathways indicate that PPARs may be
useful targets for various human diseases, including metabolic and inflammatory conditions and
tumors. Accumulating evidence suggests that each PPAR plays prominent but different roles in
viral, bacterial, and parasitic infectious disease development. In this review, we discuss recent PPAR
research works that are focused on how PPARs control various infections and immune responses. In
addition, we describe the current and potential therapeutic uses of PPAR agonists/antagonists in the
context of infectious diseases. A more comprehensive understanding of the roles played by PPARs in
terms of host-pathogen interactions will yield potential adjunctive personalized therapies employing
PPAR-modulating agents.
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1. Introduction

Peroxisome proliferator-activated receptors (PPARs) are adopted orphan family mem-
bers of the nuclear receptor group that regulates various biological functions, includ-
ing glucose and lipid homeostasis, inflammation, and adipose cell differentiation [1,2].
PPARs are ligand-activated transcription factors that are subdivided into three isoforms,
termed PPARα (NR1C1), PPARβ/δ (also termed PPARβ or PPARδ, or NR1C2), and PPARγ
(NR1C3) [3]. The endogenous PPAR ligands include long-chain polyunsaturated fatty acids
and eicosanoids, although the functions of the ligands remain largely unknown [2,4]. Each
PPAR isoform evidences a distinct cellular and tissue distribution and biological functions
with a focus on energy balance and inflammation [2].

PPARs feature N-terminal DNA-binding and C-terminal ligand-binding domains
and form heterodimers with nuclear retinoid X receptor (RXR)-α [5,6]. After interacting
with the ligands, PPAR-RXR heterodimers undergo conformational changes that allow
them to regulate the transcription of many genes with peroxisome proliferator response
elements (PPREs) in their promoter regions [7]. The many PPAR-mediated functions are
orchestrated via recruitment of different transcriptional co-activators, including PPAR
co-activator-1α, co-activator-associated proteins, and co-repressors [2,5]. Moreover, each
PPAR isoform transcriptionally regulates the expression of the other PPAR isoforms via
feedback control [2].
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PPARα is found principally in the liver and transcriptionally regulates fatty acid
oxidation, cholesterol and glycogen metabolism, gluconeogenesis, ketogenesis, and inflam-
mation [8,9]. PPARγ is found in both hematopoietic and non-hematopoietic cells and tissues
(adipose tissue and the large intestine) [10]. PPARγ modulates many biological functions,
including fatty acid and glucose metabolism and anti-inflammatory signaling via nuclear
factor kappa B (NF-κB); it also suppresses oxidative stress and prevents platelet-leukocyte
interactions [10,11]. Recent insights into the roles played by PPAR ligands have enabled
development of PPAR agonists/antagonists, which serve as candidate drugs for inflamma-
tory, metabolic, and autoimmune diseases, as well as cancers [12]. Several PPARα ligands,
including fibrates, helpfully treat dyslipidemia, while the PPARγ ligands pioglitazone and
rosiglitazone are well-known anti-diabetic drugs [13]. The three PPARs play critical but
distinct roles in regulating the inflammation and metabolic pathways closely associated
with immune cell functions [14–16]. It is thus essential to understand how PPARs affect
antimicrobial actions against diverse infections. Here, we highlight recent insights into how
the PPAR isoforms and their agonists regulate antimicrobial host defenses against viral,
bacterial, and parasitic diseases.

2. Overview of PPARs
2.1. Molecular Characteristics of PPARs

Peroxisomes, 0.5 µm diameter single-membrane cytoplasmic organelles, play essential
roles in the oxidation of various biomolecules [17,18]. Peroxisome proliferators are multiple
chemicals that increase the abundance of peroxisomes in cells [19,20]. These molecules also
increase gene expression for β-oxidation of long-chain fatty acids and cytochrome P450
(CYP450) [21,22]. Given the gene transcriptional modulation of peroxisome proliferators,
PPARs have been identified as nuclear receptors [23–29]. The PPAR subfamily consists of
three isoforms, PPARα, PPARβ/δ, and PPARγ [30]. The three PPARs differ in tissue-specific
expression patterns and ligand-biding domains, each performing distinct functions. PPARA,
encoding PPARα, is located in chromosome 22q13.31 in humans and is mainly expressed in
the liver, intestine, kidney, heart, and muscle [31,32]. PPARγ has four alternative splicing
forms from PPARG located in chromosome 3p25.2 and is highly expressed in adipose tissue,
the spleen, and intestine [33,34]. PPARδ, encoded by PPARD, is located in chromosome
6q21.31 and presents ubiquitously [29,35]. Thus, it is essential in the study of PPARs to
consider their tissue distribution and functions.

