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Abstract: C-type lectin X (CTL-X) plays critical roles in immune defense, cell adhesion, and develop-
mental regulation. Here, a transmembrane CTL-X of Tribolium castaneum, TcCTL15, with multiple
domains was characterized. It was highly expressed in the early and late pupae and early adults
and was distributed in all examined tissues. In addition, its expression levels were significantly
induced after being challenged with pathogen-associated molecular patterns (PAMPs) and bacteria.
In vitro, the recombinant TcCTL15 could recognize bacteria through binding PAMPs and exhibit
agglutinating activity against a narrow range of bacteria in the presence of Ca2+. RNAi-mediated Tc-
CTL15-knockdown-larvae infected with Escherichia coli and Staphylococcus aureus showed less survival,
had activated immune signaling pathways, and induced the expression of antimicrobial peptide
genes. Moreover, silencing TcCTL15 caused eclosion defects by impairing ecdysone and crustacean
cardioactive peptide receptors (CCAPRs). Suppression of TcCTL15 in female adults led to defects
in ovary development and fecundity, accompanied by concomitant reductions in the mRNA levels
of vitellogenin (TcVg) and farnesol dehydrogenase (TcFDH). These findings imply that TcCTL15 has
extensive functions in developmental regulation and antibacterial immunity. Uncovering the function
of TcCTL15 will enrich the understanding of CTL-X in invertebrates. Its multiple biological functions
endow the potential to be an attractive target for pest control.
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1. Introduction

Insects lack an adaptive immune response and rely solely on a powerful innate immu-
nity to resist invading pathogens [1]. When pathogen invasion occurs, an innate immune
response is activated by a variety of pattern recognition receptors (PRRs), which can specif-
ically recognize non-self and bind to the evolutionarily conserved pathogen-associated
molecular patterns (PAMPs) on the surfaces of pathogens, triggering a series of extra-
cellular and intracellular signal cascade reactions, such as Toll-like receptors, immune
deficiency (IMD), and prophenoloxidase pathways, ultimately killing and eliminating
invasive pathogens [2]. To date, several types of PRRs corresponding to different PAMPs
have been investigated in various insect orders and found to participate in innate immunity,
including C-type lectins (CTLs), scavenger receptors, Toll-like receptors, and peptidoglycan-
recognition proteins [3,4].

CTLs belong to the lectin superfamily possessing one or more carbohydrate-recognition
domains (CRDs), which exist widely in many organisms, ranging from animals and plants
to viruses [3,5]. Based on their domain structure and phylogenetic relationships, CTLs can
be sorted into three different groups: CTL-S, which possesses only one CRD; IML, with two
CRDs; and CTL-X, with one CRD and additional conserved domains. In a short period of
evolutionary time, gene duplication and merging produced a diversity of members in the
IML group, whereas there were fewer changes in the CTL-S and CTL-X groups, implying
that they might have conserved functions [3]. During the past few years, many CTL-Ss in
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Tribolium castaneum Herbst have been identified and proven to participate in the immune
response [6–8]. To date, a few CTL-Xs were reported to execute immune functions. In
Aedes aegypti, CLSP2 (CTL-X) consists of a CRD and an elastase-like serine protease and is a
negative modulator of hemolymph melanization and antifungal immune responses [9,10].
Moreover, except for the CRD, CTL-X contains additional domains that can carry out
other effector functions [11]. In Drosophila melanogaster Meigen, furrowed (CTL-X) plays
important roles in the development of the eye and bristle [12,13]. Another CTL-X in D.
melanogaster, contactin, mediates cell adhesion and is required for the organization of
septate junctions and paracellular barrier function [14].

CTL15 (CTL-X) is a putative transmembrane protein that shows strong homology
to the selectin family in vertebrates [15] and has previously been identified in Drosophila,
named furrowed [12]. Selectins, members of vertebrate CTLs, are integral transmembrane
proteins consisting of a single CRD, an epidermal growth factor like domain, and a vari-
able number of complement control protein (CCP) domains in the extracellular region, a
transmembrane domain, and a short cytoplasmic tail in the extracellular region [12,15].
Furthermore, selectins have been found to mediate leukocytes and endothelia adhesion
via their CRD in the mammal immune system [16,17]. An intriguing finding was that
the second CCP domain of furrowed mediates direct homophilic adhesion and furrowed
mutants disrupt the development of sensory organs [13]. Selectin family members, as cell
adhesion molecules, can be involved in many developmental processes in Drosophila and
immune responses in vertebrates. The investigation of selectin function in model insects
will provide a useful approach to uncover whether invertebrate selectin participates in
innate immunity and some biological processes.

