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Abstract: Dissecting and identifying the major actors and pathways in the genesis, progression and
aggressive advancement of breast cancer is challenging, in part because neoplasms arising in this
tissue represent distinct diseases and in part because the tumors themselves evolve. This review
attempts to illustrate the complexity of this mutational landscape as it pertains to the RUNX genes and
their transcription co-factor CBFf. Large-scale genomic studies that characterize genetic alterations
across a disease subtype are a useful starting point and as such have identified recurring alterations
in CBFB and in the RUNX genes (particularly RUNX1). Intriguingly, the functional output of these
mutations is often context dependent with regards to the estrogen receptor (ER) status of the breast
cancer. Therefore, such studies need to be integrated with an in-depth understanding of both the
normal and corrupted function in mammary cells to begin to tease out how loss or gain of function
can alter the cell phenotype and contribute to disease progression. We review how alterations to
RUNX/CBEFp function contextually ascribe to breast cancer subtypes and discuss how the in vitro
analyses and mouse model systems have contributed to our current understanding of these proteins
in the pathogenesis of this complex set of diseases.

Keywords: breast cancer; RUNX1; CBFp; RUNX2; RUNX3; estrogen receptor (ER); mammary;
metastasis

1. Introduction

Breast cancer is one of the leading causes of cancer-related deaths worldwide [1].
Affecting both women and men, the incidence rate of this malignancy has increased by 20%
over the last two decades and is predicted to rise further [1].

Breast cancer is characteristically divided into different subtypes and clinically man-
aged based on the expression of the estrogen receptor (ER), progesterone receptor (PR)
and human epidermal growth factor receptor 2 (HER2). Luminal breast cancer, which is
estrogen receptor positive (ER+) and can also express HER2, comprises about 75% of the
cases diagnosed [2—4]. While treatment with selective ER modulators (SERMs) such as Ta-
moxifen; ER degraders (SERDs); and aromatase inhibitors (AI) have successfully improved
disease prognosis in this subtype, approximately 40% of patients acquire resistance to these
endocrine therapies and succumb to metastatic disease [5-8]. Furthermore, there is a lack
of targeted treatment for the 15% of patients with triple negative, TN (ER—/PR—/HER2—),
breast cancer. Thus, the need to discover novel targets and improve current treatment
options is of utmost importance. In order to do so, it is crucial to understand the molecular
and genetic features involved in the pathogenesis of this malignant disease.

Breast cancer is in part a genetic disease in which the alterations in gene expression
patterns and the accumulation of mutations in both tumor suppressor genes and oncogenes
drive the transformation of normal breast cells towards malignancy [9]. Around 1600 driver
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mutations have been reported in 93 breast cancer genes, such as common alterations in
TP53, PIK3CA, PTEN, MYC and GATA3 [10,11]. Interestingly, The Cancer Genome Atlas
(TCGA) PanCancer Atlas [12-21] shows that a significant percentage of all breast cancer
cases are linked to alterations in the genes encoding the RUNX/CBFf3 complex [22,23].
This is also supported by data from the METABRIC study, where 14% of primary breast
cancer samples were found to harbor alterations in CBFB, while 11%, 5% and 4% of
patient samples possessed various categories of genetic alterations in RUNX1, RUNX2 and
RUNX3, respectively [24] (Figure 1A). Of particular note is the different spectrum of genetic
alterations, not only between each of the RUNX genes, but also the skewed distribution of
these alterations across ER positive versus ER negative disease (Figure 1B).
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Figure 1. (A) Genetic alteration frequencies for each of the 3 RUNX genes and CBFB in all breast
cancer patients. (B) Data as in A but separated by ER status of breast tumors to illustrate the different
spectrum of RUNX and CBFB alterations dependent on disease subtype. Data acquired from the
METABRIC dataset using cBioportal accessed January 2023 [22-24].

2. The RUNX/CBFf Transcription Complex

The Runt-related transcription factor (RUNX) family, historically known as the poly-
oma enhancer-binding protein 2 o« (PEBP2«), acute myeloid leukemia (AML) and core
binding factor o (CBF«) family of proteins [25], comprises three members: RUNX1, RUNX2
and RUNX3. These factors operate as part of a heterodimeric core binding factor (CBF)
complex with their obligate partner—core binding factor-beta (CBFf) [26-29]. RUNX]1,
found to undergo frequent chromosomal translocations in AML patients, is critical in the
development, differentiation and homeostasis of hematopoietic stem cells (HSC) [30,31].
RUNX2 is a master regulator in bone development, particularly in the differentiation of
osteoblasts [32,33]. RUNX3, expressed in a range of tissues, has an essential role in the dif-
ferentiation of dorsal root ganglion neurons [34,35] and immune cell regulation [36]. DNA
binding affinity and transcriptional activity of these three key players across multiple tissue
types are heavily dependent on their transcriptional co-factor: CBFf [29,30,37]. Together
the RUNX/CBFf complex regulates the transcription of numerous genes involved in cell
proliferation, differentiation and survival [38,39].