PPAR is a nuclear receptor superfamily class II member that heterodimerizes with
RXR [36,37]. The PPAR structure includes the A/B, C, D, and E domains from N-terminus
to C-terminus [38]. The N-terminal A/B domain (NTD) is a ligand-independent trans-
activation domain containing the activator function (AF)-1 region. The NTD is targeted
for variable post-translational modifications, including SUMOylation, phosphorylation,
acetylation, O-GlcNAcylation, and ubiquitination, resulting in transcriptional regulatory
activities [39]. DNA-binding C domain (DBD) has two DNA-binding zinc finger motifs
containing cysteines, which dock to PPREs. PPARs reside upstream of RXR upon the direct
repeat (DR)-1 motifs, which are composed of two hexanucleotide consensus sequences with
one spacing nucleotide (AGGTCA N AGGTCA) [40]. The hinge D region is a linker between
the C and E domains, which contains a nuclear localization signal, and is the site for post-
translational modifications such as phosphorylation, acetylation, and SUMOylation [39].
The ligand-binding E domain (LBD) carries the hydrophobic ligand-binding pocket and
the AF-2 region. The absence of agonists enables LBD to recruit co-repressors containing
the CoRNR motifs [41]. Engaging agonists to LBD elicits conformational changes of AF-2
to facilitate interaction with LXXLL motifs of many co-activators [42]. Like other nuclear
receptor superfamily class II members, such as thyroid hormone receptor (TR), retinoic
acid receptor (RAR), and vitamin D receptor (VDR), PPARs function as heterodimers with
RXR through LBD [6,43]. LBD is also targeted for SUMOylation and ubiquitination [39].
Advancement of research on the PPAR structure helps thoroughly dissect the roles of
PPARs. We will discuss the roles of specific PPAR subtypes in the following subsections.



Cells 2023, 12, 650 3 of 18

2.1.1. Roles of PPARα

PPARα is predominantly expressed in the liver but is also found in other tissues,
including the heart, muscle, and kidney [4,32]. PPARα regulates the expression of genes
involved in metabolism and inflammation. Activation of PPARα leads to the upregulation
of genes involved in fatty acid oxidation and the downregulation of genes involved in fatty
acid synthesis [8]. PPARα also modulates other genes, including genes involved in the
transport and uptake of fatty acids and the synthesis and secretion of lipoproteins [4,8].
In addition, activation of PPARα has been shown to improve insulin sensitivity, reduce
oxidative stress, and reduce inflammation in preclinical studies [7,8,44]. PPARα activation
has been shown to modify the expression of immune response genes, including those
encoding cytokines and chemokines, which are signaling molecules that regulate the
immune response [44,45]. PPARα activation has also been demonstrated to reduce the
production of pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α)
and interleukin (IL)-6 [46,47]. PPARα has been shown to interfere with the DNA binding
of both AP-1 and NF-κB [45,46,48]. Thus, the roles of PPARα in infectious diseases should
be studied in wide ranging aspects, including metabolism and inflammation.

In the context of infection, PPARα has been shown to play an essential role in the hep-
atic metabolic response to infection. During an infectious challenge, the liver coordinates
several metabolic changes to support the host defense response, including the mobilization
of energy stores, production of acute-phase proteins, and synthesis of new metabolites.
Activation of PPARα in the liver leads to the upregulation of genes involved in fatty acid
oxidation and ketogenesis with fibroblast growth factor 21 (FGF21) production [49]. FGF21
is a hormone produced by the liver that has been shown to promote ketogenesis and reduce
glucose utilization [50,51]. The ketogenesis regulation of PPARα with FGF21 is essential for
reacting to microbial or viral sepsis [52–54]. In conclusion, the hepatic PPARα metabolic
response to infection is crucial to the host defense response.

2.1.2. Roles of PPARβ/δ

PPARβ is expressed in diverse tissues, including adipose tissue, muscle, and the
liver [29,55], and is activated by multiple ligands, such as fatty acids and their deriva-
tives [7]. PPARβ is involved in regulating lipid metabolism and energy homeostasis, as
well as controlling inflammation and immune function [56]. PPARβ activation has been
demonstrated to have pro- and anti-inflammatory effects based on the situation [56]. The
role of PPARβ in tumorigenesis is debatable. PPARβ activation has been found in some
cases to have anti-tumorigenic effects, such as causing apoptosis and inhibiting cell prolif-
eration [57,58]. In other cases, however, activation of PPARβ has been shown to promote
tumorigenesis by enhancing cell survival, promoting angiogenesis, and reducing cellu-
lar differentiation [59–62]. Overall, the role of PPARβ activation in cancer is not entirely
known and is complex. Similarly, the function of PPARβ in infection is not well understood.
Additional research is required to comprehend the function of PPARβ in the context of
immunology against cancers and infectious diseases.

2.1.3. Roles of PPARγ

PPARγ is expressed in a variety of tissues, including adipose tissue, muscle, and
the liver [33,34,55], and is activated by diverse ligands, including fatty acids and their
derivatives, as well as synthetic chemicals known as thiazolidinediones [4,7]. PPARγ is
responsible for regulating lipid metabolism, glucose homeostasis, and inflammation [63,64].
Numerous inflammatory mediators and cytokines are inhibited by PPARγ ligands in
various cell types, including monocytes/macrophages, epithelial cells, smooth muscle
cells, endothelial cells, dendritic cells, and lymphocytes. In addition, PPARγ diminishes
the activities of transcription factors AP-1, STAT, NF-κB, and NFAT to adversely regulate
inflammatory gene expression [65–67]. As a result, PPARγ has been demonstrated to have
a protective function against infections by modulating the immune response and lowering
inflammation. However, other researchers have hypothesized that PPARγ activation
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may impair the function of immune cells, such as macrophages, and contribute to the
development of infections. Therefore, the role of PPARγ in disease is complex and context-
dependent, and more research is needed to fully understand the molecular mechanisms by
which PPARγ regulates the host response to infection.