The red flour beetle, T. castaneum, has become one of the most destructive pests
of stored commodities such as cereals and grains in tropical and subtropical areas and
causes quantitative losses of stored products [18,19]. Previously, a total of 17 CTLs were
characterized in this Coleoptera model species, and 6 (CTL11, CTL12, CTL14, CTL15,
CTL16, and CTL17) of the 17 CTLs were grouped into the CTL-X group [20]. Among them,
CTL14, CTL15, CTL16, and CTL17 contain a single transmembrane domain, whereas CTL11
and CTL12 lack transmembrane domains. In our recent work, TcCTL12 was involved
in innate immunity, the development of epidermis and muscle, and reproduction [21].
However, transmembrane CTL-Xs have not been well studied in T. castaneum. Additionally,
it was reported that many membrane proteins play important roles in various biological
processes and are considered drug and pesticide targets [22,23]. In this regard, TcCTL15 was
representatively selected to study the multiple potential roles of transmembrane CTL-Xs in
T. castaneum.

2. Materials and Methods
2.1. Insects

The Georgia-1 (GA-1) strain of T. castaneum was reared in the laboratory as previously
described [7] on an artificial diet consisting of wheat flour with 5 % (v/v) brewer’s yeasts
under constant conditions of 30 ◦C and 40 % relative humidity with a 14 h light/10 h dark
photoperiod in a climatic chamber. To collect synchronous eggs, all the female and male
adults were placed into jars, allowed to lay eggs, and then removed 12 h later.

2.2. Bioinformatic Analysis of TcCTL15

Homology analyses were performed using the BLASTX tool in Genbank from the
National Center for Biotechnology Information (NCBI). The MEGA 6.0 software (https:
//www.megasoftware.net/ accessed on 27 January 2023) was utilized to align multiple
protein sequences of TcCTL15 and its homologous CTLs. The alignment was depicted
with ESPript 3.0 (https://espript.ibcp.fr/ESPript/cgi-bin/ESPript.cgi accessed on 27 Jan-
uary 2023). The presence and position of the signal peptide were determined using
the Signalp5.0 program (https://services.healthtech.dtu.dk/sevice.php?SignalP-5.0 ac-
cessed on 9 February 2023). The Simple Modular Architecture Research Tool (SMART)
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(http://smart.embl-heidelberg.de/ accessed on 27 January 2023) server was applied to
predict the motif features of TcCTL15. The isoelectric point (PI) and molecular weight
(MW) of TcCTL15 were determined using the ExPASy online tool Compute pI/Mw (https:
//web.expasy.org/compute_pi/ accessed on 27 January 2023).

2.3. RNA Extraction, cDNA Synthesis, and Quantitative Real-Time PCR (qRT-PCR)

To manifest the tissue distribution, samples were collected from the integument, fat
bodies, central nervous system (CNS, including the brain, thoracic ganglia, and ventral
nerve cord), gut, and hemocytes of 15-day-old larvae. To detect the stage-specific ex-
pression, different samples were randomly selected from multiple individuals at various
developmental stages: early eggs (EE, 1-day-old eggs), late eggs (LE, 3-day-old eggs), early
larvae (EL, 1-day-old larvae), late larvae (LL, 20-day-old larvae), early pupae (EP, 1-day-old
pupae), late pupae (LP, 5-day-old pupae), early adults (EA, 1-day-old adults), and late
adults (LA, 10-day-old adults). Three biological replicates were performed for each sample.

Total RNAs from whole T. castaneum bodies or different tissues were extracted using
RNAiso™ Plus (Takara, Dalian, China). The concentration and integrity of RNA were
determined by measuring the absorbance at 260 nm/280 nm using a spectrophotometer
(Thermo Fisher Scientific, Wilmington, DE, USA) and 1% agarose gel electrophoresis,
respectively. HiScript II Reverse Transcriptase (Vazyme, Nanjing, China) was used to
reverse-transcribe first-strand cDNA using 500 ng RNA samples.

qRT-PCR was used to detect the expression levels of target genes using SYBR Green
Master Mix (Vazyme, Nanjing, China). The primer sequences used for qRT-PCR are
provided in Table S1. qRT-PCR was performed in triplicate for each biological sample using
the StepOnePlus Real-Time PCR System (Applied Biosystems, Foster City, CA, USA) based
on our previous method [21]. The transcript levels of target genes were normalized against
T. castaneum ribosomal protein S3 (RPS3) and quantified using the 2−∆∆CT method [24]. All
experiments were performed with at least three biological replications.

2.4. Immune Challenges

To investigate the changes in TcCTL15 transcript levels upon immune challenge,
each larva was injected with 200 nL of injection buffer (IB, 373 g/L KCl and 0.038 g/L
Na3PO4 12H2O, pH 7.0) containing bacteria (Staphylococcus aureus Rosenbach
(approximately 7.0× 104 cells) or Escherichia coli Migula (approximately 7.8 × 104 cells))
or PAMPs (lipopolysaccharides (LPS) or peptidoglycan (PGN), 0.08 mg/mL), whereas
the larvae were injected individually with 200 nL of IB as the control group. After
injection, all larvae were cultured in the same conditions mentioned above. At 12, 24,
36, 48, 60, and 72 h post-challenge, three surviving individuals were randomly selected
for RNA extraction and cDNA synthesis. Subsequently, qRT-PCR was employed to de-
termine TcCTL15 expression profiles. Each sample included three biological replicates.

