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Abstract: Preeclampsia is a common pregnancy-related hypertensive disorder. Often presenting as
preexisting or new-onset hypertension complicated by proteinuria and/or end-organ dysfunction,
preeclampsia significantly correlates with maternal and perinatal morbidity and mortality. Per-
oxisome proliferator-activated receptors (PPARs) are nuclear receptor proteins that regulate gene
expression. In order to investigate the role of PPARs in the pathophysiology of preeclampsia, we con-
ducted a literature review using the MEDLINE and LIVIVO databases. The search terms “peroxisome
proliferator-activated receptor”, “PPAR”, and “preeclampsia” were employed and we were able to
identify 35 relevant studies published between 2002 and 2022. Different study groups reached con-
tradictory conclusions in terms of PPAR expression in preeclamptic placentae. Interestingly, PPARγ
agonists alone, or in combination with well-established pharmaceutical agents, were determined to
represent novel, potent anti-preeclamptic treatment alternatives. In conclusion, PPARs seem to play a
significant role in preeclampsia.

Keywords: peroxisome proliferator-activated receptor (PPAR); preeclampsia

1. Introduction

Preeclampsia is a form of pregnancy disorder characterized by the onset of hyperten-
sion, proteinuria and/or end-organ dysfunction after 20 weeks’ gestation [1]. Affecting
circa 2–8% of pregnancies globally, preeclampsia represents one of the most common causes
of both maternal and perinatal morbidity and mortality [2,3]. Clinically, preeclampsia
typically presents with new-onset hypertension and proteinuria at ≥34 weeks of gestation,
with severe clinical features ranging from persistent headache, nausea, or vomiting to visual
abnormalities, abdominal discomfort, and altered mental status [2,4]. Diagnostic evaluation
includes, apart from a detailed history and physical exam, a urine analysis, complete blood
count, a complete metabolic panel, as well as close control of renal retention parameters [5].
According to level-A guideline recommendations published by The American College
of Obstetricians and Gynecologists (ACOG), women with preeclampsia should receive
magnesium sulfate as prophylaxis and/or treatment of seizures, whereas (preterm) delivery
is suggested for patients with preeclampsia without severe clinical symptoms at or beyond
37 0/7 weeks of gestation [3]. To date, the exact pathomechanisms of preeclampsia still
remain unknown, with various theories proposing abnormal placentation, immunologic fac-
tors, inflammation, genetics, as well as acquired risk factors as the most relevant causes [6].

Peroxisome proliferator-activated receptors (PPARs) are fatty acid-activated nuclear
receptors that comprise of three isoforms with distinct metabolic regulatory activities, tissue
distribution, and ligand-binding assets: α, β/δ, and γ [7–9]. PPARs play a regulatory role in
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fatty acid disposition and metabolism, energy homeostasis, cellular biology functions, cell
differentiation, as well as immunity pathways [10,11]. More precisely, PPARα and PPARβ/δ
are mainly involved in energy combustion, whereas PPARγ enhances adipogenesis [12].
Importantly, PPAR isotypes have been described to be expressed in the placenta and
to influence placental development, homeostasis, endometrium decidualization, fetal
implantation, trophoblast physiological conditions, and oxidative pathways [13–15].

Given the involvement of PPARs in various placental functions, a literature review
was conducted in order to investigate the their role in the pathophysiology of preeclamp-
sia. The literature review was conducted using the MEDLINE and LIVIVO databases.
Solely original research articles and scientific abstracts written in the English language
that explicitly reported on the role of PPARs in the preeclamptic pathogenesis were in-
cluded in the data analysis. Studies emphasizing the involvement of PPARs in uncompli-
cated human pregnancy or obstetric and gynecologic disorders other than preeclampsia
(e.g., polycystic ovarian syndrome, endometriosis, intrauterine growth restriction, ges-
tational diabetes) were excluded. The search terms “peroxisome proliferator-activated
receptor”, “PPAR”, and “preeclampsia” were employed, and we were able to identify a
total of 94 articles published between 2000 and 2022, after the exclusion of duplicates. A
total of 49 were discarded in the initial selection process after abstract review. The full
texts of the remaining 45 publications were evaluated, and after detailed analysis, a total of
35 relevant studies published between 2002 and 2022 that met the inclusion criteria were
selected for the literature review. Figure 1 presents an overview of the aforementioned
selection process.
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2. PPAR Structure and Mechanism of Action