2.2. Regulatory Mechanisms of PPARs

The PPAR ligand-binding pocket is large and capable of engaging diverse ligands [68,69].
Endogenous ligands vary depending on the PPAR isoform, including n-3 polyunsaturated
fatty acids such as docosahexaenoic acid and eicosapentaenoic acid for all PPARs, leukotriene
B4 for PPARα, carbaprostacyclin for PPARδ, and prostaglandin J2 for PPARγ [70]. Rep-
resentative synthetic agonists include fibrates (PPARα agonists) and thiazolidinediones
(PPARγ agonists) [7]. Fibrates, such as fenofibrate, clofibrate, and gemfibrozil, are widely
used for treating dyslipidemia. Thiazolidinediones, such as rosiglitazone, pioglitazone,
and lobeglitazone, improve insulin resistance [7]. Most clinical studies on PPAR actions in
infectious diseases have been conducted retrospectively, and no clinical studies currently in
progress are listed in ClinicalTrials.gov (https://clinicaltrials.gov/ (accessed on 13 February
2023)). Since widely used PPAR agonists exist, clinical research can be conducted through a
deeper understanding of PPAR roles in infectious diseases.

PPAR-RXR heterodimerization occurs ligand-independently [6]. The heterodimer
appears to exert transcriptional regulation both ligand-dependently and -independently [7].
Although LBD may interact with either co-repressor or co-activator in the state of not
binding with an agonist, binding to a ligand elicits stabilized co-activator-LBD interaction,
thus increasing transactivation [7,71]. Further, recent studies have shown that PPARs inhibit
other transcription factors, such as NF-κB, activator protein-1 (AP-1), signal transducer and
activator of transcription (STAT), and nuclear factor of activated T cells (NFAT) [44,65–67].
Recent studies revealed the possibility of forming a protein chaperone complex with PPAR-
associated proteins, such as heat shock proteins (HSPs). Similar to interactions between
other type I intracellular receptors and heat shock proteins, HSP90 repressed PPARα and
PPARβ activities but not that of PPARγ [72]. Instead, HSP90 was required for PPARγ
signaling in the nonalcoholic fatty liver disease mouse model [73]. Thus, it is necessary
to study the various modes of PPAR actions. The intracellular regulatory mechanisms of
PPARs are shown in Figure 1.
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anisms. PPAR ligands bind to the PPAR ligand-binding domain and activate receptors. PPARs in-
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scription by interfering with transcription factors such as NF-κB, AP-1, STAT, and NFAT. PPARs 
form heterodimers with Retinoid X receptor (RXR), a receptor of 9-cis-retinoic acid (9-cis-RA), and 
bind to direct repeat 1 (DR-1), a peroxisome-proliferator-responsive element. The PPAR-RXR heter-
odimer complex and co-repressors represses target gene transcription. However, the complex with 
co-activators promotes target gene transcription. Through these mechanisms, PPARs play signifi-
cant roles in energy metabolism, inflammatory modulation, and the cell cycle. AP-1, Activator pro-
tein 1; NF-κB, Nuclear factor kappa-light-chain-enhancer of activated B cells; NFAT, Nuclear factor 
of activated T cells; STAT, Signal transducer and activator of transcription. 
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Many studies have shown that PPARγ controls viral replication and virus-associated 
inflammation by antagonizing inflammatory signaling pathways such as the NF-κB and 
STAT pathways [74,75]. In particular, PPARγ of alveolar macrophages critically modu-
lates acute inflammation to promote recovery from respiratory viral infections, most of 
which are caused by influenza A virus (IAV) and respiratory syncytial virus (RSV) [76]. 
Several PPAR agonists have shown promise in terms of ameliorating virus-related cyto-
kine storms and the damage caused by severe IAV infection [77]. Macrophage PPARγ is 
essential for resolving the chronic pulmonary collagen deposition and fibrotic changes 
that follow influenza infection [78]. Several researchers have sought new therapeutic can-
didates for IAV disease. A recent screening of traditional Chinese medicines showed that 
emodin and analogs thereof evidenced excellent anti-IAV activities mediated by activa-
tion of the PPARα/γ and adenosine monophosphate (AMP)-activated protein kinase 
(AMPK) pathways [79]. High-throughput screening of natural compounds and/or syn-
thetic drugs/agents will yield new therapeutics against respiratory viral infections based 
on drug interactions with PPAR pathways.  

A link has been suggested between severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) virus infection and PPARα activity in the context of lipid uptake, 
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PPAR ligands bind to the PPAR ligand-binding domain and activate receptors. PPARs interact with
heat shock protein (HSP) in the cytosol. PPARs inhibit inflammation-related gene transcription by in-
terfering with transcription factors such as NF-κB, AP-1, STAT, and NFAT. PPARs form heterodimers
with Retinoid X receptor (RXR), a receptor of 9-cis-retinoic acid (9-cis-RA), and bind to direct repeat
1 (DR-1), a peroxisome-proliferator-responsive element. The PPAR-RXR heterodimer complex and
co-repressors represses target gene transcription. However, the complex with co-activators pro-
motes target gene transcription. Through these mechanisms, PPARs play significant roles in energy
metabolism, inflammatory modulation, and the cell cycle. AP-1, Activator protein 1; NF-κB, Nuclear
factor kappa-light-chain-enhancer of activated B cells; NFAT, Nuclear factor of activated T cells; STAT,
Signal transducer and activator of transcription.