2.5. Recombinant Expression, Purification, and Western Blot Analysis

A 444 bp DNA fragment coding the TcCTL15-CRD domain was amplified using
the primers listed in Table S1. After that, the amplicons were digested with EcoR I
and Xho I and then ligated to the pET-28a expression vector (Novagen, Darmstadt,
Germany). The pET-28a-TcCTL15 construct was transformed into E. coli strain BL21
(DE3) competent cells (TransGen, Beijing, China) via induction with a final concen-
tration of 0.5 mM isopropyl-β-D-thiogalactopyranoside (IPTG) at 37 ◦C for 4 h. The
recombinant TcCTL15 (rTcCTL15) was expressed as inclusion bodies and subjected to
denaturation, refolding, and purification according to a method described earlier [7].
The purified rTcCTL15 fused with a His-tag was checked using 12.5% sodium dodecyl
sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) and Western blotting with
anti-His mouse polyclonal antibodies (TransGen, Beijing, China). The successfully pu-
rified rTcCTL15 was quantified using the total protein quantitative assay kit (Nanjing
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Jiancheng Bioengineering Institute, Nanjing, China) with bovine serum albumin (BSA)
as a standard and was then ready for the binding and agglutination assays.

2.6. Microorganism Binding and Agglutination Assays

Gram-positive bacteria (G+) (S. aureus, Bacillus subtilis Ehrenberg, and Bacillus
thuringiensis Berliner) and Gram-negative bacteria (G−) (E. coli and Pseudomonas aerug-
inosa Schroeter) were used for the binding assay. Microbes in the mid-logarithmic
phase were collected via centrifugation at 12,000× g for 1 min, washed three times with
sterilized Tris-buffered saline (TBS), and then resuspended in TBS. The purified rTc-
CTL15 (600 µg/mL) was mixed with a microbe suspension in the presence or absence of
10 mM CaCl2 with gentle rotation at 28 ◦C for 2 h. Then, the bacteria were pelleted
via centrifugation and washed with TBS five times. The microorganism pellets were
eluted with a 7% SDS solution for Western blot analysis.

As mentioned above, five microorganisms were also used to evaluate the ag-
glutination activity of rTcCTL15. An agglutination assay was performed as previ-
ously reported [25]. Bacteria cultured in an LB medium overnight were harvested
via centrifugation, washed three times with TBS, resuspended, and diluted in TBS at
2.0 × 108 cells/mL. Subsequently, the purified rTcCTL15 (200 µg/mL) and recombinant
methyl-CpG-binding domain (rTcMBD) in T. castaneum (as a negative control) were
incubated with a microorganism suspension in the presence or absence of 10 mM CaCl2
for 1 h at 28 ◦C. The agglutination reactions were observed and photographed under a
fluorescent microscope (Nikon, Shanghai, China).

2.7. Polysaccharide-Binding Assay

The binding activity of rTcCTL15 to PAMPs was examined using an enzyme-linked
immunosorbent assay (ELISA) according to previous reports [8]. Briefly,
50 µL of LPS or PGN (80 µg/mL) was coated on the wells of a 96-well microplate at
37 ◦C overnight and then evaporated at 60 ◦C for 30 min. After blocking with BSA
(100 µL/well of 1 mg/mL) in TBS for 2 h at 37 ◦C, 100 µL serial concentrations of
rTcCTL15 (0–70 µg/mL) were added to each well and incubated at room temperature
for 3 h. The plate was washed with TBS, and 100 µL/well of an anti-His mouse poly-
clonal antibody (TransGen, Beijing, China) diluted to 1:2000 with TBS was added and
incubated at 37 ◦C for 1 h. The plate was rewashed with TBS, and 100 µL/well of a goat
anti-mouse IgG horseradish peroxidase (HRP) conjugate (TransGen, Beijing, China) di-
luted to 1:5000 with TBS was added and incubated at 37 ◦C for 1 h. After washing with
TBS, 100 µL/well of a soluble 3,3′,5,5′-tetramethylbenzidine (TMB) solution (Solarbio,
Beijing, China) was added and incubated at 28 ◦C for 10 min under darkness and then
stopped with 100 µL/well of 2 mol L−1 H2SO4. After the termination of the reaction,
an automatic enzyme-linked immunosorbent assay reader (BioTek, Winosky, VT, USA)
was utilized to measure the absorbance at 450 nm. Each binding assay was repeated
three times.

2.8. Double-Stranded RNA Synthesis and RNAi Assay

To synthesize double-stranded RNA (dsRNA), DNA templates of TcCTL15 and
TcVer were amplified using a T7 promoter sequence at the 5′-end-linked primers. The
PCR products (TcCTL15 (490 bp) and TcVer (609 bp)) were purified and were utilized to
synthesize dsRNA in vitro using the TranscriptAidTM T7 High Yield Transcription Kit
(Thermo Fisher Scientific, Shanghai, China). After synthesis, agarose gel electrophore-
sis was used to verify the quality and size of the dsRNA. Each dsRNA was quantified
with spectrophotometry and diluted with diethylpyrocarbonate-treated water at an
equal concentration of 2 µg/µL. The same amount of dsTcVer for the specific visible
phenotype in the eyes was used as a control [26].

