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Abstract: Vitiligo is the most frequent cause of depigmentation worldwide. Genetic association
studies have discovered about 50 loci associated with disease, many with immunological functions.
Among them is HLA-G, which modulates immunity by interacting with specific inhibitory recep-
tors, mainly LILRB1 and LILRB2. Here we investigated the LILRB1 and LILRB2 association with
vitiligo risk and evaluated the possible role of interactions between HLA-G and its receptors in this
pathogenesis. We tested the association of the polymorphisms of HLA-G, LILRB1, and LILRB2 with
vitiligo using logistic regression along with adjustment by ancestry. Further, methods based on the
multifactor dimensionality reduction (MDR) approach (MDR v.3.0.2, GMDR v.0.9, and MB-MDR)
were used to detect potential epistatic interactions between polymorphisms from the three genes. An
interaction involving rs9380142 and rs2114511 polymorphisms was identified by all methods used.
The polymorphism rs9380142 is an HLA-G 3′UTR variant (+3187) with a well-established role in
mRNA stability. The polymorphism rs2114511 is located in the exonic region of LILRB1. Although no
association involving this SNP has been reported, ChIP-Seq experiments have identified this position
as an EBF1 binding site. These results highlight the role of an epistatic interaction between HLA-G
and LILRB1 in vitiligo pathogenesis.

Keywords: ancestry; Brazil; ILT-2; ILT-4; LILRB2; SNPforID

1. Introduction

Vitiligo is characterized by white spots on the skin, which arise due to the dysfunction
of melanocytes [1]. Based on clinical presentation, the disease can be classified as segmental
vitiligo, with unilateral distribution, affecting 10–15% of the cases, and shows an early
age of onset; or nonsegmental vitiligo, with bilateral and symmetrical distribution, is the
most common manifestation, representing almost 80% of the cases, besides several other
forms that may fit into the spectrum of rare vitiligo [2,3]. It is considered the most frequent
cause of depigmentation worldwide, without preference for ancestry or sex. It presents
marked geographic differences in prevalence, which is mostly about 0.5% to 2% but can be
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up to 4.7% in Nigeria and more than 8% in India. Meanwhile, the reasons underlying this
heterogeneous distribution still need to be clarified [4,5].

Studies have evidenced a polygenic/multifactorial mode of inheritance for nonsegmental
vitiligo, with about 50 loci already identified, many of them with roles in immunological
response and previously associated with other autoimmune diseases [6]. A pivotal role of the
immune system in nonsegmental vitiligo is sustained by the presence of autoantibodies against
melanin and the higher frequency of other autoimmune conditions in vitiligo patients [7].

Notwithstanding, only 50% of the total heritability has been identified in nonsegmental
vitiligo [8,9]. A substantial amount of this variance thus remains unexplained, commonly
referred to as the “missing heritability” [10]. It has been suggested that missing heritability
may be partially due to gene–gene interactions, also called epistasis [11–13]. Epistasis
occurs when two or more loci influence a phenotype in a dependent manner and may
partly explain why human mapping can be difficult to replicate [14]. Additionally, it is
expected (and observed) that genes that exhibit physical interactions also demonstrate
these interactions at the genetic level [15].

The binding of HLA-G to its receptors, LILRB1 and LILRB2, induces the downregula-
tion of innate and adaptive immunity, thus modulating the activity of NK cells, antigen-
presenting cells, and T and B lymphocytes [16–18].

Based on the critical role of HLA-G in the immune response and on the associations
previously reported between HLA-G polymorphisms and diverse autoimmune conditions,
our group previously evaluated associations with the whole HLA-G locus with vitiligo in the
Brazilian population, being observed for the first time an association between the rs9380142
SNP (+3187G) located in 3′UTR (untranslated region) and disease risk [19]. Nonetheless,
up to this moment, no study has investigated the associations of LILRB1/LILRB2 variants
with the disease yet.