3. PPARs and Viral Infections
3.1. PPARs and Respiratory Viral Infections

Many studies have shown that PPARγ controls viral replication and virus-associated
inflammation by antagonizing inflammatory signaling pathways such as the NF-κB and
STAT pathways [74,75]. In particular, PPARγ of alveolar macrophages critically modulates
acute inflammation to promote recovery from respiratory viral infections, most of which are
caused by influenza A virus (IAV) and respiratory syncytial virus (RSV) [76]. Several PPAR
agonists have shown promise in terms of ameliorating virus-related cytokine storms and the
damage caused by severe IAV infection [77]. Macrophage PPARγ is essential for resolving
the chronic pulmonary collagen deposition and fibrotic changes that follow influenza
infection [78]. Several researchers have sought new therapeutic candidates for IAV disease.
A recent screening of traditional Chinese medicines showed that emodin and analogs
thereof evidenced excellent anti-IAV activities mediated by activation of the PPARα/γ
and adenosine monophosphate (AMP)-activated protein kinase (AMPK) pathways [79].
High-throughput screening of natural compounds and/or synthetic drugs/agents will
yield new therapeutics against respiratory viral infections based on drug interactions with
PPAR pathways.

A link has been suggested between severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) virus infection and PPARα activity in the context of lipid uptake, lipotoxicity,
and vascular inflammation [80–82]. The PPARα agonist fenofibrate is a potential adjunctive
coronavirus disease (COVID-19) therapy; the material exhibits anti-inflammatory and
anti-thrombotic activities [80,82]. A study employing a public database on subjects with
type 2 diabetes and COVID-19, along with animal studies, revealed that the PPARγ agonist
pioglitazone may ameliorate acute lung injury and SARS-CoV-2-mediated hyperinflamma-
tion [83]. Cannabidiol working via PPARγ is proposed as a therapeutic approach for the
severe form of COVID-19 [84]. A recent study demonstrated that cannabidiol attenuated
inflammation and epithelial damage in colonic epithelial cells exposed to the SARS-CoV-
2 spike protein through a PPARγ-dependent mechanism [85]. The natural compound
γ-oryzanol may also serve as an adjunctive therapy to reduce the cytokine storm associ-
ated with COVID-19; the material stimulated PPARγ to modulate oxidative stress and the
inflammatory response in adipose tissues [86]. The Middle East respiratory syndrome coro-
navirus (MERS-CoV)-derived S glycoprotein activates PPARγ to suppress the pathologic
inflammatory responses of macrophages [87]. Further research on the modulatory roles
played by PPAR agonists/antagonists in terms of virus-associated inflammation will yield
novel adjunctive therapeutics to counter emerging and re-emerging viral infections. Table 1
summarizes studies on PPARs and their ligands in relation to viral infections.
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Table 1. Studies on PPARs and their ligands during viral infections.

Pathogen Study Model Intervention PPAR Status Mechanism Ref.

IAV, RSV AMs, mice Pparg∆Lyz2 mice ↓
Regulation of PPARγ through

STAT1 activation following
IFN signaling

[76]

IAV AMs, human lung
macrophages, mice

Pparg∆Lyz2 mice,
Bleomycin

↓
Increased influenza-induced

pulmonary collagen deposition in
PPARγ-deficient mice

[78]

IAV A549 cells, mice Emodin and its analogs ↑
Activation of PPARα/γ and AMPK,

decreased fatty acid biosynthesis
and increased ATP level

[79]

MERS-CoV
THP-1 cells,

primary human
monocytes

siRNAs ↑
MERS-CoV S glycoprotein

interaction with DPP4 leading to
IRAK-M and PPARγ expression

[87]

CHIKV Vero cells,
RAW264.7 cells

Telmisatran, PPAR-γ
antagonist GW9662 ↓ Activation of PPAR-γ and

inhibition of AT1 by telmisartan [88]

HIV
Primary rat
astrocytes,

microglia, rats

gp120ADA,
Rosiglitazone,
Pioglitazone

↓
Induction of inflammatory response
and decrease in GLT-1 expression in

the brain by gp120
[89]

HBV HepG2.2.15, Huh7,
HepG2-NTCP ells

OS_128167,
overexpression and

downregulation studies,
HBV transgenic mice

-
Activation of HBV core promoter
by SIRT6 through upregulation

of PPARα
[90]

HCV Huh7.5 cells Calciterol, Linoleic acid,
Ly171883, Wy14643 - Activation of VDR but inhibition of

PPARα/β/γ by calcitriol [91]

Abbreviations: AMPK, AMP-activated protein kinase; AMs, Alveolar macrophages; AT1, Angiotensin 1; CHIKV,
Chikungunya virus; DPP4, Dipeptidyl-peptidase 4; GLT-1, Glutamate transporter 1; HBV, Hepatitis B virus;
HCV, Hepatitis C virus; HIV, human immunodeficiency virus; IAV, Influenza A virus; IFN, interferon; IRAK-M,
Interleukin-1 receptor-associated kinase 3; MERS-CoV, Middle east respiratory syndrome corona virus; RSV,
Respiratory syncytial virus; SIRT6, Sirtuin 6; STAT1, Signal transducer and activator of transcription 1; VDR;
Vitamin D receptor; ↑, increase/activation; ↓, decrease/inhibition; -, not reported.