PPARs consist of four functional (A/B, C, D and E/F) [16] and two binding do-
mains (a DNA binding domain in the N-terminus and a ligand binding domain in the
C-terminus) [17]. By binding to specific DNA response elements within promoters as
heterodimers with the retinoid X receptors (RXRs), PPARs represent ligand-regulated tran-
scription factors which promote or inhibit the expression of the target gene (Figure 2) [18].
These DNA regions of PPAR-responsive genes are termed peroxisome proliferator hor-
mone response elements (PPREs) [18]. Transcription of PPAR-regulated genes is amplified
by co-activators that either remodel chromatin structure by the intrinsic histone acetyl-
transferase, methyltransferase or helicase activities (i.e., Steroid Receptor Co-activator
(SRC), CREB-binding protein (CBP)/p300, PPAR-interacting protein (PRIP) with methyl-
transferase domain (PIMT)/Nuclear receptor co-activator 6 (NCoA6)-interacting protein
(NCoA6IP), PPARα-receptor interacting co-factor (PRIC), co-activator-associated arginine
methyl-transferase 1 (CARM1), SWItch/Sucrose Non-Fermentable (SWI/SNF)), or do
not possess any known enzymatic functions but recruit multisubunit protein transcrip-
tional complexes (i.e., Mediator complex subunit 1 (MED1), PPARγ co-activator 1 (PGC1),
PRIP/NCoA6, BRG1/BRM-associated factor 60 (BAF60)) [19,20].
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Figure 2. PPAR signaling pathway. Upon activation of PPARs and ligands, a heterodimer with RXR
is formed, which binds to the PPRE upstream of the target gene promoter, hence regulating the
transcription of target genes responsible for energy production, lipid metabolism, cellular functions,
and inflammation. Co-activators influence the functioning of many regulators and affect gene
transcription. Created with BioRender.com, accessed on 27 December 2022.

With the size of the PPAR ligand binding cavity being significantly larger than that
of other nuclear receptors, PPARs succeed in binding numerous natural and synthetic

BioRender.com
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ligands [17,21–30]. These ligands may trigger an exchange of co-repressors for co-activators
that stimulate the function of PPARs [31]. PPARα is highly expressed in the liver, heart,
intestine, kidneys, skeletal muscles, and brown adipose tissue, and influences fatty acid
metabolism. PPARβ/δ is expressed ubiquitously, and participates in fatty acid oxidation,
as well as regulation of blood cholesterol and glucose levels. On the contrary, PPARγ
displays highest expression levels in adipocytes, and plays a key role in adipogenesis, lipid
biosynthesis, lipoprotein metabolism and insulin sensitivity (Table 1) [16,17].

Table 1. Expression sites, functions and ligands of PPARs.

PPARs Expression Sites Functions Natural Ligands Synthetic Ligands

PPARα

Liver, Heart,
Intestine,
Kidneys,
Skeletal

muscles, Brown adipose
tissue

Fatty acid
metabolism

Unsaturated fatty acids
Leukotrienes

Eicosatetraenoic acids
Fibrates

PPARβ/δ Ubiquitously

Fatty acid
oxidation, Blood

cholesterol and glucose
level

regulation

Unsaturated fatty acids
Prostacyclins

Very low-density lipoproteins
GW501516

PPARγ Adipocytes

Adipogenesis,
Lipid biosynthesis,

Lipoprotein
metabolism,

Insulin sensitivity

Unsaturated fatty acids
Eicosatetraenoic acids
Octadecadienoic acids

Prostaglandins

(Non-)Thiazolidinedioneinsulin sensitizers
Angiotensin II receptor antagonists

Nonsteroidal anti-inflammatory drugs
Synthetic cannabinoids

3. The Role of PPARs in Hypertension

PPARs have been reported to play a significant role in the (dys-)regulation of
blood pressure.