For the dsRNA-dependent knockdown experiment, a total of 200 ng of the
dsTcCTL15 or dsTcVer was injected into the hemocoels of each larva using an Inject-
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Man 4 (Eppendorf, Hamburg, Germany). On day 3 post-injection, three individuals
were randomly collected from the different experimental groups for RNA extraction
and cDNA synthesis. The efficiency of dsRNA-mediated gene silencing was further
confirmed using qRT-PCR. To study the effect of TcCTL15 on reproduction, dsRNA
was injected into 5-day-old female and male pupae. Each microinjected pupa that
developed to the adult stage was individually matched with a pupa with a different
sex and then transferred into a glass bottle. The total number of eggs was counted
and calculated for each adult pair for three consecutive days after mating. Meanwhile,
to explore the roles of TcCTL15 in growth and development, dsTcCTL15 or dsTcVer
were injected into the 12-day-old larvae and 1-day-old pupae. In addition, to evaluate
the larval survival rate after TcCTL15 knockdown followed by bacterial infection, the
TcCTL15-deficient or TcVer-deficient larvae were injected with E. coli or S. aureus. The
number of dead individuals was counted every 24 h for the next seven days.

2.9. Expression Profiling of Transcription Factors and AMP Genes

To investigate the potential function of TcCTL15 in regulating the expression of
downstream immune-related genes, the dsTcCTL15-injected larvae were challenged
with E. coli or S. aureus. In the RNAi following bacterial injection, qRT-PCR was
used to determine the mRNA levels of nine AMP genes and four transcription factor
genes. The primers used for the qRT-PCR analysis of these immune genes are shown
in Table S1.

2.10. Statistical Analysis

All analyses were carried out using GraphPad Prism v.8.3 (GraphPad Software, Inc.,
San Diego, CA, USA), and data are expressed as means ± SDs of triplicate experiments.
The statistical significance between treatments was assessed using a one-way ANOVA
followed by Tukey’s honestly significant difference (HSD) test. Differences between the
means of treatment and control groups were compared using Student’s t-test for unpaired
samples. Statistical significance was set at p ≤ 0.05.

3. Results
3.1. Molecular Characteristics and Bioinformatics Analysis of TcCTL15

In the T. castaneum genome database, the gene encoding TcCTL15 was annotated as
TC030754 and mapped to chromosome 3 (LG3). The 3336-base-pair open reading frame
(ORF) of TcCTL15 encodes a single transmembrane protein with 1111 amino acid residues,
a predicted molecular mass of 122 kDa, and an isoelectric point (pI) of 5.36. The protein
domain analysis indicated that TcCTL15 had one coagulation factor 5/8 C-terminal domain,
eleven CCP domains, one canonical CRD with a theoretical pI of 7.77, and a transmembrane
region, whereas the signal peptide was absent. In addition, a WND (Trp-Asn-Asp) motif
existed in the CRD of TcCTL15 (Supplementary Figure S1).

The alignment of TcCTL15 shared 80.4%, 71.0%, 66.6%, 64.4%, 59.6%, and 54.5% iden-
tities with those of Aglsushi (Anoplophora glabripennis, XP_018565850.1), Znsushi (Zooter-
mopsis nevadensis, XP_021932272.1), Nlsushi (Nilaparvata lugens, XP_039286815.1), Amsushi
(Apis mellifera, XP_006559048.2), Bmsushi (Bombyx mori, XP_004932837.1), and Dmfurrowed
(D. melanogaster, NP_001285146.1), respectively. An amino acid sequence alignment of
TcCTL15 with homologous CTLs from other species indicated that they all have a strictly
conserved CRD domain, a WND motif, and six highly conserved cysteine residues that
may form disulfide bonds and may be essential for the stability of structure folding and
function in their CRD (Supplementary Figure S2). These results suggest that CTL15 evolved
conservatively in different insects.