3.2. PPARs and Virus-Related Inflammation

A recent study showed that the inflammatory responses during infection with Chikun-
gunya virus (CHIKV) involved the renin-angiotensin system (RAS) and PPARγ path-
ways [88]. The telmisartan-mediated suppression of CHIKV infection is at least partly
mediated via activation of PPARγ; a PPARγ antagonist increased the CHIKV viral load [88].
Omeragic et al. showed that PPARγ played a critical role in terms of human immun-
odeficiency virus (HIV-1) ADA glycoprotein 120 (gp120)-related inflammatory marker
generation was observed in primary astrocytes and microglia and also in vivo [89]. The
anti-inflammatory activities induced by the PPARγ agonists rosiglitazone and pioglitazone
reflected suppression of the NF-κB signaling pathway [89]. These relationships between
PPARγ and viral infections are included in Table 1. ∆-9-tetrahydrocannabinol improved
epithelial barrier function and thus protected colonic tissues of rhesus macaques chronically
infected with simian immunodeficiency virus (SIV). This was at least partly attributable to
the upregulation of PPARγ [92]. PPARα signaling is required for restoration of the intesti-
nal barrier by the probiotic Lactobacillus plantarum and amelioration of gut inflammation
during SIV infection [93]. Such findings strongly suggest that targeting PPARγ would
both prevent and treat virus-associated inflammation of the brain, endothelial system,
and intestinal tissues. The PPARγ antagonist GW9662 protected against dengue virus
infection and di(2-ethylhexyl) phthalate (DEHP)-induced interleukin (IL)-23 expression,
thus suppressing the viral load [94]. Therefore, future clinical trials should explore the
protective effects of several possible PPAR agonists/antagonists and combinations thereof
with current antivirals in patients with various viral infections.
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Zika virus (ZIKV) is a serious arthropod-borne (arbovirus) pathogen that causes
congenital defects and neurological diseases in both infants and adults [95]. A recent
study showed that ZIKV-induced cellular responses of induced pluripotent stem cell
(iPSC)-derived neural progenitor cells involved the PPAR signaling pathways, which may
contribute to neurogenesis and viral replication [96]. However, further research is required.

3.3. PPARs and Hepatitis Virus Infection

The roles played by PPAR pathways in terms of hepatitis B virus (HBV) infection
elimination are complex. IL-1β production induced by HBV infection of M1-like inflam-
matory macrophages triggered anti-HBV responses via downregulation of PPARα and
forkhead box O3 (FOXO3) expression in hepatocytes [97]. OSS_128167, a sirtuin 6 inhibitor,
inhibited HBV transcription and replication in hepatic cells and in vivo by targeting PPARα
expression [90]. In the HBV replicative mouse model, PPAR agonists, including bezafibrate,
fenofibrate, and rosiglitazone, significantly increased the serum levels of HBV antigens
HBsAg, HBeAg, and HBcAg and that of HBV DNA, as well as the viral load in mouse
liver [98]. Thus, patients with metabolic diseases taking PPAR-based therapeutics should
take care to avoid HBV infection. However, in a retrospective study of HBV-infected pa-
tients treated with entecavir and tenofovir-disoproxil-fumarate, the drugs exerted profound
extrahepatic effects on lipid metabolism, reducing serum cholesterol levels by inducing
the expression of PPARα target genes such as CD36 in liver tissue and cells [99]. Thus,
the PPARα-activating nucleoside analogs tenofovir-disoproxil-fumarate may usefully treat
atherosclerosis and hepatocarcinogenesis, both of which are associated with dyslipidemia.
This would be a new role for an anti-HBV therapeutic. However, the precise functions of
PPARs during HBV infection remain unclear. The antiviral, antitumor, and extrahepatic
actions of PPAR agonists vary with the clinical condition.

During hepatitis C virus (HCV) infection, PPAR-α/β/γ stimulators/agonists re-
duce calcitriol-mediated anti-HCV responses, presumably by counteracting the calcitriol-
mediated activation of vitamin D receptor signaling and inhibiting nitrative stress [91].
Naringenin, a grapefruit flavonoid, suppressed HCV production by inhibiting viral parti-
cle assembly via PPARα activation, suggesting potential roles for PPARα agonists in the
resolution of infection [100]. It is essential to perform an in-depth exploration of how the
three PPARs and their signaling pathways affect the outcomes of HBV and HCV infections.
Studies on PPARs and hepatitis virus infections are summarized in Table 1.

4. PPARs and Bacterial Infections
4.1. PPARs and Post-Influenza Bacterial Infections

PPARs exacerbate the severity of post-influenza bacterial infections. During Staphy-
lococcus aureus superinfection following IAV infection, the levels of CYP450 metabolites,
which are PPARα ligands, increase significantly and trigger receptor-interacting
serine/threonine-protein kinase 3 (RIPK3)-induced necroptosis, thus exacerbating the
lung pathology and increasing mortality from secondary bacterial infection [101]. The
PPARγ agonist rosiglitazone reduces bacterial clearance during secondary bacterial pneu-
monia, which is a frequent complication of primary IAV infection [102]. Diabetic patients
treated with rosiglitazone exhibited increased mortality from IAV-associated pneumonia
compared to those not treated with rosiglitazone, as revealed by data from the National
Health and Nutrition Examination Survey (NHANES) [102]. CYP450 metabolites reduced
the protective inflammatory responses via PPARα activation, thereby increasing the sus-
ceptibility to secondary bacterial infection following IAV infection [103]. Thus, PPARα or
PPARγ drives host protection but reduces bacterial clearance at different stages of IAV infec-
tion. The molecular mechanisms by which PPARα/γ mediates immune modulation during
a bacterial infection following IAV infection require urgent attention. Better medicines
are needed to treat the different stages of IAV-associated disease, which is often fatal in
susceptible patients.
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4.2. PPARs in Bacterial Infections