PPARα is widely known for its pivotal contributions in terms of lipid metabolism,
which by extension undoubtedly affects arterial blood pressure [17]. Considering this fact,
the PPARα agonists clofibrate and fenofibrate have been shown to effectively reduce blood
pressure by interfering with the renin–angiotensin system and consecutively improving
the renal function [32,33]. Furthermore, PPARα agonists may inhibit vasoconstriction and
induce vasodilatation by either promoting expression of endothelial nitric oxide synthase
in endothelium or suppressing agonist-induced endothelin-1 secretion from endothelial
cells [34,35]. Of note, PPARα may even mediate transactivation of uncoupling protein 2
or reduction in oxidative stress in specific brain regions responsible for the regulation of
blood pressure [36], while PPARα agonist-mediated T cell treatment attenuates secretion of
pro-atherogenic cytokines via nuclear factor kappa B (NF-κB) repression induction [37].

Pharmacological PPARβ/δ activation seems to be associated with end-organ damage
protection by increasing G protein-coupled signaling regulators, exerting acute nongenomic
vasodilator effects, ameliorating the endothelial dysfunction, as well as down-regulating
vascular inflammation, vasoconstrictor responses, and sympathetic outflow from the central
nervous system [38]. This regulation of both the lipid metabolism and the energy homeosta-
sis might, hence, result in the at least partial regulation of elevated arterial blood pressure,
limitation of cardiovascular remodeling and inflammation, nitrogen oxide bioavailability
and endothelial function improvement, as well as restriction of oxidative stress and prolifer-
ative signaling. Additionally, PPARβ/δ may mediate prostacyclin-induced vasodilatation
in renal microvessels, hence contributing to the successful maintenance of renal blood
flow [39], whereas PPARβ/δ agonists decrease plasma levels of pro-atherogenic cytokines
and autoantibodies [40].

PPARγ is evidently the PPAR isoform with the strongest influence on blood pressure
regulation. More precisely, severe hypertension, along with other health conditions includ-
ing insulin resistance, diabetes, or dyslipidemia, may be partly attributed to the loss of
basal transcriptional activity caused by mutations in the wildtype PPARγ [41]. Interestingly,
PPARγ has been also suggested to represent a locus interacting at the level of chromatin
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that could be regarded as a distal associated gene which correlates with blood pressure
traits [42]. Furthermore, the PPARγ agonists troglitazone, rosiglitazone, as well as piogli-
tazone, alone or in combination with different therapeutic agents, may not only improve
glycemic control or insulin sensitivity, but also counteract hypertension by lowering blood
pressure, as revealed in numerous relevant clinical trials [43–46]. Recently, Fang et al. pub-
lished a comprehensive review article on the role of PPARs in hypertension with a special
focus on the PPARγ-associated mechanisms of action, and extensively reviewed evidence
for its beneficial and very diverse tissue-specific effects in the vasculature, central nervous
system, kidney, and immune system on hypertension. In summary, PPARγ activators may
regulate blood pressure in the face of volume expansion, interact with specific brain regions
directly linked to the short- and long-term regulation of blood pressure, mediate salt/fluid
reabsorption, as well as play multiple roles in the regulation of the immune functions
involved in the development of hypertension [47].