Since genes encoding interacting proteins are likely to evolve to preserve proper
protein interactions, as well as an appropriate stoichiometry among its interacting com-
ponents [20], we employed the multifactor dimensionality reduction (MDR) method to
evaluate the possible role of epistatic interactions between HLA-G and its receptors in the
pathogenesis of vitiligo.

Lastly, due to the highly admixed nature of the Brazilian population, we have corrected
the results for population stratification, thus allowing us to detect potentially hidden
associations, besides avoiding false-positive results.

2. Materials and Methods
2.1. Samples

Blood samples were collected from 410 unrelated volunteers from Ribeirão Preto,
Southeastern Brazil, consisting of 367 healthy controls and 43 vitiligo cases, followed up at
the Dermatology Outpatient Clinic of the University Hospital of Ribeirão Preto Medical
School, University of São Paulo, between 2016 and 2018. No individual included among the
healthy controls showed vitiligo signals. Moreover, vitiligo patients or control individuals
with a history of autoimmune diseases were excluded from the study sample. Ethical
approval was obtained from the Ethics Committee of Universidade de São Paulo (CAAE),
#25696413.7.0000.5407, and all participants provided written informed consent.

2.2. Laboratory Analysis

DNA was extracted using a modified salting-out protocol [21]. NanoDrop® ND-1000
(Thermo Fisher Scientific Inc., Waltham, MA, USA), agarose gel electrophoresis, and Qubit™
dsDNA BR Assay (Life Technologies, Carlsbad, CA, USA) were used for the evaluation of
purity level, integrity, and concentration of the genomic DNA, respectively. Finally, all samples
were normalized to 5 ng/µL to achieve an ideal sequencing library preparation concentration.

Sequencing libraries were prepared according to the manufacturer’s instructions using
a customized Haloplex Target Enrichment System (Agilent Technologies, Inc., Santa Clara,
CA, USA) protocol. A SureDesign tool (Agilent Technologies, Inc., Santa Clara, CA, USA)
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was employed to design a set of probes that ensured the capture of 488.658 bp, including
the HLA-G (5′URR—upstream regulatory region, coding sequencing (CDS, only exons),
and 3′UTR), and LILRB1/2 (CDS, only exons) genes, as well as other loci of interest for
the research group, such as the regions encompassing the SNPforID 34-plex ancestry
informative marker (AIM) set of SNPs [22].

DNA libraries were quantified using Qubit® 2.0 Fluorometer (Thermo Fisher Scientific
Inc., Waltham, MA, USA) and 2100 Bioanalyzer (Agilent Technologies, Inc., Santa Clara,
CA, USA). Ultimately, a pool of DNA libraries of up to 96 samples was diluted to 16 pM
and inserted as input for sequencing using the MiSeq Reagent Kit V3 (600 cycles) in the
MiSeq Personal Sequencer (Illumina Inc., San Diego, CA, USA).

2.3. Bioinformatics Analysis

The HLA-G, LILRB1, and LILRB2 mapping; genotype calling; and haplotyping strate-
gies used here have already been published elsewhere [23,24]. Briefly, CutAdapt [25], hla-
mapper version 2.2, function DNA, database version 2.1 [26], and GATK v.3.7 Haplotype-
Caller in -ERC GVCF mode [27] were used for trimming adaptor sequences, alignment to
the reference genome sequence (GRCh38/hg38) and genotype calling, respectively. Uncer-
tainly, genotypes were interrogated using VCFx checkpl (www.castelli-lab.net/apps/vcfx
(accessed on 1 October 2021)), with the minimum genotype likelihood set to 99.9% to retain
only high-quality genotypes. GATK routine ReadBackedPhasing, using a minimal phase
quality threshold of 500, coupled with a Bayesian probabilistic model implemented in the
PHASE software [28], enabled taking some phase information from the paired-end reads,
adding efforts in the identification of the most probable haplotypes. The phased VCF file
was converted into HLA-G CDS sequences by using the hg38 reference sequence as a draft
and replacing the correct nucleotide at each position, two sequences per sample, using the
application vcfx (function fasta) (www.castelli-lab.net/apps/vcfx (accessed on 1 October
2021)). Using a local BLAST server with databases containing all known class I and II
HLA CDS sequences described so far, downloaded from the IPD-IMGT/HLA database
(https://www.ebi.ac.uk/ipd/imgt/hla/ (accessed on 1 October 2021)) version 3.31.0, the
closest known HLA-G coding allele was defined for each haplotype.