PPARs and agonists/antagonists thereof may modulate disease severity and outcomes
in patients with bacterial infections and associated inflammation. In a model of intesti-
nal colitis, 5-aminosalicylic acid, a PPARγ agonist, exerted therapeutic anti-inflammatory
effects by activating the epithelial PPARγ signaling pathway [104]. After infection with
Klebsiella pneumoniae, which is the respiratory Gram-negative bacterium that usually causes
pneumonia, PPARγ agonists such as pioglitazone reduced proinflammatory cytokine and
myeloperoxidase levels, bacterial growth in lung tissues, and bacterial dissemination
to distant organs [105]. The taste receptor type-2 member 138 (TAS2R138) plays a role
in neutrophil-associated host innate immune defense after Pseudomonas aeruginosa infec-
tion [106]. TAS2R138 mediated the degradation of lipid bodies via competitive binding to
the PPARγ antagonist N-(3-oxododecanoyl)-L-homoserine lactone (AHL-12), a mediator
of virulence produced by P. aeruginosa [106]. Although the exact roles of PPARγ in antimi-
crobial responses remain unclear, a study employing a model of P. aeruginosa infection
found that the PPARγ agonist pioglitazone increased the levels of certain chemokines
(Cxcl1, Cxcl2, and Ccl20) and cytokines (Tnfa, Il6, and Cfs3) in bronchial epithelial cells and
suppressed inflammatory responses in bronchoalveolar lavage fluid [107]. Future studies
must explore the utility of PPAR agonists/antagonists as adjuvant therapies and determine
whether systemic or local treatments improve disease outcomes.

During Chlamydia pneumoniae infection, both PPARα and PPARγ are required to upreg-
ulate foam macrophage formation via induction of the scavenger receptor A1 (SR-A1) and
the acyl-coenzyme A cholesterol acyltransferase 1 (ACAT1) involved in cholesterol esteri-
fication [108]. PPARα and PPARγ agonists, including fenofibrate and rosiglitazone, may
suppress atherosclerotic plaque formation in patients with coronary heart disease infected
with C. pneumoniae [108]. Activation of both PPARα and PPARγ by PAR5359 protected
against Citrobacter rodentium-induced colitis. The dual agonism promoted antibacterial
immunity and ameliorated the inflammatory response [109].

In contrast to studies with Gram-negative bacteria, few reports have explored the
roles played by PPARs during Gram-positive infections. In a Caenorhabditis elegans model,
induction of the gene encoding flavin-containing monooxygenase (FMO) fmo-2/FMO5 by
NHR-49/PPAR-α was critical in terms of the establishment of an effective innate host
defense against S. aureus infection [110]. Erythropoietin limits infections caused by Gram-
negative Escherichia coli and Gram-positive S. aureus; macrophage-mediated clearance of
these bacteria is at least partly mediated by a PPARγ-dependent pathway [111]. Inhibition
of PPARγ signaling reduced the survival of Rickettsia conorii, an intracellular Gram-positive
bacterium, probably by reducing lipid droplet production [112]. Although PPAR-based
therapeutics may counter bacterial infections, more preclinical and clinical studies are
required. Table 2 summarizes the roles of PPAR ligands in bacterial infections.

4.3. PPARs and Mycobacterial Infections

Many scholars have sought to clarify the effects of PPARs in those infected with My-
cobacterium tuberculosis (Mtb) and nontuberculous mycobacteria (NTM), which cause tuber-
culosis and NTM disease, respectively [113]. Although the relevant bacterial components
have not been fully characterized, M. leprae and Mtb lead to activation of PPARs [113–115].
PPARα and PPARγ appear to play opposite roles. The virulent Mtb strain H37Rv and cell
wall component lipoarabinomannan induced PPARγ expression, in turn activating IL-8
and cyclooxygenase (COX) 2 expression, but the attenuated M. bovis strain, termed Bacillus
Calmette-Guérin (BCG), induced less PPARγ expression [115]. PPARγ activation during
Mtb or BCG infection upregulates lipid body formation and increases bacterial survival in
macrophages [116,117]. Either PPARγ knockdown or PPARγ antagonist GW9662 increased
macrophage-mediated Mtb killing [115,117]. PPARγ activation was associated with en-
hanced cholesterol and triacylglycerol uptake; these materials are required for macrophage
lipid body formation during mycobacterial infection [113]. Antagonists of PPARδ or PPARγ
significantly inhibited lipid accumulation by cells infected with M. leprae, thus reducing



Cells 2023, 12, 650 9 of 18

parasitization [114,118]. Together, the data suggest that PPARγ is required for intracel-
lular bacterial survival; PPARγ enhances lipid body formation and foam macrophage
development during mycobacterial infection.

Table 2. Roles of PPAR agonists/antagonists in bacterial infections.

Pathogen Drug/Reagent Function Study Model Mechanism of Action Ref.