A key feature common to all three RUNX proteins is the presence of a highly conserved
domain comprised of 128 amino acids—the Runt-homology domain (RHD), named after the
Drosophila runt [40]. This region was found to support two functions: allowing the RUNX
proteins to bind to DNA, and enabling heterodimerization to CBFf [41] (Figure 2). CBFf3
is a ubiquitously expressed protein, encoded in mammals by the 50 kb CBFB gene [42,43].
CBFf is a non-DNA binding protein that lacks a nuclear localization signal [44,45] and
resides in the cytoplasm where it can bind to the RHD on RUNX proteins [46,47]. While
binding to RUNX proteins allows CBFf3 to be shuttled into the nucleus (Figure 2), it
repays the favor by allosterically stabilizing the point of contact between the RHD and
DNA [41], thereby improving the DNA-binding affinity of RUNX proteins by 40-fold [48,49].
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Furthermore, binding to CBFf3 can protect RUNX proteins, as shown in the case of RUNX1
where heterodimerization with CBFf3 prevents its degradation [50]. Indeed, RUNX1 levels
are barely detected in Cbfb-knockout mice, and CBFf has been shown to increase the
half-life of this protein by preventing proteolysis of RUNX1 via ubiquitination [50].
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Figure 2. The RUNX/CBFf complex. (A) The human RUNX proteins are encoded by 3 RUNX genes,
RUNZX1 (on chromosome 21), RUNX2 (on chromosome 6) and RUNX3 (on chromosome 1), while
CBFp is encoded by the CBFB gene on chromosome 16. The Runt-homology domain (RHD) on
RUNX proteins binds to the Runt-binding domain (RBD) on CBFf to allow formation of the CBF
complex. The activation domain (AD), inhibitory domain (ID) and nuclear matrix targeting signal
(NMTS) are indicated. The QA region on RUNX2 is an extended region of glutamine-alanine repeats
that differentiates it from the two other RUNX family members. The carboxy-terminal VWRPY
motif is used in the interaction with co-factors. (B) CBFf interacts with members of the RUNX
family within the cytoplasm. Once bound to any of the three RUNX proteins, in this case RUNX1
is depicted, the complex is translocated into the nucleus where it can bind to DNA and regulate
transcription. Recruitment of various co-factors determines the fate of transcriptional regulation of
RUNX/CBEFJ target genes. (C) The core binding factor complex works in conjunction with an array
of transcription co-activators and co-repressors to regulate crucial cellular pathways. Figures created
using Biorender.com and taken from the PhD thesis of Adiba Khan, University of Glasgow 2022.

Inside the nucleus, the RHD is used to modulate transcription of target genes through
interactions with specific promoter and enhancer elements [51]. The RHD recognizes
and binds the 5-TGYGGT-3' consensus sequence [52]—or its inverse complement 5'-
R/TAACCRCA-3'—in putative RUNX target promoters (Y = C or T, R = G or A) [39,51].
Cofactors, such as C/EBP, MYB, JUND and ETS, have promoter sites in close proximity to
the RHD binding elements and therefore help regulate transcription through direct interac-
tion with DNA. Other coactivators including ALYREF, Yes-associated protein 1 (YAP1) and
EP300/CREBBP activate transcription initiation through histone acetylation; direct acety-
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lation of RUNX proteins [53,54], or by recruiting the transcription initiation complex [55].
Direct or indirect interactions with co-repressors—such as Groucho/Transducin-like En-
hancer Protein 1 (TLE) proteins, mSin3A, histone de-acetylases (HDACs), nuclear hormone
co-receptor (NCOR1) and silencing mediator of retinoid and thyroid hormones (SMRT)—
are also used by the RUNX/CBF{3 complex to negatively regulate transcription [39,55].

Transcription regulation by RUNX/CBF is additionally impacted by post-translational
modifications, as reviewed by Chuang et al. [56]. Activity of RUNX proteins is dynamically
controlled by phosphorylation (via kinases such as cyclin-Cdks, ERK, HIPK2 and PIM1);
acetylation (by EP300 and/or in response to BMP2 signaling); methylation (through the
PRMT1 methyltransferase); and ubiquitin mediated proteolysis [53,54,57—-66]. Further
regulation of RUNX/CBEFJ} is achieved through chromatin modifications. MOZ and MORF
are two acetyltransferases that directly interact and stimulate RUNX function [67,68]. An
active chromatin has been associated with the collaboration of RUNX/CBEp [56] with
the chromatin modelling complex SWI/SNF that is formed by SMARC proteins (e.g.,
SMARCA1/SNF2L1, SMARCA4/BRG1) [69,70]. We should also bear in mind that there is
evidence of autoregulation and cross-regulation of the RUNX proteins [71-73]. Indeed, the
mutually exclusive expression of RUNX1 and RUNX3 in B-lymphoma cells was specifically
due to RUNX3 acting on the RUNX binding site within the P1 promoter to repress RUNX1
expression [73].

This comprehensive regulation of, and by RUNX/CBEFf is imperative in controlling
cellular pathways in both development and disease (Figure 2C). Indeed, loss of either
components of the CBF complex has lethal effects on normal development. Homozygous
deletions of Runx1 or Cbfb in vivo prevent hematopoietic development, induce central
nervous system hemorrhaging and respiratory issues and ultimately lead to death of
embryos within 12-14 days post conception [45,74,75]. Mice with full body deletion
of Runx2 succumb to death from malformations in bone development with a distinct
phenotype of concaved rib cages that leads to severe respiratory defects [76,77]. CBFf, as
the co-factor for RUNX2, was also shown to be an essential player in osteogenesis [78,79].
Additionally, RUNX3/CBEp is a critical regulator of neuronal development alongside
mediating the development and function of bone, blood and immune cells [34,35,80-84].