The procedures applied for genotyping LILRB1/2 exonic regions and the SNPforID
34-plex AIMs were very similar to those used to HLA-G, except that BWA-MEM (Burrows–
Wheeler) [29] instead of hla-mapper [26] was employed to the reference genome (GRCh38/hg38)
alignment and that for SNPforID 34-plex only genotype calling was performed. In addition,
the procedures used for HLA-G haplotypic identification did not apply to these loci.

2.4. Statistical Methods

Based on the previously described approach [30], the SNPforID 34-plex ancestry
informative SNP panel was employed by STRUCTURE v.2.3.4 [31] to quantify the ancestral
contributions of the present study samples. Afterward, the ancestry components obtained
for each individual were included as covariates in a logistic regression model using PLINK
v.1.9 [32] to correct the associations for population structure. Since the genetic risk depends
on the type of inheritance, SNPs were analyzed using additive and dominant models.

The linkage disequilibrium (LD) pattern was evaluated by estimating the parameters
D’, log of odds (LOD) scores, and r2. The haplotype blocks were defined by the confidence
intervals method implemented in Haploview v.3.32 [33], excluding markers with a minor
allele frequency (MAF) below 1% and a Hardy–Weinberg equilibrium (HWE) p-value lower
than 0.05. Adherence of genotypic proportions to expectations under Hardy–Weinberg
equilibrium, as well as the allelic frequencies, were evaluated using PLINK v.1.9 [32].

Single polymorphisms were first tested one by one for statistical association with
the vitiligo risk using a traditional regression model. Due to the highly admixed nature
of the Brazilian population, we adjusted the results for admixture proportions to avoid
false-positive results arising from a population stratification bias [34] and to allow the
detection of potentially hidden associations [35].

www.castelli-lab.net/apps/vcfx
www.castelli-lab.net/apps/vcfx
https://www.ebi.ac.uk/ipd/imgt/hla/
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We then performed multivariate analyses considering several markers simultaneously
using the machine learning method MDR [36] to screen for potential gene–gene interactions
among the 213 variants from HLA-G and LILRB1/2.

Since the MDR efficiency can be increased by limiting the number of input features [37],
the variants were LD-pruned before epistasis analysis to remove any multicollinearity
between markers. PLINK v.1.9 [32] was used for pruning, considering the variance inflation
factor (VIF) LD pruning routine that iteratively excludes individual variants that have a
VIF > 2 with other variants (window size of 50 SNPs, shifting 5 SNPs at each step), using a
minor allele frequency (MAF) threshold of 0.1. After pruning, 34 variants remained.

MDR reduces the dimensionality of multilocus information by testing all the possible
combinations of multilocus genotypes and reports the ones exhibiting the best classification
for disease risk [38]. Different approaches were tested: MDR v3.0.2 [39], generalized
multifactor dimensionality reduction (GMDR) v.0.9 [40], and model-based multifactor
dimensionality reduction (MB-MDR) [41].