4. The Role of PPARs in Trophoblast Functions and Fetal Origins

All three PPAR isoforms may be expressed in the amnion, decidua, and villous pla-
centa, but are mainly represented in cytotrophoblasts and syncytiotrophoblasts in the first
trimester of the placenta, signifying their exclusive contributions to trophoblast differen-
tiation and functions of the placenta [48]. PPARβ plays an essential role in embryonic
implantation and placentation by promoting the differentiation of trophoblast giant cells
through the activation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)
signaling pathway, as well as the regulation of the expression of transcription factor I-
MFA [49]. With the chorion-specific transcription factor-1 (GCM-1) and the chorionic
gonadotropin beta-subunit (hCGβ) being the biochemical markers of trophoblast differ-
entiation [50], PPARγ increases hCGβ secretion in the first- and third-trimester primary
villous trophoblasts and, consecutively, indirectly stimulates cytotrophoblast differentiation
into syncytiotrophoblasts [51,52]. Notably, PPARγ evidently activates the increase in the
hCG α- and β-subunit transcript levels in villous cytotrophoblasts, but decreases their
expression levels in extra-villous trophoblasts, respectively [53]. During the trophoblast
stem cell differentiation, PPARγ even targets different genes and is diversely expressed in
different trophoblast subsets and times [54]. Furthermore, microRNA-1246 has been shown
to up-regulate the expression of PPARγ and induce syncytiotrophoblast differentiation
through the inhibition of the WNT/β-catenin signaling pathway [55], while hypoxia has
been suggested to have a negative effect on the expression of PPARγ with the inactivation of
both hypoxia inducible factor (HIF) and histone deacetylases (HDACs), which hinders the
trophoblast differentiation [56]. Collectively, PPARγ seems to both spatially and temporally
affect any subtype of trophoblast lineage differentiation during pregnancy.

In terms of trophoblast secretion, PPARγ signaling pathways have been described to
promote the energy metabolism of trophoblast cells through the secretion of inflammatory
cytokines, including interferon (IFN)-γ and prostaglandin E2 (PGE2) [57]. Both PPARβ and
PPARγ are also associated with trophoblast cell fusion and syncytiotrophoblast formation
via direct modulation of the target gene syncytin-1 [58,59]. In the context of trophoblast in-
vasion, the molecular mechanism of PPARγ may efficiently decrease pregnancy-associated
plasma protein-A (PAPP-A) and avert the secretion of insulin-like growth factor (IFGII) [60].

Moreover, PPARs are involved in the modulation of trophoblastic fat transport, fat
storage, and fat metabolism by up-regulating the lipid droplet that is associated with the
protein adipophilin [61]. Importantly, PPARγ is necessary for adipogenesis and normal
insulin sensitivity. Hyperglycemia enhances PPARγ pathways, thus diminishing the human
cytotrophoblast invasion, increasing interleukin-6 and soluble fms-like tyrosine kinase-1
(sFIt-1), as well as inhibiting urokinase plasminogen activator (uPA) and plasminogen
activator inhibitor 1 (PAI-1) [62].

All three PPAR isoforms have been reported to be expressed in cells of the endoderm
and mesoderm at early time points during the development of the human embryo and
fetus [63], with PPARα and PPARγ exhibiting first placental and then fetal expression [64].
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As with adult tissues, PPARα plays a significant role in lipid catabolism in the fetal liver
and heart [65,66]. PPARβ/δ is expressed in the early stages of organogenesis [67] and
effectively contributes to the closure of the neural tube [68]. PPARγ seems to have potent
anti-inflammatory effects by preventing the overproduction of both nitric oxide and matrix
metalloproteinases in fetuses from diabetic rats [69]. Recently, Barbieri et al. studied the
association of selected PPARγ single-nucleotide polymorphisms with intrauterine growth
restriction through an unmatched case-control study nested in a prospective cohort study in
a cohort of live births in Ribeirão Preto. Surprisingly, even after controlling for non-genetic
confounding factors, the PPARγ single-nucleotide polymorphism rs41516544, which has
been associated with type 2 diabetes with an elevated risk of metabolic complications
(e.g., insulin resistance, obesity, etc.), was suggested to augment the risk of intrauterine
growth restriction for both male and female offspring [70]. Altogether, PPAR methylation
pattern alterations during early development may manifest in fetuses and be maintained
throughout the life course and even across generations [71].