Noting how critical RUNX and CBEf are in normal homeostasis and development,
it is not surprising that these genes are frequently altered and mutated in a multitude of
cancers [39,85-89]. A compendium of manuscripts commissioned in this special issue of
Cells comprehensively explores various facets of RUNX/CBFf in cancer, and so, here we
will provide an overview specifically on the RUNX genes and CBFf3 co-factor in breast
cancer where intriguingly mutations play context-dependent roles [38,85].

3. RUNX1 and CBFf} in Breast Cancer: The Enigmatic Duo

While RUNX1 and CBEf have been most widely studied in the context of blood can-
cers, they have over the last decade been implicated in breast cancers, both in the context of
tumor suppression and tumor promotion [38,85,90,91]. In ER+ breast cancer, somatic muta-
tions such as frame-shift mutations and point mutations, and deletions of RUNX1, have
pointed to a tumor suppressive role [85] (Figure 1). RUNX1 downregulation contributed to
a gene expression signature that predicted poor outcome and metastatic risk in primary
tumors [92]. In a study by Ellis et al., utilizing high throughput next generation sequencing
and bioinformatics, RUNX1 was identified as one of 18 recurrently mutated genes in the
luminal-B (ER+) subtype of breast cancers [93]. An independent study also reported two
RUNX1 mutations and four mutations in CBFB in ER+ luminal tumors [94], while Nik-
Zainal and colleagues showed that both RUNX1 and CBFB were in the top 50 of 93 genes
at risk of acquiring driver mutations in breast cancers [11]. Downregulation of RUNX1
was specifically noted in metastatic breast cancers, and attenuated expression of RUNX1
protein was reported in high-grade breast tumors when compared to low or mild-grade
tumors [92,95,96]. Deletions and somatic mutations of RUNX1 have also been associated
with poor differentiation of malignant tumors [97]. A causative relationship between
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knockdown of RUNX1 and hyper-proliferation in MCF10A cells (immortalized normal
mammary epithelial cells) was described and linked to malignant morphogenesis [95].

RUNX1 has been shown to facilitate AXIN1 mediated suppression of 3-catenin by
inhibiting estrogen-dependent signaling, specifically in ER+ disease [98], where low ex-
pression of AXIN1 was associated with low RUNXI expression, unveiling a potential
mechanism for RUNX1-mediated tumor suppression. RUNX1 has also been shown to exert
protection against epithelial-to-mesenchymal transition (EMT) by antagonizing the onco-
genic effects of YAP1—a transcription co-factor implicated in breast cancer metastasis [99].

The gain in metastatic potential of cancer cells, including breast cancer, has been
associated with loss of E-cadherin, a protein crucial in cell differentiation, maintaining cell
polarity, cell-to-cell interactions and thus normal morphology of tissues [100-102]. RUNX1,
in association with transcription factors EP300 and hepatocyte nuclear factor 3 (HNF3),
has been shown to directly bind to regulatory regions of the gene encoding E-cadherin
and to promote its transcription [103]. Re-expression of E-cadherin through overexpres-
sion of HNF3 induces morphological changes in metastatic breast cancer cell lines to a
more epithelial-like phenotype and reduces their invasive, migratory capacity. RUNX1
was shown to have a synergistic effect on HNF3 function and in promoting E-cadherin
expression, which explains another mechanism for its tumor suppressor properties [103].

Conversely, there is evidence of RUNX1 over-expression in various cases of ER nega-
tive and triple negative breast cancer, supporting a pro-oncogenic role of RUNX1 correlated
with poor prognosis and survival [104-108]. RUNX1 expression was noted to be signif-
icantly high in some cases of the more invasive subtypes of breast cancer [96]. Studies
analyzing tissue microarrays (TMA) from TN breast cancer patients have correlated ele-
vated RUNX1 expression to poor survival outcome [108-110]. In vitro studies using ER
negative breast cancer cell lines have shown that RUNX1 associates with super-enhancers
known to interact with other oncogenic transcription factors, such as MYC [111]. In mouse-
derived mammary tumors, as well as in the MDA-MB-231 TN cell line, loss of RUNX1 was
shown to reduce cell proliferation, migration and invasion [112]. This was supported by
results using the MMTV-PyMT breast cancer mouse model, associating increased Runx1
expression with tumor progression [110], whilst Runx1 upregulation was associated with
radiation-induced mammary tumors in rats [113]. Underpinning this phenotype, it has
been suggested that RUNX1 binds directly to various proteins regulating transcription of
genes involved in the control of mammary tumor promotion, such as FOXP3, GJA1 and
RSPO3 [112].