3.2. Spatiotemporal Profiles and Induced Expression of TcCTL15

To better investigate the characteristics of TcCTL15, its expression patterns were an-
alyzed in different stages and larval tissues using qRT-PCR. The results revealed that
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TcCTL15 was expressed at all examined developmental stages and was especially highly
expressed in the early pupae, late pupae, and early adults (Figure 1A). Moreover, TcCTL15
was expressed in multiple tested tissues of 15-day-old larvae, with the greatest abun-
dance being localized to the integument, followed by the CNS, fat bodies, and hemocytes
(Figure 1B). Figure 2 shows the time-course expression profiles of TcCTL15 after injections
of PAMPs or bacteria. The TcCTL15 mRNA level was significantly up-regulated at 12 and
24 h and at 72 h post-infection with LPS and PGN, respectively (Figure 2A,B). The mRNA
abundance of TcCTL15 was significantly increased at 60 and 24 h after infection with E. coil
and S. aureus, respectively (Figure 2C,D). To analyze the immune role of TcCTL15 in vivo,
we knocked down the TcCTL15 expression using RNAi following bacterial infection and
assessed the survival rate relative to the control. TcCTL15-deficient larvae infected with
E. coli or S. aureus showed less survival than TcVer-deficient larvae infected with E. coli or
S. aureus (Figure 2E). These results indicate that TcCTL15 modulates immune activation
in T. castaneum.
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Figure 1. The expression profiles of TcCTL15 were determined using qRT-PCR in eight stages and
different tissues from T. castaneum. (A) The expression pattern of TcCTL15 in eight developmental
stages. (B) The tissue distribution of TcCTL15 in CNS, fat bodies, gut, integument, and hemocytes
from 15-day-old larvae. Transcript levels were normalized using RPS3 and are shown as means± SDs
from three biological replicates. The different lowercase letters above each bar represent statistically
significant differences at the 0.05 level and were analyzed using a one-way ANOVA followed by
Tukey’s test.
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Figure 2. Expression profile analysis of TcCTL15 under immune challenges. (A,B) qRT-PCR was
used to detect the time-course of TcCTL15 expression after injections of LPS (A) and PGN (B).
(C,D) qRT-PCR was used to detect the time-course of expression of TcCTL15 after injections of E. coil
(C) and S. aureus (D). Fifteen-day-old larvae were infected with LPS (A), PGN (B), E. coli (C), S. aureus
(D), or sterile IB (as a control). (E) The survival rates of TcCTL15-deficient larvae infected with E. coil
and S. aureus. TcVer-deficient larvae infected with E. coil and S. aureus were used as a control. Data
were normalized against RPS3 and are shown as means ± SDs. The asterisks above the bars indicate
significant differences. Differences were calculated using Student’s t-test for unpaired samples
(* p < 0.05; ** p < 0.01; *** p < 0.001).

3.3. rTcCTL15 Binds to and Agglutinates Bacteria

To further elucidate the role of TcCTL15 in antibacterial immunity, the recombinant
plasmid pET-28a-TcCTL15 was expressed using an E. coli expression system. After IPTG
induction, rTcCTL15 was successfully expressed as inclusion bodies (Figure 3A). Then,
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rTcCTL15 was purified using denaturation and renaturation and Ni2+ affinity chromatog-
raphy. The SDS-PAGE and Western blotting results confirmed that purified rTcCTL15
migrated as a single distinct band (Figure 3A,B), showing that rTcCTL15 was successfully
purified. Then, the potential binding to various bacteria of rTcCTL15 was analyzed. The
Western blotting results revealed that rTcCTL15 could directly bind to all the tested bacteria
in the presence of CaCl2, while no binding activity was detected in the absence of CaCl2
(Figure 4A). To clarify whether the microbial binding ability of rTcCTL15 was mediated by
cell surface PAMPs, we then examined the potential binding of rTcCTL15 to two typical
PAMPs (LPS and PGN) using an ELISA assay. The results showed that rTcCTL15 could
bind to these ligands in a dose-dependent manner (Figure 4B). These results suggest that
TcCTL15 is capable of binding to various bacteria by recognizing and interacting with their
cell surface PAMPs.

The agglutination activity of rTcCTL15 was detected via incubation with five mi-
croorganisms. In the presence of Ca2+, rTcCTL15 agglutinated the G+ S. aureus and B.
thuringiensis and the G- E. coli and P. aeruginosa but not the G- B. subtilis (Figure 4C). No-
tably, the agglutinating activity was completely lost in the absence of Ca2+ and in the
rTcMBD group (Figure 4C), which demonstrated that TcCTL15 is a Ca2+-dependent C-type
lectin. Based on these results, we concluded that TcCTL15 protects T. castaneum against
pathogens via agglutinating pathogens.
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positions of standard proteins are marked on the left. Lane M, standard protein marker; lane 1, soluble
protein of E. coli BL21 (DE3) with pET-28a after induction; lane 2, precipitated protein of E. coli BL21
(DE3) with pET-28a after induction; lane 3, soluble protein of E. coli BL21 (DE3) with pET-28a-TcCTL15
construct after induction; lane 4, precipitated protein from E. coli BL21 (DE3) with pET-28a-TcCTL15
construct after induction; lane 5, highly purified rTcCTL15 protein; lane 6, Western blot analysis of
purified rTcCTL15.
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Figure 4. Binding and agglutination activities of rTcCTL15. (A) Western blotting was used to
detect the binding activities of rTcCTL15 to five microorganisms (the G+ bacteria S. aureus, B. sub-
tilis, and B. thuringiensis and the G- bacteria E. coli and P. aeruginosa). (B) ELISA was used to
analyze the binding activities of rTcCTL15 to LPS (left) and PGN (right). The results are shown as
means± SDs from three replicates. (C) Agglutination activities of rTcCTL15 with either the absence or
presence of Ca2+. Purified rTcMBD was used as a negative control protein. The arrow points refer to
agglutination reactions.
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3.4. Involvement of TcCTL15 in Regulating the Expression of Transcription Factors and AMP Genes