The model selection and evaluation follow a similar strategy in the MDR v3.0.2 and
GMDR v.0.9 methods. For developing a model, 9/10th of the data is employed, and
a classification error is estimated at the end. Then, the remaining 1/10th of the data
estimates the prediction error of the tested model. This procedure is repeated for each data
piece, with classification and prediction errors obtained across all 10 runs. The ranking of
the models relies on two parameters: the testing balanced accuracy (TBA), which indicates
the degree of accuracy with which an interaction correctly classifies individuals as cases or
controls, and the cross-validation consistency (CVC), which indicates the number of times
an interacting set shows along the cross-validation subsets (Hastie et al. 2001). Single best
models were selected from each of the two-marker and three-marker combinations. Among
this set of best multifactor models, the combination of polymorphisms that maximizes both
the TBA and the CVC was selected. Although very similar to the original MDR method,
GMDR v.0.9 [40] classifies the individuals based on a residual-based score and provides the
signal test indicating the significance of the identified model [40].

In contrast, some modifications are observed in the MB-MDR method [41]. First, the
method does not split the data into training and learning sets. Model selection is based on
the strength of association between a set of genotypes and the binary outcome of interest,
using all the data, with the statistical significance of the models being assessed through
a permutation testing strategy by randomizing the case/control status in the original dataset.
In addition, risk categories are defined using a regression model, which allows adjustment
for population stratification. Finally, it presents all significant genetic interactions and the
best one. To ensure that the analyses were not influenced by chance or by initial conditions,
each analysis was repeated 5 times using 5 different random seeds (permutation = 1.000;
adjust = ancestry covariates; family = binomial; significance level = 0.05).

3. Results

The HLA-G variability was evaluated using massive parallel sequencing concerning
the 5′URR extended distal region (−2635), CDS, and 3′UTR and the genetic diversity of
LILRB1/LILRB2 exonic regions in a sample of 410 individuals. A total of 110, 58, and
55 variation sites were identified in HLA-G, LILRB1, and LILRB2, respectively. After
applying quality control criteria (genotyping call rate > 0.98 and Hardy–Weinberg test
p-value ≥ 0.01), 103, 57, and 53 variants remained and were included in the association
study with vitiligo risk.

The results of single-marker association analyses are presented in Table 1 (additive
model) and Table 2 (dominant model). Interestingly, many of the associations detected
before adjusting for population structure were no longer significant after taking ancestry
composition into account in the regression model.



Cells 2023, 12, 630 5 of 13

Table 1. Significant results of single-marker association tests of HLA-G, LILRB1, and LILRB2 SNPs with
vitiligo in the Brazilian population under an additive model, before and after adjustment for ancestry.

Additive Model Before Adjustment After Adjustment

GENE SNP Allele OR (L95–U95) p OR (L95–U95) p

HLA-G rs17875403 1 T 8.902 (1.221–64.890) 0.0309 - -

LILRB2 rs10405713 1 C 2.357 (1.091–5.094) 0.0292 - -

LILRB2 rs373032 1 T 0.485 (0.251–0.938) 0.0315 - -

LILRB1 rs10427127 C 1.957 (1.082–3.538) 0.0263 - -

LILRB1 rs10425827 1 G 2.210 (1.160–4.209) 0.0159 - -

LILRB1 rs61739173 A 2.173 (1.088–4.337) 0.0278 - -

LILRB1 rs2114511 1 C 2.349 (1.156–4.775) 0.0182 - -

LILRB1 rs272423 1 C - - 0.5611 (0.331–0.950) 0.0316
1 SNPs highlighted in bold are associated under both additive and dominant models. OR = odds ratio.
CI = confidence interval. p-Value ≤ 0.05 was considered significant.

Table 2. Significant results of single-marker association tests of HLA-G, LILRB1, and LILRB2 SNPs with
vitiligo in the Brazilian population under a dominant model, before and after adjustment for ancestry.