Highlighting the interchangeable role of RUNX1 is a study showing that, when FOXO
expression is constant, downregulation of RUNX1 supports deregulated cell proliferation.
However, the same status of RUNX1 in FOXO-deficient cells induces growth arrest [114].
Both these factors were also negatively correlated in TN breast tumor samples examined
by Wang et al. [97]. These findings consistently demonstrate how the role of RUNXI is
dependent on the subtype of breast cancer (ER+ vs. ER-) and that the effect of RUNX1
on tumor cells depends on the context under which it is expressed (Figure 3). To this
end, further research is required to unravel the mechanisms by which RUNX1 exerts its
dualistic phenotypes. Considering how heavily dependent RUNX1 is on CBEFf for not only
its function as a transcription factor but also in the regulation of its translation [37], it is not
surprising to see that CBFf3 shares an equally enigmatic role (as discussed below).
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Figure 3. Schematic summarizing the knowledge around each of the RUNX proteins in ER positive
and ER negative breast cancer. The RUNX1/CBFf complex acts in a tumor suppressor manner in
ER positive disease and is pro-tumorigenic in ER negative disease. The RUNX2/CBF{ complex is
a critical regulator of metastasis in ER negative disease and has been shown to antagonize ER/E2
signaling inducing reduced expression of ER mRNA and protein. RUNX3 hypermethylation, gene
deletions and polymorphisms have been reported in breast cancer samples while gene deletion
in vitro is associated with ER and YAP1 mediated proliferation, induction of EMT, invasion and
migration of breast cancer cells.

4. RUNX2 in Breast Cancer: Mediator of Metastasis

RUNX2 has been shown to antagonize ER signaling (see below) and to play a tumor-
suppressive role in MCF7 breast cancer cells and ER-positive breast cancer patients [38,115,116].
However, it is increased expression of RUNX2 that is generally associated with breast
cancer transcriptomic datasets in both ER positive and ER negative subtypes (Figure 1),
and accordingly, RUNX2 has been shown to adopt a pro-oncogenic role in breast cancer
cells. This evidence has been extensively reviewed elsewhere [117-119]. While displaying
context-dependent roles in breast cancer (Figure 3), RUNX2 has built up a prominent
reputation as a driver of breast cancer metastasis. As a master regulator of osteoblasts and
bone development, increased expression of RUNX2 has been implicated in breast cancer
metastasis to bone [120-123]. In metastatic breast cancer cells, phosphorylation of RUNX2
by AKT to enhance RUNX2 mediated transcription has been shown to increase expression
of genes involved in tumor cell invasion [124]. A study by Barnes et al. highlighted the
importance of RUNX2 in the growth of MDA-MB-231 and LCC15-MB metastatic breast
tumor cells within the bone microenvironment. Here, a genetically inactivated RUNX2,
which lacked the transactivation domain, eliminated the original potential of the tumor
cells to regulate osteogenic differentiation in bone marrow stromal cells in vitro and their
ability to induce osteolytic disease in vivo [125]. This was supported by a separate study
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where RUNX2, in conjunction with CBFf3, mediated the inhibition of osteoblast/osteoclast
differentiation through the induction of sclerostin secretion in MDA-MB-231 cells [126].
Sclerostin is known to antagonize the Wnt signaling pathway in osteoblasts and to interfere
with bone development, which could contribute to the growth of secondary tumors in the
bone [126,127]. Furthermore, several genes involved in the differentiation of osteoclasts
and in resorption of bone, such as CSF2, IL8, SPP1, SPHK1, PTHLH and various Matrix
metalloproteinases (MMPs), were shown to be regulated by RUNX2 in both breast and
prostate cancer cells [117,121,126,128-130]. RUNX2 with CBEf3 has been deemed critical for
the expression of Osteopontin/IBSP, IL11 and GM-CSF/CFS2 in metastatic breast cancer
cells. These factors induce destruction of bone tissue by osteoclasts, thereby allowing
breast tumor cells to invade the bone microenvironment [126,131,132]. Therefore, breast
cancer cells expressing RUNX2 and CBFf3 can exploit the various growth factors involved
in the homeostasis of bone formation to allow tumor cell mediated osteoclastogenesis
and growth of metastatic cells in this environment. In support of this, RUNX2 expression
was positively correlated with an aggressive phenotype of human breast cancers through
immunohistochemical analysis of primary tumors [133]. High expression of RUNX2 has
been particularly associated with invasive, ER-negative cell lines resembling the basal
subtype of breast cancer, such as MDA-MB-231, HCC38 and MDA-MB-157 [134]. CBFB
expression was also notably high in most of these cell lines [134]. Furthermore, in a
comprehensive TMA of human breast cancers, high expression of RUNX2 was correlated
with ER-negative disease and poor prognosis of patients as well as inducing preneoplastic
changes in naive murine mammary epithelial tissue [135]. In vitro experiments using ER+
MCEF?7 breast cancer cells demonstrated a role of RUNX2 in inducing EMT and metastasis
through its target gene SNAI2 via the Wnt/TGFf pathways. Interestingly, in this study,
high expression of RUNX2 and SNAI2 was unusually correlated with high expression of
ERa [136]. RUNX2 expression can also drive tumorsphere formation, a marker of stemness
and, in partnership with TAZ, can result in increased shedding of soluble E-cadherin, which
in turn can cooperate with HER? in driving breast cancer cell growth [137].