To address whether TcCTL15 regulates the expression of transcription factors and AMP
genes during bacterial infection, S. aureus or E. coli infections were performed at 3 d after
dsTcCTL15 or dsTcVer injections. The 12-day-old larvae were, respectively, injected with
equal volumes of dsTcCTL15 or dsTcVer. After 3 d, 15-day-old larvae were infected with
E. coli or S. aureus, respectively. The mRNA abundances of transcription factors and AMP
genes were assessed using qRT-PCR at 24 h after the injection of E. coli or S. aureus. The
dsTcVer + E. coli and dsTcVer + S. aureus groups were used as control groups. The results
revealed that TcCTL15 was dramatically down-regulated post-dsRNA-treatment following
an E. coli or S. aureus challenge, and the RNAi efficiencies (4 d after dsRNA injection) were
71.4% and 89.5%, respectively (Figure 5A,D), compared with those of dsTcVer injections.
Moreover, compared with the control beetles (dsTcVer + E. coli), transcription factors (Rel
and Stat) and AMPs, including attacin2 (att2), attacin3 (att3), defensin3 (def3), cecropin2
(cecr2), and cecropin3 (cecr3), were markedly down-regulated in the TcCTL15-silenced larvae
challenged with E. coli (Figure 5B,C). Meanwhile, the expression levels of transcription
factors (Dif1, Rel, and Stat) and AMPs, including attacin1 (att1), att2, defensin1 (def1), defensin2
(def2), and def3, were significantly decreased in the TcCTL15-silenced larvae challenged
with S. aureus (Figure 5E,F). All the above results indicate that TcCTL15 could be involved
in the beetle’s antibacterial immune responses by coordinating the gene expression of
transcription factors and AMPs.
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Figure 5. Transcription factor and AMP gene expression upon challenge with E. coli or S. aureus after
successful RNAi-mediated knockdown of TcCTL15. (A,D) RNAi efficiencies after dsRNA injection
followed by E. coli (A) or S. aureus (D) challenge. (B,E) The expression profiling of transcription factor
genes post-dsRNA-treatment following E. coli (B) and S. aureus (E) injections. (C,F) The expression
profiling of AMP genes post-dsRNA-treatment followed by E. coli (C) and S. aureus (F) challenge. The
bars represent means ± SDs. Each experiment was repeated at least in triplicate. The asterisks denote
significant differences from the control groups based on t-tests for unpaired samples (* p < 0.05 and
** p < 0.01).
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3.5. TcCTL15 Modulates Eclosion

To determine the potential functions of TcCTL15, we injected dsTcCTL15 or dsTcVer
into the hemocoel of 1-day-old pupae. The RNAi efficiency of TcCTL15 was confirmed
using qRT-PCR, and TcCTL15 transcripts were down-regulated to approximately 28% after
72 h of dsTcCTL15 relative to the expression after dsTcVer injection (Figure 6B), showing
that the knockdown of TcCTL15 was successful. Visible eclosion defects were observed
after TcCTL15 knockdown (Figure 6A). TcCTL15-deficient pupae had reduced viability, with
46% pupa eclosing deficiency and death in comparison to the dsTcVer group (Figure 6C).
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Figure 6. Effect of injecting dsTcCTL15 in early pupae on transcript levels and metamorphosis.
(A) Observations of RNAi phenotypes. Scale bar represents 1 mm. (B) The RNAi efficiency was
detected using qRT-PCR after the injection of dsRNA at 72 h. (C) The percent of individuals with
abnormal phenotypes and mortality after injecting dsRNA. At least 36 individuals were observed and
counted in each group, with three biological replicates. The bars are expressed as means ± SDs. The
asterisks denote a significant difference from the control. Differences were calculated using Student’s
t-test for unpaired samples (*** p < 0.001).

It is well-known that insect metamorphosis and development are mainly controlled
by neuropeptides, ecdysone (20E), and juvenile hormone (JH) [27]. To investigate the
mechanisms of suppressed metamorphosis, we detected the mRNA levels of genes involved
in the synthesis and metabolism of 20E and JH and the regulation of eclosion after TcCTL15
silencing. The results showed that the expression of spook, shadow, and shade, which are
involved in the 20E synthesis pathway, was down-regulated in TcCTL15-deficient pupae,
while there was no significant effect on the expression levels of E74, Broad complex (Br-C),
and the fushi tarazu factor-1 (Ftz-F1) (Figure 7A). The expression level of the key enzyme
gene in the JH synthesis pathway, JH acid methyltransferase (JHAMT), exhibited no obvious
changes between TcCTL15-deficient pupae and TcVer-deficient pupae (Figure 7B). The
receptors of eclosion-related neuropeptides, crustacean cardioactive peptide receptors
(CCAPR1 and CCAPR2), were significantly decreased after TcCTL15 knockdown, whereas
Rickets, encoding the bursicon receptor, did not change (Figure 7B). These results indicate
that the eclosion failure caused by TcCTL15 knockdown is mediated by ecdysone synthesis
and eclosion-related regulatory genes. Altogether, these results indicate that TcCTL15 is
necessary for the viability of T. castaneum and is involved in eclosion.
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Figure 7. Effect of TcCTL15 knockdown on the transcript levels of genes involved in the synthesis
and metabolism of ecdysone and JH, and eclosion regulation. (A) The transcript levels of ecdysone
synthesis and metabolism related genes after injecting dsTcCTL15 in 1-day-old pupae. (B) The
transcript levels of the key genes of JH biosynthesis and eclosion regulation after injecting dsTcCTL15
in 1-day-old pupae. The bars are expressed as means ± SDs. The asterisks denote significant
differences from the controls. Differences were calculated using Student’s t-test for unpaired samples
(* p < 0.05 and ** p < 0.01).