Dominant Model Before Adjustment After Adjustment

GENE SNP Allele OR (L95–U95) p OR (L95–U95) p

HLA-G rs6932888 C 1.914 (1.004–3.649) 0.0485 2.022 (1.052–3.888) 0.0348

HLA-G rs6932596 T 1.914 (1.004–3.649) 0.0485 2.022 (1.052–3.888) 0.0348

HLA-G rs17875403 1 T 8.902 (1.221–64.890) 0.0301 - -

HLA-G rs9380142 G 2.112 (1.101–4.053) 0.0246 2.225 (1.149–4.308) 0.0176

LILRB2 rs10405713 1 C 2.660 (1.075–6.580) 0.0343 - -

LILRB2 rs373032 1 T 0.434 (0.208–0.906) 0.0263 - -

LILRB1 rs10425827 1 G 2.130 (1.010–4.492) 0.0470 - -

LILRB1 rs2114511 1 C 2.512 (1.209–5.219) 0.0135 - -

LILRB1 rs272423 1 C - - 0.502 (0.261–0.965) 0.0388
1 SNPs highlighted in bold are associated under both additive and dominant models. OR = odds ratio. CI =
confidence interval. p-Value ≤ 0.05 was considered significant.

Among the SNPs significantly associated with the dominant model (Table 2), rs6932888
and rs6932596 are in strong LD with each other (r2 ≥ 0.90).

Furthermore, multivariate analysis using different MDR-based methods was per-
formed to identify possible gene–gene interactions affecting the disease risk. The three
methods identified the same 2-SNP combination as the best model, providing the best
prediction accuracy (Table 3, Figure 1).

Table 3. Significant second-order interactions simultaneously identified by all MDR methods applied.

MDR Method Best 2 Order Model TBA, CVC p-Value

MDR v3.0.2 rs9380142, rs2114511 0.65, 9/10 -
GMDR v.0.9 rs9380142, rs2114511 0.64, 10/10 0.0107 a

MB-MDR (before adjustment) rs373032, rs2114511 - 0.0020 b

MB-MDR (after adjustment) rs9380142, rs2114511 - 0.0130 b

a signal p-test. b permutation p-value.



Cells 2023, 12, 630 6 of 13

Cells 2023, 12, x FOR PEER REVIEW  6  of  13 
 

 

Table 3. Significant second‐order interactions simultaneously identified by all MDR methods ap‐

plied. 

MDR Method  Best 2 Order Model  TBA, CVC  p‐Value 

MDR v3.0.2  rs9380142, rs2114511  0.65, 9/10  ‐ 

GMDR v.0.9  rs9380142, rs2114511  0.64, 10/10  0.0107 a 

MB‐MDR (before adjust‐

ment) 
rs373032, rs2114511 

‐ 
0.0020 b 

MB‐MDR (after adjustment)  rs9380142, rs2114511  ‐  0.0130 b 
a signal p‐test. b permutation p‐value. 

Although 3‐SNP  combinations were also  evaluated,  their  results were not  shown 

since the 2‐SNP combination results provided a better explanation of the vitiligo risk. 

MB‐MDR results also provided 20 different epistatic interactions significantly asso‐

ciated with the disease (Supplementary Table S1). 

 

Figure 1. The best MDR v.3.0.2 interaction model for vitiligo risk is shown. The number of cases (left 

bars) and controls  (right bars) are  illustrated  for each genotype combination. The white cells are 

labeled as unknown, light gray cells are labeled as low risk, and dark gray cells are labeled as high 

risk. 

4. Discussion 

Despite the latest advances in vitiligo, the role of the simultaneous genetic composi‐

tion of HLA‐G, LILRB1, and LILRB2  in disease development  remains  to be elucidated. 

Once the inhibitory properties of HLA‐G depend on the interaction with its receptors [18], 

the present study has evaluated both univariate and multivariate associations with viti‐

ligo. The vitiligo pathogenesis has yet to be fully understood [42]. Several theories have 

been proposed to explain it, including the autoimmune, neural, biochemical, and genetic 

hypotheses. Although many of these factors may play essential roles in vitiligo pathogen‐

esis, at least for nonsegmental vitiligo, the autoimmune hypothesis is currently the most 

accepted [6,43], as vitiligo often has autoimmune comorbidities and often responds to im‐

munosuppressive  treatments  [44]. Furthermore, many of  the 50  loci have already been 

Figure 1. The best MDR v.3.0.2 interaction model for vitiligo risk is shown. The number of cases
(left bars) and controls (right bars) are illustrated for each genotype combination. The white cells are
labeled as unknown, light gray cells are labeled as low risk, and dark gray cells are labeled as high risk.