5. RUNX3 in Breast Cancer: Putative Tumor Suppressor

RUNX3—found to be inactivated in various cancer types, such as bladder, lung, gastric,
colon, liver and breast—has been marked as a classic tumor suppressor gene in multiple
studies [82,134,138-141]. This inactivation might be owed to the fact that the genetic lo-
cation of RUNX3 clusters with a range of tumor suppressors and hyper-methylation of
chromatin is common in this region [142-145]. Indeed, RUNX3 gene deletion, polymor-
phisms and mis-localization of protein have been noted in breast cancers [134,146,147].
Hemizygous deletion of Runx3 in BALB/c mice was enough to induce the spontaneous
development of mammary ductal carcinoma with increased Ki67 staining, confirming
a hyperproliferative phenotype in the cancer cells [148]. Restoration of RUNX3 expres-
sion through retroviral vectors in MCF7 breast cancer cells, where RUNX3 is naturally
hypermethylated, has been shown to inhibit proliferation and clonogenic potential of
the gene in both in vitro and in vivo models [148]. This anti-proliferative phenotype was
associated with the ability of RUNX3 to induce proteasomal degradation of the estrogen
receptor. RUNX3 expression led to down-regulation of the ER protein and suppression
of ER mediated transactivation and cancer cell proliferation in multiple breast cancer cell
lines [148]. In support of this, experiments using a xenograft mouse model reported sup-
pression of growth and invasiveness of MDA-MB-231 tumor cells with ectopic expression
of RUNX3 [134]. In a more recent study, RUNX3 expression in YAP1-expressing normal
mammary epithelial cells, and breast cancer cells, suppressed YAP1-mediated prolifera-
tion, migratory capacity and EMT [99]. Mammosphere assays using Hs578T cells, with
particularly high levels of YAP1, indicated that RUNX3 significantly compromised the
stemness potential in these cells potentially through direct interaction with YAP1. These
results were also reflected in patient cohorts where high YAP1 expression depicted signifi-
cantly better survival prognosis if they also expressed high levels of RUNX3 (as well as
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RUNX1) [99]. On the other hand, patient tumor samples with high YAP1 but low RUNX1
and RUNX3 depicted higher levels of gene signatures associated with EMT and cancer
cell stemness [99]. A similar phenotype was reported in a separate paper where RUNX3
was shown to suppress EMT and stem-cell-like properties exerted by PIM1—an oncogenic
kinase known to contribute to breast tumorigenesis [149]. Additionally, RUNX3 was shown
to negatively regulate genes associated with infiltration of immune cells into the breast
tumor microenvironment and with poor prognosis [150]. While many studies provide
evidence for RUNX3 in breast cancer suppression, we note that others have discussed the
expression status of this transcription factor in some epithelial lineages [151].

Interestingly, gene expression profiling of primary breast cancer stromal cells identified
RUNX3 as part of a 26-gene signature that was correlated to poor clinical outcome [152].
Here, high RUNX3 expression in tumor stroma was shown to be positively associated with
poor prognosis. mRNA upregulation of RUNX3 has been noted in primary breast tumor
samples through whole genome sequencing analysis (Figure 1). It might be hypothesized
that this increase in expression in bulk tumors reflects high RUNX3 expression in the tumor
stromal compartment.

6. Runx Genes in Mammary Development and Homeostasis

Both RUNX1 and RUNX2 appear to have important roles in normal mammary de-
velopment, but evidence for a major role for RUNX3 is currently lacking; indeed, some
studies have failed to demonstrate meaningful levels of gene expression in the mammary
epithelia [97,135,153,154]. Echoing studies in other lineages, the Runx genes appear to
engage in a delicate interplay in regulating the balance of stem and progenitor cells within
the mammary system. Our group previously showed that Runx2 was expressed at high
levels in mammary cells with a stem-like phenotype and was critical for mammosphere and
colony formation, indicating an important role in regeneration [155]. In contrast, silencing
of RUNX1 in MCF7 cells was associated with the upregulation of stem cell markers [98].
Using fractioned populations of MCF10ATT1 cells, Fritz et al. [153] showed that RUNX1
is decreased, and RUNX2 is higher in the population characterized by enhanced stem or
progenitor properties. Moreover, RUNX1 is required for cells to exit a bipotent stem-like
state and to drive differentiation and the development of ducts and lobules in MCF10A
cells [156]. These results are supported by independent studies, which reported that RUNX1
expression inhibited tumorsphere formation in breast cancer cell lines [157]. The concept
that RUNX1 may drive differentiation was also supported by studies conducted by the Li
lab [154]. This group showed that Runx1 is expressed in both basal and ductal luminal cells
but not in alveolar luminal cells of the mouse mammary gland. Genetic deletion of Runx1
using MMTYV driven Cre (which is mainly expressed in the luminal lineage) revealed that
the luminal progenitor population was maintained whilst the mature luminal phenotype
was reduced, suggesting that Runx1 is an important player in this differentiation step.
Furthermore, loss of Runx1 significantly reduced the ER+ subpopulation of luminal cells
indicating that Runx1 is required for the development or maintenance of these cells. Like
other cancers, blocked differentiation could lead to a relative accumulation of immature
cells more susceptible to transformation. Consistent with this, loss of either Tp53 or Rb1
tumor suppressors, combined with Runx1 loss not only rescued the ER+ population but
resulted in hyperproliferation and expansion of these cells compared to the loss of Rb1 or
Tp53 alone [154]. Thus, it can be hypothesized that loss of Runx1 in the luminal lineage
may represent a preneoplastic event susceptible to secondary events. Indeed, deletion of
Runx1 in a stem cell population of luminal cells marked by the RUNX1 intronic enhancer
(eR1+) [158] mediated the development of luminal hyperplasia and enhanced mammary
organoid growth.