Escherichia coli 5-aminosalicylic
acid PPARγ agonist

DSS-induced
murine colitis

model,
Pparg-deficient
mice, CaCo-2

cells

Amelioration of a respiration-dependent luminal
expansion of E. coli [104]

Klebsiella
pneumoniae Pioglitazone PPARγ agonist In vivo mouse

model
Reduction of cytokines and myeloperoxidase

levels in the lungs [105]

Pseudomonas
aeruginosa Pioglitazone PPARγ agonist In vivo mouse

model

Increased pro-inflammatory cytokines with
enhanced expression of genes involved in

glycolysis
[107]

Chlamydia
pneumoniae

Rosiglitazone PPARγ agonist THP-1
macrophages,
HEp-2 cells

Regulation of Cpn induced macrophage-derived
foam cell formation by upregulating SR-A1 an

ACAT1, and downregulating ABCA1/G1
expression via PPARα/γ signaling

[108]Fenofibrate PPARα agonist
GW9662 PPARγ antagonist
MK886 PPARα antagonist

Citrobacter
rodentium PAR5359 PPARα/γ-dual-

agonist

Citrobacter
rodentium- and
DSS-induced
murine colitis

model, IBD
patient-derived

PBMCs

Enhanced bacterial clearance, controlled
production of ROS and cytokines,

anti-inflammatory/healing
[109]

Rickettsia conorii GW9662 PPARγ antagonist THP-1
macrophages Increased intracellular survival of bacteria [112]

Abbreviations: ABCA1/G1, ATP binding cassette transporters A1/G1; ACAT1, acyl-coenzyme A: cholesterol
acyltransferase 1; Cpn, Chlamydia pneumonia; DSS, Dextran sulfate sodium; IBD, Inflammatory bowel disease;
PBMCs, Peripheral blood mononuclear cells; ROS, Reactive oxygen species; SR-A1, scavenger receptor A1.

In contrast, PPARα appears to enhance defenses against macrophage and lung Mtb
or BCG infection in mice. PPARα-mediated antimicrobial responses are at least partly
mediated via promotion of lipid catabolism and activation of the transcription factor EB
(TFEB), a transcriptional factor required for lysosomal biogenesis [119]. Notably, PPARα
agonists GW7647 and Wy14643 protected macrophages against Mtb or BCG infection [119].
Macrophage PPARα expression reduces inflammatory cytokine synthesis during Mtb or
BCG infection [119], suggesting that PPARα ameliorates inflammation. PPARα deficiency
reduced the antimicrobial response and increased lung tissue damage during pulmonary
Mycobacteroides abscessus (Mabc) infection [120]. Gemfibrozil, a PPARα activator, reduced
the in vivo Mabc load and lung inflammation during infection [120]. It is important to
clarify whether PPARα modulates lipid body formation during infections with Mabc and
other NTMs.

5. PPARs and Parasitic Infections

The anti-inflammatory responses of M2 macrophages and Th2 immunity protect
against parasitic infections [121]. In allergic patients and those infected with the nematode
Heligmosomoides polygyrus, PPARγ is highly expressed in Th2 cells. PPARγ affects the de-
velopment of Th2-associated pathological immune responses and increases IL-33 receptor
levels in Th2 cells [122]. Neospora caninum infection triggers maturation of M2 macrophage
development via upregulation of PPARγ activity and downregulation of NF-κB signal-
ing [123]. In a model of eosinophilic meningoencephalitis caused by the rat lungworm
Angiostrongylus cantonensis, PPARγ played anti-inflammatory and protective roles by in-
hibiting NF-κB-mediated pathological inflammatory responses; the PPARγ antagonist
GW9662 increased susceptibility to angiostrongyliasis [124]. In a model of cerebral malaria
using clinical isolates of Plasmodium falciparum, dimethyl fumarate increased the expression
of nuclear factor E2-related factor 2 (NRF2), in turn enhancing PPAR signaling and thus
ameliorating the neuroinflammatory responses of primary human brain microvascular
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endothelial cells [125]. Cerebral malaria susceptibility was associated with a lack of PPARγ
nuclear translocation and increased COX-2 levels in brain tissues, which was associated
with higher-level parasitemia and poorer survival [126]. PPAR signaling may exert useful
antiparasitic functions by attenuating inflammation.

Toxoplasma gondii, one of the most common zoonotic pathogens, infects both immuno-
compromised patients and healthy individuals and most commonly targets the central
nervous system [127]. In T. gondii-infected astroglia, the PPARγ agonist rosiglitazone re-
duced neuroinflammation, whereas the PPARγ antagonist GW9662 increased levels of
matrix metalloprotease (MMP)-2, MMP-9, and inflammatory mediators. These findings
suggested that PPARγ signaling protects against T. gondii infection [128]. Proteomic analy-
sis showed that the hepatic protein responses to T. gondii infection modulated the PPAR
signaling pathways to dysregulate further liver lipid metabolism [129]. However, it remains
unclear how T. gondii-mediated modulation of PPARγ signaling affects such metabolism
and the consequence thereof.

Sometimes, PPAR signaling negatively affects host defenses against parasitic infec-
tions, particularly when M2 macrophage responses are associated with disease progression.
During infection of Balb/c mice and hamsters with Leishmania donovani, a causative agent
of visceral leishmaniasis, the mRNA expression levels of IL-4- and IL-10-driven markers
increased significantly [130]. Although any IL-4-related PPARγ function remains unclear,
the parasitic load correlated with the effects of IL-10 on the hamster spleen [130]. Schistoso-
miasis (bilharzia), caused by parasitic flatworms of the genus Schistosoma, is associated with
inflammatory responses of the intestinal, hepato-splenic, and urogenital systems [131,132].
The Sm16/SPO-1/SmSLP protein from S. mansoni may allow the parasite to escape the
actions of the innate immune pathway and cellular metabolism, at least partly via a PPAR-
dependent pathway [133]. The Trypanosoma cruzi protozoan causes Chagas disease, a
neglected but chronic tropical infection of great concern in Latin America [134]. During
T. cruzi infection, both PPARα and PPARγ agonists appear to be involved in macrophage
polarization from M1 to M2 types, thereby suppressing inflammation but increasing phago-
cytosis and macrophage parasitic loads [135]. Thus, PPAR functions may vary by parasite
and experimental model. Future studies must explore whether PPARs trigger host defenses
or immune evasion during parasitic infections.