Although 3-SNP combinations were also evaluated, their results were not shown since
the 2-SNP combination results provided a better explanation of the vitiligo risk.

MB-MDR results also provided 20 different epistatic interactions significantly associ-
ated with the disease (Supplementary Table S1).

4. Discussion

Despite the latest advances in vitiligo, the role of the simultaneous genetic composition
of HLA-G, LILRB1, and LILRB2 in disease development remains to be elucidated. Once the
inhibitory properties of HLA-G depend on the interaction with its receptors [18], the present
study has evaluated both univariate and multivariate associations with vitiligo. The vitiligo
pathogenesis has yet to be fully understood [42]. Several theories have been proposed
to explain it, including the autoimmune, neural, biochemical, and genetic hypotheses.
Although many of these factors may play essential roles in vitiligo pathogenesis, at least for
nonsegmental vitiligo, the autoimmune hypothesis is currently the most accepted [6,43], as
vitiligo often has autoimmune comorbidities and often responds to immunosuppressive
treatments [44]. Furthermore, many of the 50 loci have already been associated with
nonsegmental vitiligo showing immunomodulatory functions, while only a few genes have
been linked to melanogenesis [45].

Among the associations already reported concerning this disease, those involving
genes from the human leukocyte antigen (HLA) region, such as HLA-A2, HLA-DR4, and
HLA-DR7, may be the leading cause of self-antigen recognition [45,46]. It has been sug-
gested that HLA-G, a key immunoregulatory molecule, may play a role in vitiligo sus-
ceptibility [19,47,48]. This hypothesis is further supported by frequent HLA-G association
with other autoimmune diseases, such as lupus erythematosus systemic [49,50], Crohn’s
disease [51,52], multiple sclerosis [53,54], rheumatoid arthritis [55,56], and pemphigus
vulgaris [57], along with HLA-G ectopic expression in skin pathologies [58,59].

HLA-G, an important nonclassical HLA-class Ib immunomodulatory molecule, plays
its roles by binding to inhibitory receptors, such as leukocyte Ig-like receptors (LILRs, also
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called LIR, Ig-like transcript (ILT), or CD85): LILRB1 (LIR1/LILRB1/CD85j) and LILRB2
(LIR2/LILRB2/CD85d), along with KIR2DL4 (killer cell Ig-like receptor 2DL4) [60].

It has been shown that LILRB1 and LILRB2 are preferential ligands for HLA-G com-
pared with classical MHCI proteins (HLA-A, HLA-B, HLA-C) once their affinity for the
molecule is three- to fourfold higher [16]. Furthermore, polymorphisms in these loci may
play a role in the LILR strength binding to MHC-I alleles [61]. However, no study has
evaluated the role of LILRB1 and LILRB2 polymorphisms in developing vitiligo or the
possible interactions between HLA-G and the genes encoding its receptors.

Accordingly, whether or not individual polymorphisms in HLA-G, LILRB1, and LILRB2
were associated with susceptibility to vitiligo and whether or not there were some epistatic
interactions between them were, therefore, investigated here. The association analysis of
these polymorphisms with vitiligo gave rise to some SNPs associated with the disease, in
either the additive (Table 1) or the dominant model (Table 2). Nevertheless, the studied
population’s genetic structure significantly influenced this outcome once just a few SNPs
remained associated after adjustment by ancestry. In contrast, others were only noticed
after this adjustment was considered (rs272423), which may reflect an effect of the admixed
nature of the Brazilian population [62], leading to false-positive associations with vitiligo.
Such impact of population structure on the association results was already predicted in a
previous study showing a strong influence of ancestry composition on the HLA-G haplotype
distribution in a healthy Brazilian population sample [30].