Expression studies indicate that Runx2, like Runx1, is expressed in both the luminal
and basal mammary epithelium, with levels being higher in the latter [135], and is especially
prominent in the terminal end buds of developing ducts [135,159,160]. Runx2 is expressed
in virgin glands and is maintained through to mid-pregnancy but falls in late pregnancy
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and during lactation, a pattern of expression that is similar to that seen with Runx1 [160,161].
Enforced expression of Runx2 in mammary epithelium (viaa MMTV-Runx2 transgene) [135]
or murine mammary epithelial HC11 cells [160], induced a block in late-stage differentiation
of mammary epithelium, characterized by defective lobuloalveolar differentiation and
failure of lactation, consistent with the physiological fall in Runx2 expression in mid- to late
pregnancy. These studies hinted at a pro-oncogenic function for Runx2 in the mammary
compartment. Aged MMTV-Runx2 transgenic mice developed hyperproliferation, and
even a modest incidence of ductal carcinoma in situ, whilst the HC11 cell line displayed
a more EMT-like phenotype. Paradoxically, deletion of Runx2 also resulted in perturbed
alveolar development during late pregnancy [160]. It is possible that Runx2 is required for
the development of alveolar progenitors, but expression must be attenuated for terminal
differentiation and lactation. In agreement with a suspected pro-oncogenic role, loss of
Runx2 slowed tumor growth in a mammary tumor model [160].

7. Relationship of RUNX/CBF(3 with ER Signaling

Considering how strongly RUNX/CBF{3-mediated effects are correlated with the ER
status of breast cancers, it is obvious that a complicated relationship (either direct or indi-
rect, if not both) exists between the ER and the RUNX/CBEFf3 heterodimeric complex [91].
However, it is important to consider that ER signaling itself is highly pleiotropic. ER
signaling holds the capacity to both promote and suppress breast tumorigenesis, depend-
ing on various combinations of molecular signals within the mammary cells that help
tightly regulate the course of signaling cascades triggered by estrogens [162]. Firstly, the
response to 17-p-estradiol (E2) within the mammary cell is dependent on the expression
of ER, and the subsequent post-transcriptional and post-translational modifications, in
addition to the successful dimerization of two ERs in the nucleus [162]. On top of that,
metabolic processing, and binding of E2 to other G-protein coupled receptors and certain
isoforms of ER that undertake non-transcriptional modulation—via activation of kinases
and phosphatases—affect the ultimate fate of the mammary cells [162]. In some instances,
ER-mediated oncogenesis is achieved due to ER-induced activation of cell proliferation
and metastasis mediators, such as ETS1, PI3K/AKT, LRP16, VEGFR2 and extracellular
matrix proteins. Conversely, ER-E2 signaling may also be beneficial when E2 is linked to
breast cancer cell apoptosis [162], blocking of angiogenesis [163] and, in some cases, via
E2-mediated blocking of the oncogenic TGF3 pathway.

As stated above, RUNX1 and CBFB loss-of-function mutations are strongly associated
with ER+ breast cancer. In this context, it is intriguing that the hormone receptor ERx and
RUNX1 physically interact and co-regulate a large number of target genes. This raises the
scenario that the ERo-driven program of gene expression can be modulated by RUNX1
and vice versa. Indeed, the presence or absence of E2 profoundly alters the profile of
differentially expressed RUNX1 target genes in MCF7 cells [98]. ERa can control gene
expression both directly, via the estrogen response elements (ERE), or indirectly by tethering
and cooperating with other transcription factors. There is evidence that RUNX1 is a major
“tethering” partner, underlining the intimate relationship between these transcription
factors in the control of global gene expression patterns [164]. A functional interaction
between RUNX2 and ER« has also been reported. E2-bound ER« suppresses RUNX2's
transcriptional activity. This effect was ligand dependent as ER/ RUNX2 interaction was
significantly increased in the presence of E2 [116]. The authors went on to demonstrate that
there was an inverse correlation between ERx expression and expression of RUNX2 target
genes in breast cancer biopsies. Further, the functional significance of the ERax/RUNX2
interaction was elegantly illuminated in a study by Chimge et al. [115]. This work showed
that, in general, E2 antagonized RUNX2 regulation of target genes and vice versa, although
cooperation was also noted for a smaller set of target genes. Together, these data indicated
that RUNX2 and E2 could profoundly modulate each other’s gene expression profiles.
In addition, this study also noted that RUNX2 could directly repress ERx expression,
confirming an observation in osteoblasts that RUNX2 could bind to the ERx promoter and
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regulate transcription [165]. Conversely, it has been previously reported that ERx and the
related gene Estrogen Related Receptor & (ERRa) regulate RUNX2 itself [166]. Cumulatively,
these studies indicate that RUNX activity can redirect or reprogram the effects of E2/ERo
in mammary cells, with profound implications for tumor development or progression
in mammary tissue. Studies on the relationship between RUNX3 and ERx are more
limited, but Huang et al. [148] exogenously expressed RUNX3 in MCF?7 cells and noted
reduced proliferation in the presence of E2 and reduced colony formation in soft agar. The
transcriptional activity of E2/ER«x was reduced in RUNX3-expressing cells due to reduced
stability and half-life of ER«.