5. The Role of PPARs in Uterine and Placental Angiogenesis

PPARs have been suggested to exhibit an interplay between endothelial aging and an-
giogenesis [72]. PPARα triggers the caspase pathway by up-regulating thrombospondin-1
(TSP-1) expression, and, therefore, results in apoptosis of endothelial cells, angiogenesis
inhibition, as well as downregulation of tumor progression. Gypenoside 140 (GP-140)
up-regulation results in reduced promoter luciferase secretion of the vascular endothelial
growth factor (VEGF) gene, which moderates the process of angiogenesis, respectively [73].
Moreover, PPARα has an inhibitory effect on vascular smooth muscle proliferation through
the activation of the cyclin-dependent kinase inhibitor p16(INK4a) which results in cell
cycle arrest and reduced endothelial proliferation [74]. In the case of PPARβ/δ, the angio-
genic profile of endothelial progenitor cells is directly related to the activity of this PPAR
isoform, as well as the activation of matrix metalloproteinases [75,76]. In terms of PPARγ
contributions, the PPARγ agonist rosiglitazone was applied in wild-type mice during later
stages of embryonic development, hence disorganizing the placental layers, altering placen-
tal microvasculature, as well as leading to a decreased expression of proangiogenic genes
ranging from Prl2c2 or VEGF to Platelet and Endothelial Cell Adhesion Molecule 1 (Pecam1) [77].
Similarly, the partial agonist of PPARγ and angiotensin-II receptor antagonist telmisartan
has been described to reduce functional microvessel density and blood perfusion, down-
regulate immune cell infiltration and cell proliferation, and correlate with the pathogenesis
of smaller endometriotic lesion sizes [78]. Of note, Zhang et al. recently investigated the
expression of PPARγ in porcine uteroplacental tissues at three different gestational days,
and employed both a cell model of porcine umbilical vein endothelial cells and a mouse
xenograft model to assess angiogenesis in vitro and in vivo. The main PPARγ locations
were described to be in the glandular epithelium, trophoblast, amniotic chorion epithelium
and vascular endothelium, while PPARγ expression was determined to exhibit signifi-
cant down-regulation in placenta with dead fetus. In porcine umbilical vein endothelial
cells, PPARγ knock-out significantly repressed proliferation, migration and tube formation
in vitro. In vivo, capillary formation in mouse xenograft models was hindered by blocking
S-phase, promoting apoptosis and down-regulating the VEGF angiogenic factors along
with its receptors [79].

6. The Role of PPARα in Preeclampsia

Several studies have investigated the role of PPARα in preeclampsia.
Both Chang et al. and Dekker Nitert et al. examined PPARα levels in human placentae,

and discovered a significantly lower PPARα mRNA and protein expression in preeclamptic
placentae [80,81]. On the contrary, He et al. reported significantly higher PPARα mRNA
and protein expression levels that inversely correlated with the 11β-HSD2 protein level in
preeclamptic placentae [82], while Holdsworth-Carson et al. showed that placental PPARα
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protein was significantly increased in placentae from women that delivered preterm with
co-existing intrauterine growth restriction and preeclampsia [83].

Santana-Garrido et al. obtained placenta samples from normal pregnant and preeclamptic
rats, and described significant depletion for PPARα gene/protein expression in preeclampsia [84].

7. The Role of PPARβ/δ in Preeclampsia

Rodie et al. performed immunohistochemistry in third trimester preeclamptic placen-
tae and reported that PPARδ was localized to the syncytium and cells within the stroma. Of
note, there was no difference in PPARδ mRNA and protein expression between preeclamp-
tic placentae and placentae from uncomplicated pregnancies [85]. On the other hand,
He et al. reported significantly higher PPARβ mRNA and protein expression levels in
preeclamptic placentae [82].

8. The Role of PPARγ in Preeclampsia

PPARγ is undoubtedly the most studied PPAR in preeclampsia.
A great number of studies has explored the role of PPARγ in preeclamptic human