3.6. Knocking down TcCTL15 Affects Female Egg-Laying and Ovary and Testis Development

To determine the function of TcCTL15 in T. castaneum reproduction, RNAi was used
to knock down the expression of TcCTL15 in 5-day-old pupae. When compared with the
wildtype (WT), the silencing of TcCTL15 resulted in a dramatic reduction in egg numbers
(Figure 8B). dsTcCTL15 beetles laid an average of about 4.76 ± 0.57 eggs/female during
3 d of mating, while about 37.17 ± 2.18 eggs were produced by the WT females. When the
mating experiments were performed on WT females and dsTcCTL15 males, the females laid
a normal number of eggs. In contrast, dsTcCTL15 females crossed with WT males laid fewer
eggs (Figure 8B). Further observation of the ovary and testis development status revealed
that ovaries were much smaller in the dsTcCTL15-injected females than in dsTcVer-injected
females of the same age (Figure 8D), whereas the testis morphology group exhibited no
obvious differences between the dsTcCL15 and dsTcVer-injected groups (Figure 8E).

To investigate the mechanisms of TcCTL15 in reproduction, we examined the expres-
sion of genes involved in the reproduction-related gene TcVg, JH-biosynthesis-related
genes such as TcJHAMT and TcFDH, and the transcription factor TcFOXO, which has
been reported to act in the regulation of Vg expression and JH signaling [28]. As shown
in Figure 8C, the expression of TcVg and TcFDH was significantly down-regulated in
dsTcCTL15-injected females, whereas the levels of TcJHAMT and TcFOXO transcripts exhib-
ited no obvious changes between the dsTcCTL15 and dsTcVer groups. Taken together, these
results indicate that the knockdown of TcCTL15 resulted in a reduction in TcVg and TcFDH
at the mRNA level, caused female reproductive capacity and ovary development defects,
and finally led to impaired fecundity.
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Figure 8. Effect of TcCTL15 silencing on female fecundity and ovary development. (A) The RNAi
efficiency of TcCTL15 after injection of dsRNA at 72 h. (B) Effect of TcCTL15 silencing on female
fecundity. (C) The relative mRNA levels of reproduction-related genes in dsTcCTL15-injected females
compared with dsTcVer-injected females. The asterisks denote significant differences from the control
based on t-tests for unpaired samples (*** p < 0.001). (D,E) The effect of TcCTL15 knockdown on
ovary (D) and testis (E) morphology. At least fifteen individuals were dissected and observed for
each group. Pupae injected with dsTcVer served as a negative control. The scale bar represents 1 mm.

4. Discussion

In this study, TcCTL15 was demonstrated to be a member of the CTL-X group and the
sole selectin in the T. castaneum genome, which was homologous to that of D. melanogaster
furrowed. TcCTL15 contained multiple domains, such as CCP, CRD, and a single trans-
membrane region, which were common to the structure of selectin family members [12,15].
TcCTL15, as a PRR, could recognize, bind to, and agglutinate bacteria using its CRD and
activate immune signaling pathways to induce the production of AMPs, thus modulating
insect innate immunity, which was consistent with the functions of TcCTL12 [21], indicating
that TcCTL15 could also participate in various immune responses. In addition, CTL-Xs
were reported to be involved in developmental regulation in insects [5]. A recent study
showed that TcCTL12 was required for the metamorphosis, reproduction, and muscle
remodeling of T. castaneum [21]. Here, TcCTL15 could regulate essential physiological pro-
cesses, including metamorphosis and reproduction, implying that TcCTL15 could also be
involved in numerous developmental processes. Above all, the major functions of TcCTL15
in innate immunity and development in T. castaneum were in accordance with vertebrate
selectins involved in immunity and furrowed (required for growth and development in
D. melanogaster), which might be a consequence of analogous functional evolution.