8. CBFf3 as an Emerging Regulator in Breast Cancer

CBFp is crucial for the operation and function of all three RUNX proteins, and it is
becoming apparent that it also plays an important role in cancer etiology [167-174], par-
ticularly in breast cancer. In a comprehensive targeted sequencing-based study analyzing
almost 1000 primary breast cancer samples, CBFB was shown to be one of the top 17 recur-
rently mutated genes [175], whilst a separate whole-genome sequencing study of 560 breast
tumors identified CBFB as one of the 93 protein-coding genes harboring potential driver
mutations [11]. This data is complimented by results from the METABRIC study [24], where
CBFB was shown to be altered in 14% of the 2433 breast cancer cases investigated (Figure 1),
as well as in 13% of primary breast cancer cases in the TCGA Firehose legacy dataset, and
in 5% of metastatic breast cancer samples analyzed in the study by Li et al. [22,23,176-178].
Indeed, many whole-genome sequencing and transcriptomic studies have revealed how
common alterations and mutations in this gene are [11,94,179].

Additionally, these results highlighted that CBFB undergoes varying alterations de-
pending on the breast cancer subtype in a similar way to that for RUNX1. As highlighted
in Figure 1, CBFB tends to be most frequently altered in ER-positive breast cancers where
truncating or missense mutations and gene deletions are commonplace; whereas it is less
frequently altered in ER-negative disease and often found to be upregulated [10,24,85,93,94].

8.1. CBFB as a Gate Keeper

In ER-positive breast cancer, the presence of mostly loss-of-function mutations and dele-
tions of CBFB suggests that it may be acting to inhibit tumorigenesis in this context [37,175].
The missense mutations noted in CBFB are focused around the RUNT-binding domain
and therefore would abrogate the interaction between CBFf3 and RUNX proteins [175,180].
Emerging evidence has shown that removing CBFB in ER-positive MCF7 cells via CRISPR-
Cas9-mediated gene deletion increases ER-dependent migration of these cells. The activated
RUNX1/CBFf complex suppresses ER-mediated activation of the mitogen Trefoil factor 1
(TFF1) and thus inhibits migration [180]. CBFf is also crucial for the inhibitory function
of RUNX1 in the ERx mediated repression of AXIN1 [98]. AXIN1 is known to repress the
Wnt signaling pathway, and when CBFB is deleted in ER-positive cells, this repression of
the cell proliferative Wnt pathway is removed [180].

The genetic evidence that CBFB loss-of-function mutations are associated with breast
cancer raises the question of whether these effects are simply due to loss of RUNX transcrip-
tional function via impaired DNA binding (or reduced protein stability) or whether CBFf3
exerts RUNX-independent effects that influence cancer development through an alternative
mechanism. Evidence for such a role was provided by Malik et al., [37] who showed
that, distinct from its transcriptional partnership with RUNX, CBFf3 protein could bind to
mRNA and cooperate with the translation initiation factor eIF4B to regulate translation of
numerous gene transcripts (>800), including RUNXT itself. This study also showed that loss
of CBFB led to the transformation of MCF10A cells in vitro and tumorigenicity in vivo [37].
The transformation phenotype could be reversed by re-introduction of CBFB or the loss of
NOTCHS3, suggesting that the latter was negatively regulated by RUNX1/CBFf in these
cells and was mediating transformation [37].



Cells 2023, 12, 641

11 of 20

In a later paper, Malik et al. also identified mutual exclusivity between alterations
in CBFB and TP53 through in silico interrogation of patient tumors [181]. Here, a func-
tional relationship was suggested where p53 and the RUNX1/CBFf complex cooperate
to exert their tumor-suppressive roles in normal breast cells through activation of TAp73.
Loss of TAp73 facilitated the oncogenic effect of NOTCH3 over-expression in the induc-
tion of tumorigenesis. Furthermore, this study identified 32 additional targets regulated
by both CBEB and p53, which could potentially be involved in their anti-tumorigenic
functions [181].

8.2. CBFB as a Driver of Tumorigenesis

It is interesting, within the context of the foregoing, that evidence for a pro-tumor
role of CBFB in breast cancer has also been proposed. According to the METABRIC
study, elevated expression of CBFB has been observed in 3% of breast cancer patients
although, notably, gene amplification and high expression of mRNA were predominately
in ER-negative patient samples [22-24]. The concept that gain-of-function mutations could
contribute to tumor development or an aggressive phenotype is intriguing, as early studies
on the RUNX/CBFf3 relationship indicated that RUNX levels were tightly controlled whilst
CBEf expression was thought to be in abundance and depended on RUNX for translocation
to the nucleus. However, gain-of-function mutations suggest that either, in some contexts,
CBFp is rate limiting, or this effect is independent of the RUNX genes (as described above).