placentae. Different study groups reported that PPARγ seems to be down-regulated in
preeclamptic placentae [58,82,86–94]. Of note, placental 11β-hydroxysteroid dehydroge-
nase type 2 (11β-HSD2) and specificity protein 1 (Sp-1) protein levels were positively
associated with PPARγ [82], omega-3 fatty acid supplementation promoted PPARγ protein
expression in late-onset preeclampsia [88], PPARγ expression positively correlated with
the epigenetic modification via trimethylated lysine 4 of the histone H3 (H3K4me3) and
acetylated lysine 9 of the histone H3 (H3K9ac) [91], while PPARγ was negatively asso-
ciated with micro-RNA-27b-3p and showed good predictive value on preeclampsia [94].
Hastie et al. determined the mRNA expression of the PPARγ co-activator 1 (PGC1α) to
be also reduced in preeclamptic placentae [95]. On the contrary, Holdsworth-Carson et al.
showed that placental PPARγ mRNA and protein were significantly increased in placen-
tae from women that delivered preterm with co-existing intrauterine growth restriction
and preeclampsia [83], while Jia et al. noted high PPARγ protein expression levels in
preeclamptic placental tissues, with the rs201018 polymorphism in the PPARγ promoter re-
gion significantly correlating with the development of preeclampsia [96]. Liu et al. showed
that the C1431T variant of PPARγ significantly correlates with preeclamptic susceptibil-
ity [97]. In addition, Permadi et al. exposed primary trophoblastic cells obtained from
normal pregnancy to serum from normal pregnancy, early-onset, or late-onset preeclampsia,
and highlighted that exposure to serum from only late-onset preeclampsia induced high
PPARγ expression [98]. Certain research groups could, however, not detect any correlation
between PPARγ (polymorphism) and the occurrence of preeclampsia [81,85,99], with the
clinical course of preeclampsia not differing among PPARγ genotypes [99]. Ghorbani et al.
studied the gene variants in preeclamptic and healthy pregnant women using polymerase
chain reaction–restriction fragment length polymorphism (PCR-RFLP), and underlined
the missing correlation of the gene variants of PPARγ Pro12Ala and RXR-α with the risk
of preeclampsia [100].

Armistead et al. cultured preeclamptic placentae that displayed decreased PPARγ
protein expression. After administration of rosiglitazone, both PPARγ and Glial Cell Miss-
ing 1 (GCM1) expression were restored, while sFIt-1 expression was down-regulated [101].
Additionally, Kohan-Ghadr et al. incubated term preeclamptic placental explants with
rosiglitazone, which induced Reactive Oxygen Species (ROS) scavenger expression [102].
Similarly, Luminex assay results supported the notion that rosiglitazone-induced PPARγ
activation in preeclamptic placentae, on the one hand, significantly reduces Angiopoeitin-2
(Ang-2) and soluble Endoglin (sEng), but, on the other hand, increases placental growth
factor (PIGF), fibroblast growth factor-2 (FGF-2), heparin-binding epidermal growth factor
(HB-EGF), and follistatin (FST) protein secretion, hence improving the overall placental
angiogenic profile [103]. Furthermore, Liu et al. investigated the effect of a bioactive food
compound on preeclampsia in placental explant cultures and RUPP rat model, and demon-
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strated that procyanidin B2 induced PPARγ expression, thus inhibiting sFLT1 expression
via the nuclear factor erythroid 2-related factor 2 (Nrf2)/PPARγ axis [104].

Different study groups have examined the role of PPARγ in preeclamptic pregnant
animal models as well. After obtaining placenta samples from normal pregnant and
preeclamptic rats, Santana-Garrido et al. described significant PPARγ gene/protein expres-
sion depletion in preeclampsia [84]. El-Saka et al. experimentally induced preeclampsia
in Wistar rats, and described a significant PPARγ expression decrease that significantly
improved after angiotensin 1–7 treatment [105]. Moreover, Nema et al. showed that
placental PPARγ levels were significantly lower in Vitamin D-deficient than in Vitamin
D-supplemented female rats with preeclampsia [106], while Ueki et al. concluded that
plasma from Catechol-O-Methyltransferase (COMT)-deficient pregnant mice exhibited low
PPARγ transcriptional activity, and correlated with elevated angiotensin II receptor type 1
(AT1R) levels [107].