Among the dominant model test results, three SNPs were associated with vitiligo in
univariate analysis, even after adjustment by ancestry (Table 2). Two of them (rs6932888
and rs6932596) are in a complete LD one with each other (D’ = 1, r2 = 1), and the third
one (rs9380142) is located in 3′UTR and also shows a strong allelic association with the
first two SNPs (r2 = 0.9 in both cases). They thus represent a single association signal.
Considering the functional relevance of this 3′UTR variant, which has been previously
associated with vitiligo [19] as well as several pathological conditions [63–69], and whose
role in the HLA-G mRNA stability has been well established in vitro [63], we reinforce that
this SNP is likely to be the causal variant directly associated with vitiligo susceptibility. This
finding is consistent with the higher odds ratio and lower p-value observed for this SNP
compared with the other two variants. The fact that this association was identified only
under a dominant model agrees with a previous study suggesting that the rs9380142*G
allele may behave dominantly [70]. Interestingly, the +3187G allele is observed only in the
UTR-01 haplotype, which is associated with a higher production of HLA-G [71].

This study disclosed for the first time an association between rs272423 and vitiligo.
Although rs272423 corresponds to a silent polymorphism with no apparent impact on
the protein sequence, studies have shown evidence of the non-neutrality of synonymous
codons in functional contexts, such as in the transcription factor (TF) binding regulation,
leading to a change in gene expression levels [72,73]. The effect of this variant on TF binding
was evaluated using HaploReg v4.1, which predicted that rs272423 alters the binding motif
for the TFs ER alpha-a, LXR2, LXR3, NRSF, PLAG1, Rad21, and VDR3. Moreover, this SNP
significantly changed the LILRB1 gene expression in CEU-CHB-JPT lymphoblastoid cell
lines, p-value = 9.6 × 10−14 [74].

Since HLA-G physically interacts with LILRB1 and LILRB2 to play its immunomod-
ulatory role, the effect of one gene may only be perceived by considering the effects of
the others [75]. Therefore, we conducted a study to survey the nucleotide variation of
these three genes in the same set of individuals and explored the potential interactions of
the polymorphisms identified and their effects on the risk of vitiligo using MDR-based
methods specifically designed for the detection of epistasis [39].

The MDR method performs a data reduction strategy that classifies genotypes as
high- or low-risk groups, reducing the predictors from n to one dimension [36]. All
possible genotype combinations are tested, and the software reports the best model for
disease risk classification or the model showing maximum TBA and CVC values [76]. The
most significant model associated with vitiligo using MDR v.3.0.2 was a second-order
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combination between HLA-G rs9380142 and LILRB1 rs2114511, accurately classifying 65%
of tested individuals in 9 out of 10 validation intervals (Figure 1). According to GMDR
v.0.9 [40], the same second-order combination (rs9380142/rs2114511) previously identified
by MDR v.3.0.2 was selected as the best model for this disease (signal p-test = 0.0107),
allowing for accurately classifying 64% of the individuals in all 10 validation intervals.
Another extension to the MDR method is MB-MDR [41], which allows one to consider the
ancestry composition in the association test. Instead of selecting the best model, it provides
a set of combinations whose significance has been assessed by a permutation test. The
same SNP combination was again identified as the best model for the disease (permutation
p-value = 0.0130).

The first SNP rs9380142 in the epistatic interaction identified by all methods is located
at HLA-G 3′UTR, 4-bp upstream to the AUUUA pentameter, a motif related to mRNA
degradation. When the rs9380142+3187A allele is present, a shorter HLA-G mRNA half-
life in vitro is observed, possibly due to an adenine increase in this AU-rich motif [63].
Although not as extensively investigated as the 14 bp insertion/deletion (INDEL) and
+3142, +3187 was already evaluated for preeclampsia [63,67], septic shock [77], malaria [65],
leprosy [66], celiac disease [68], rheumatoid arthritis [70], schizophrenia [78], HTLV1 infec-
tion [69], bipolar disorder [79], epithelial ovarian cancer [80], and vitiligo [19]; it is observed
in the latter similar association pattern, which is expected once there is a sample overlap
between both studies.