Several PPAR ligands may serve as useful adjunct therapies for Chagas disease, al-
though more preclinical and clinical data are required. The new PPARγ ligand HP24,
a pyridinecarboxylic acid derivative, evidenced anti-inflammatory and pro-angiogenic
activities and might serve as an adjunct therapy for Chagas disease [136]. 15-deoxy-∆12,14

prostaglandin J2 (15dPGJ2), a natural PPARγ agonist, reduced liver inflammation and
fibrosis during T. cruzi infection [137]. However, the use of PPAR agonists/antagonists
should be considered in the context of in vivo PPAR expression levels during certain par-
asitic infections. For example, acute T. cruzi mouse infections trigger significant adipose
tissue loss and dysregulation of lipolytic and lipogenic enzymes, which are associated with
decreased adipocyte PPAR-γ levels in vivo [138]. Given the robust PPARγ inhibition in
this mouse model, PPARγ agonists were minimally effective. However, certain parasites
do not specifically affect the host responses depending on PPAR down- or upregulation in
target tissues or cells. After infection with the intestinal parasite Giardia muris, rapid PPARα
induction did not affect the protective or pathological immune responses; PPARα-deficient
mice cleared the parasite as did wild-type controls [139]. It is important to explore whether
aberrant PPAR expression induced by different parasites improves disease status or, rather,
enhances dysfunctional inflammation and infection progression. Table 3 summarizes the
roles of PPAR agonists/antagonists in parasitic infections.
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Table 3. Roles of PPAR agonists/antagonists in parasitic infections.

Pathogen Drug/Reagent Function Study Model Mechanism of Action Ref.

Angiostrongylus
cantonensis GW9662 PPARγ antagonist

Mouse model of
angiostrongylia-

sis

NF-κB activation and increase in
inflammation and BBB permeability [124]

Plasmodium
falciparum

Dimethyl
fumarate -

Cerebral cortex
derived

HBMVECs

Upregulation of PPAR pathway,
NRF2-mediated oxidative stress

responses, ErbB4 signaling to
downregulate the neuroinflammation

[125]

Toxoplasma gondii
Rosiglitazone PPARγ agonist

SVG p12 cells,
Hs68 cells

Decreased expression of MMP-2,
MMP-9, COX-2, PGE2, iNOS and NO [128]

GW9662 PPARγ antagonist Increased expression of MMP-2,
MMP-9, COX-2, PGE2, iNOS and NO

Trypanosoma cruzi

HP24 pyridinecarboxylic
acid derivative

In vivo mice
infection, mouse

peritoneal
macrophages

Induction of PI3K/Akt/mTOR
signaling (pro-angiogenic), inhibition

of NF-κB signaling
(anti-inflammatory)

[136]

15-deoxy-D12,14
prostaglandin J2 PPARγ agonist In vivo mice

infection

Reduction of liver inflammatory
infiltrates, pro-inflammatory

enzymes and cytokine expression
through inhibition of NF-kB

signaling, No change in parasitic load

[137]

Abbreviations: BBB, Blood-brain barrier; COX-2, Cyclooxygenase-2; ErbB4, Erb-b2 receptor tyrosine kinase 4;
HP24, 1-methyl-3-hydroxy-4-pyridinecarboxylic acid derivative 24; iNOS, Inducible nitric oxide synthase; MMP,
Matrix metalloproteinase; mTOR, Mammalian target of rapamycin; NF-kB, Nuclear factor-κB; NO, Nitric oxide;
NRF2, Nuclear factor E2-related factor 2; PGE2, Prostaglandin E2; PI3K, Phosphoinositide 3-kinase.

6. Future Perspectives

PPARs play a wide range of roles across host metabolism, inflammation, and immune
responses. Recent studies indicate that PPARs modulate the host responses to infections,
such as infectious agent clearance and inflammation. Several PPAR ligands have been
utilized in infection models and their functions have been investigated. However, there are
no clinical trials of well-known, licensed metabolic medicines utilizing PPAR pathways
for infectious diseases. PPAR-based future drugs may serve as adjuvants or components
of combination therapies against infections. Understanding the fundamental processes of
PPAR-mediated host immune regulation is necessary to develop the most effective treat-
ment approaches for infectious diseases. Future research may also benefit from developing
synthetic ligands that preferentially target the specific PPAR isoform implicated in immune
response modification.

7. Conclusions

Accumulating evidence suggests that PPARs are involved in the host responses to
infections caused by bacteria, viruses, and parasites. However, the molecular mechanisms
by which PPARs modulate disease progression or protective responses remain unknown.
It is essential to further explore the PPAR functions and mechanisms involved in pathogen
survival, the pathological responses during different stages of infection, and the associated
modulation of the distinct types of infection-associated acute and chronic inflammation.
Apart from shaping the inflammatory and metabolic responses during infections, PPARs
may impact disease outcomes. The PPAR signaling pathways exert potent immunomod-
ulatory effects; pathway activation or suppression may usefully treat infectious diseases.
Infectious pathogens modulate the individual and collaborative activities of PPAR(s) during
infection. We speculate that aberrant PPAR expression by various parasites may contribute
to inflammation-related dysfunction. It is essential to better understand the possible clinical
effects of PPAR-based therapeutics in patients with various infectious diseases.
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