High CBFB expression has been positively correlated with increased metastasis and
poor prognosis of patients [182]. Supportive of the clinical data, the Shore group showed
that CBF3 and RUNX2 contributed to the metastatic phenotype of the ER-negative breast
cancer cell line MDA-MB-231 [183]. Indicative of their cooperative function, CBFf3 bound
to RUNX2 was found in the nucleus of metastatic cells and the transcription co-factor was
deemed essential for the expression of various genes associated with invasive phenotypes,
such as osteoclast-promoting SPP1, BGLAP, MMP9, MMP13, CSF2 and IL11 and osteoblast-
inhibiting SOST, which encodes Sclerostin. Invasion assays with knockdown of CBFB
showed a 90% reduction in the migratory ability of MDA-MB-231 cells, a characteristic sub-
sequently rescued upon re-introduction of CBFB [183]. Additionally, CBFf3, in conjunction
with RUNX1 and RUNX2, was shown to mediate EMT in MDA-MB-231 cells through regu-
lating expression of SNAI2—a known transcription factor involved in EMT [184]. Depletion
of CBEp reversed EMT; suppressed the capacity of these cells to grow in co-cultures with
osteoblasts in vitro; and significantly reduced their propensity to metastasize into bone
microenvironments in vivo [184]. High expression of CBFf3, and a consequent increase in
tumor cell invasiveness and migratory potential, has been demonstrated in two further
metastatic breast cancer cell lines. Knockdown of CBFB in the metastatic MDA-MB-436 cell
line also resulted in reduced tumor growth and improved overall survival in a xenograft
model [182]. Migration, invasion, expression of EMT, and bone modulating markers, such
as VIM, SNAI1, BGLAP, CXCR4, as well as RUNX2, were also reduced in response to loss
of CBFB [182]. These properties allow breast cancer cells to invade the bone microenviron-
ment and modulate bone cells to allow development of secondary tumors. Interestingly,
circulating exosomes derived from the serum of breast cancer patients with bone metastasis
demonstrated significantly higher levels of CBFB compared to those derived from healthy
patients or patients with no observable metastasis [182]. These CBFf3-mediated phenotypes
seemed transferrable through the exosomes since breast cancer cells with low metastatic
potential (T47D and MCF12A), when treated with media containing high CBFB express-
ing exosomes, mimicked their metastatic counterparts, exhibiting increased migratory
and invasive properties. Overexpression of CBFB in the same cell lines recapitulated the
effect with exosome treatment, confirming the oncogenic role played by CBEf in these
cells [182]. Since 70% of metastatic breast cancer patients develop incurable bone metas-
tases [185], finding novel targets such as RUNX2/CBFf} to inhibit or delay this process
has the potential to improve disease prognosis and survival of such patients. In fact, a
small molecule inhibitor of the RUNX/CBFf complex (AI-10-104) has been shown to ef-
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fectively disrupt the CBF complex in breast and ovarian cancer cells [168,186]. Through
direct binding to CBFf3 and allosterically inhibiting its interaction with RUNX proteins, the
inhibitor prevents translocation of the complex into the nucleus, thereby compromising
RUNX/CBEp-mediated transcription [186]. In an in vitro 3D model of basal-like breast
cancer, use of the RUNX/CBF@ inhibitor was shown to exert a striking growth-inhibitory
effect with almost complete suppression of cell survival and colony formation [186]. An
alternative small molecule inhibitor (CADD522) has been shown to block RUNX2 gene
regulation by interfering with RUNX2-DNA binding and could antagonize the growth
of breast cancer cells [187]. Although this inhibitor could interfere with all three RUNX
proteins, it appeared to have greatest specificity for RUNX2 [187]. These studies open up a
potential avenue for treating TN and basal like subtypes of breast cancer.

9. Concluding Remarks

It is evident that the RUNX/CBFf transcriptional complex has an important role
in breast cancer biology (summarized in Figure 3) and in normal mammary epithelial
development, not least through its intricate relationship with ER/estrogen signaling. We
are at the precipice of our mechanistic understanding of how these proteins contribute to
disease progression, which has implications for how this complex might be therapeutically
targeted. With inhibitors being actively pursued [186,188], identifying which patients might
benefit from disruption of the RUNX/CBFf signaling cascade, possibly in combination
regimes, has important potential. We have specifically concentrated in this review on our
knowledge of RUNX/CBEFf within the context of the breast epithelia, but it is exciting
that these proteins may also have an important role (direct or indirect) within the tumor
microenvironment. As noted above, RUNX3 was part of a poor prognostic stromal gene
signature in breast cancer patients [152], and very recently, RUNX1 (and also RUNX2)
was identified through an epigenetic analysis of murine mammary tumors to be highly
upregulated in cancer-associated fibroblasts [189]. These authors extrapolated their findings
by applying multiplex immunofluorescent staining to show that RUNX1 was expressed in
human breast cancer fibroblasts but not in normal breast tissue, while a RUNX1-stromal
signature could stratify patients. Furthermore, although only correlative, a recent plethora
of papers has proposed that the mutational status of RUNX genes impacts the immune
cell microenvironment in breast (and other) cancers, with an increased infiltrate associated
with high levels of RUNX expression [150,190,191]. Whether this could act as a biomarker
for certain patient groups, or holds functional relevance is yet to be explored. As master
regulators in both development and disease, the RUNX/CBFf3 complex holds multifaceted
attributes that need to be unraveled further to understand the mechanisms behind their
complex and context dependent role in breast cancer.
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