The second SNP rs2114511 involved in the epistatic interaction corresponds to a
synonymous variant from the LILRB1 gene. Although no association involving this SNP
has been reported so far, according to HaploReg v.4.1, this site resembles a TF binding
motif activated in the T-lymphocyte subtypes, monocytes, B, NK, spleen, and GM12878
lymphoblastoid cells. The SNP rs2114511 is an expression quantitative trait locus (eQTL)
that regulates the LILRB1 expression [81] and that alters the AP2, CTCF, Roas2, and Zic4
binding motifs. Except for Roas2, they are all expressed in the skin (Human Protein Atlas
portal—http://www.proteinatlas.org (accessed on 1 December 2021)). The GTEx portal
(https://gtexportal.org/home/ (accessed on 1 December 2021)) indicates that the variant
rs2114511/C is associated with higher expression of LILRB1 in the lung. Lastly, rs2114511 is
a binding site for EBF transcription factor 1 (EBF1) in the B-cell-derived cell line (GM12878
lymphoblastoid cells; ENCODE Project Consortium, 2011).

EBF1 is essential for the development of B lymphocytes once it affects the activating
factor receptor (BAFF-R) and B-cell receptor (BCR)-dependent Akt pathways [82]. It has
been shown that variation in signaling intensity through the B-cell receptor (BCR), CD40R,
and BAFF could lead to immunological dysregulation and self-tolerance loss, besides
modulating the B cells’ destiny [83]. B-cell-activating factor (BAFF) is a tumor necrosis factor
(TNF) ligand family member. It stimulates the interleukin (IL-2) and interferon (INF)-γ
production in the CD4+ T cells and the peripheral blood mononuclear cell proliferation [84].
In agreement with the latter data, immunoglobulin G (IgG) and immunoglobulin M (IgM)
against melanocytes were found in 80% of vitiligo patients [85].

Despite the genetic variant usually associated with higher levels of HLA-G (rs9380142/G)
being present in the interaction, the second variant (rs2114511/G) is associated with lower
expression of LILRB1 [86]. In other words, it is no use to have the molecule (HLA-G) if
we do not have the receptor (LILRB1) once that immune response is reached from binding
between both molecules. These findings agree with a study that has observed a negative
correlation between HLA-G expression and vitiligo risk [87] and with the general idea that
a lower HLA-G expression or function would be correlated with autoimmunity.

Considering that de novo HLA-G expression at high levels could support an immuno-
suppressive response in pathological conditions, such as cancer and viral infections, and
the HLA-G downregulation expression could impair the HLA-G mediated control of the
immune response leading to autoimmunity [88], the correlation between higher HLA-G
and lower LILRB1 levels and vitiligo is here suggested as a hypothesis of a mechanism
associated with impaired control of immune response at the skin level.

http://www.proteinatlas.org
https://gtexportal.org/home/
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5. Conclusions

It may be concluded that two polymorphisms in HLA-G (rs9380142) and LILRB1
(rs272423) are independently associated with nonsegmental vitiligo in the Brazilian pop-
ulation after adjustment for ancestry. Moreover, a consistent second-order combination
involving HLA-G (rs9380142) and LILRB1 (rs2114511) was identified, indicating an epistatic
interaction role between HLA-G and LILRB1 alleles in vitiligo pathogenesis. Nonetheless,
the mechanism by which this combination affects the autoimmune response development
remains to be evaluated in further studies. Finally, some limitations of the study must be
indicated, such as the small vitiligo sample size, the larger proportion of females in the
vitiligo group, and the lack of studies supporting a direct link between our findings and
the disease development.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells12040630/s1, Table S1: Significant second-order interactions
identified by MB-MDR.
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