Interestingly, some research groups also chose to study the effects of rosiglitazone,
a PPARγ agonist, in preeclamptic animal models. Allam et al. treated preeclamptic
pregnant rats with rosiglitazone from days 14 to 20, and reported blood pressure reduction,
renal function amelioration, endothelin-1, angiotensin-II, and interleukin-6 decrease, nitric
oxide level increase, as well as fetal weight gain [108]. Furthermore, McCarthy et al.
simultaneously treated reduced uterine perfusion pressure (RUPP) preeclamptic rats with
rosiglitazone and the heme oxygenase 1 inhibitor tinprotoporphyrin IX, and proved their
synergistic positive effects on hypertension and endothelial function [109]. In an attempt to
further endorse their assertion, the same study group administered the PPARγ antagonist
T0070907 to healthy pregnant rats, and determined that the inhibition of PPARγ-associated
pathways resulted in hypertension, intrauterine growth restriction, proteinuria, vascular
dysfunction, as well as elevated platelet aggregation [110]. Notably, Zhang et al. employed
Sprague–Dawley rats, and, after administration of different doses of aspirin in presence or
absence of T0070907, suggested that aspirin potently reverses the pro-preeclamptic effects
of the PPARγ antagonist [111]. Similarly, Guo et al. administered low-dose aspirin to a
PPARγ-antagonist-treated mouse model of preeclampsia, and reported effective blood
pressure and urinary protein level decrease, endoglin and interleukin-β inhibition, as well
as placental lesion alleviation and weight increase [112]. Moreover, Holobotovskyy et al.
employed Regulator of G protein Signaling 5 (RGS5) heterozygote knockout mice, and
treated them with the PPARγ agonist troglitazone, thus achieving vascular function, blood
pressure, as well as birth weight normalization [113].

Table 2 summarizes the role of PPARs in preeclampsia.

Table 2. The role of PPARs in preeclampsia.

PPARs Models Expression Levels Treatment Agents References

PPARα
Rat, Human ↓

None
[80,81,84]

Human ↑ [82,83]

PPARβ/δ
Human ↔

None
[85]

Human ↑ [82]

PPARγ
Mouse, Rat, Human ↓

Rosiglitazone,
Troglitazone,

Angiotensin 1–7,
Tinprotoporphyrin IX,

Aspirin,
Omega-3 fatty acid,

Vitamin D,
Procyanidin B2

[58,82,84,86–94,101–113]

Human ↑
None

[83,96,98]

Human ↔ [81,85,99,100]

Figure 3 depicts the effects of PPARγ-modulating treatment agents in preeclampsia.
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9. Conclusions

To date, several review articles have been published on the role of PPARs in tro-
phoblast differentiation and healthy placental development [13,14,114]. However, these
publications mainly focus on the metabolic regulation of PPARs affecting trophoblast phys-
iological conditions, but do not deeply investigate the influence of PPAR dysfunctions
in trophoblasts on pregnancy diseases. Notably, the present article represents the most
comprehensive up-to-date literature review incorporating a total of 35 original research
articles on the role of PPARs in preeclampsia, a potentially life-threatening risk factor for
disturbed pregnancy. Not only does it provide a detailed insight into the PPAR-associated
preeclamptic pathogenesis, but it also examines the therapeutic effect of PPAR-modulating
drugs in preeclampsia.

PPARs seem to play a significant role in the pathophysiology of preeclampsia. Com-
pared to PPARγ, only a handful of studies have reported on the expression of PPARα and
PPARβ/δ in preeclamptic placentae. Despite the limited number of available publications,
study results are contradictory, thus not allowing for a conclusive statement on the up- or
down-regulation of these receptors in preeclampsia yet.

On the contrary, a significantly greater number of studies have investigated the role
of PPARγ in preeclampsia, with the majority of these studies reporting a reduction in
PPARγ in preeclampsia. Nevertheless, several study groups did not detect differences
between healthy and preeclamptic placentae, while some authors even suggested PPARγ
up-regulation in preeclampsia. A possible explanation for this discrepancy could be the
lack of large-scale studies incorporating numerous study samples that would allow for
reliable and statistically robust observations.

Importantly, several research groups have evaluated the effects of PPARγ agonists
alone, or in combination with other pharmaceutical agents, in preeclamptic placental
explant cultures and mouse models, and underlined their promising therapeutic effects.
Among them, rosiglitazone, an insulin sensitizer in the thiazolidinedione class, represents
the most studied treatment agent, which, except for its mighty antidiabetic effects, could
potentially revolutionize anti-preeclamptic therapy. Consequently, the verification of these
findings in large-scale clinical trials might lay the basis for groundbreaking novel treatment
alternatives for preeclamptic pregnancies.

In summary, this review highlights the crucial role of PPARs in preeclampsia and
paves the way for future research directions.
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