It is known that CTLs bind to carbohydrates on the surfaces of microbes in a Ca2+-
dependent manner through characteristic motifs located in the CRD, such as EPN (Glu–
Pro–Asn), QPD (Gln–Pro–Asp), and WND [29,30]. EPN and QPD are specific for mannose
and galactose, respectively, and WND can increase the affinity and specificity of CTLs
binding to different carbohydrates [29,30]. The carbohydrate-binding region of the TcCTL15
lectin domain (QPN) was a hybrid between QPD and EPN, suggesting that TcCTL15 might
recognize both galactose and mannose and bind to more potential carbohydrate ligands.
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Moreover, the TcCTL15 lectin domain also contained the WND motif, indicating that
the multi-motif of TcCTL15 might possess more sites involved in PAMP recognition and
binding against various pathogens in T. castaneum. In this study, rTcCTL15 was able to bind
microbial cell wall components (LPS and PGN) and exhibited strong binding activities to
all the tested microbes in the presence of Ca2+, suggesting that TcCTL15 could serve as a
PRR for the recognition and binding of various foreign pathogens.

In invertebrates, agglutination activity is a principal feature of lectin and a crucial
innate immune method of attacking various invading pathogens [31,32]. In the case of
rTcCTL15, it displayed agglutinating activity against G+ S. aureus and B. thuringiensis and
G− E. coli and P. aeruginosa but not against G− B. subtilis (Figure 4C). As stated above,
rTcCTL15 could bind to various microbes and different PAMPs, but it did not possess a
wide range of agglutination against all tested microorganisms, suggesting that TcCTL15
was probably a selective CTL with a relatively narrow range of agglutinating activity. It
is highly possible that the mechanisms of binding and agglutinating are different and
that the binding was the initial step of immunity, while agglutination might rely on other
factors [33,34]. A similar microbial agglutination activity has been reported in CsCTL1
from the tongue sole Cynoglossus semilaevis and CaNTC from the crucian carp Carassius
auratus [35,36]. It was suggested that TcCTL15 could perform an antimicrobial activity by
agglutinating bacteria.

It has been reported that most CTLs are tissue-specific. Hemocytes are the major
tissue of hemolymph lectins and express a variety of immune-related genes to improve
immune responses [37–41]. TcCTL15 was expressed in many immune-related tissues and
was mainly detectable in the integument. Our results were consistent with those from
TcCTL6 of T. castaneum and BmCTL-S2 of Bombyx mori [7,42]. As an important immune
tissue of insects, the integument plays a key role in the immune system by supporting the
epithelial barrier against the invasion of microorganisms [43]. The tissue expression profile
of TcCTL15 indicated that it might participate in various immune responses. Moreover,
TcCTL15 transcripts could be significantly up-regulated after LPS, PGN, E. coli, and S.
aureus challenges (Figure 2), showing that TcCTL15 could be effectively induced by PAMPs
and pathogen stimulation and that it might be involved in defending against pathogens.
Similar results were also reported in other CTLs of T. castaneum [7,8,21,25]. In addition, the
expression of TcCTL15 could also be down-regulated by PAMPs and bacterial treatments
(Figure 2), which might indicate that bacteria might resist host immune attacks via decreas-
ing expression of TcCTL15 [44]. These data suggest that the expression pattern of TcCTL15
was not fixed and was complex against different immune challenges, thus demonstrating
that it also exerted distinct immune functions.

Most studies of CTLs have focused on their roles in regulating AMPs, which are a large
group of short peptides that directly kill or clear infected bacteria, fungi, and viruses [45,46].
For instance, EsLecH in the crab Eriocheir sinensis could regulate AMP expression via JNK
phosphorylation in response to bacterial invasion [46]. Similarly, a novel chimeric CTL
of the shrimp Marsupenaeus japonicus could induce the expression of selected AMPs via
the JAK/STAT pathway [11]. In the present study, the E. coli challenge could decrease
transcription factor (Rel and Stat) and AMP (att2, att3, def3, cecr2, and cecr3) expression
in TcCTL15-silenced larvae. Meanwhile, the S. aureus challenge decreased the expression
of transcription factors (Dif1, Rel, and Stat) and AMPs (att1, att2, def1, def2, and def3).
Knockdown of TcCTL15 followed by bacterial infection resulted in a decline in transcription
factors and AMP transcripts, which might explain why injections of E. coli or S. aureus
into TcCTL15-silenced larvae caused their mortality to increase significantly (Figure 2E).
Our data demonstrated that TcCTL15 might show antimicrobial activities by positively
activating classical immune pathways to selectively induce the expression of AMPs in
response to E. coli and S. aureus challenges.

To some extent, the developmental profiles of the genes reflect their functional im-
portance. For example, TcCTL12 was highly expressed in the late pupae and early adults,
implying that it was crucial for the development of epidermis, muscle, and reproduc-
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tion [21]. Moreover, the high mRNA level of TcCTL15 was detected in the early and late
pupae and early adults (Figure 1A), indicating that it might be involved in the metamorpho-
sis and development of T. castaneum. RNAi of TcCTL15 in 1- and 5-day-old pupae caused
suppressed metamorphosis and reproduction, respectively. It is known that insect CTL-Xs
are mainly associated with cell adhesion and developmental regulation [5]. However, how
CTL-Xs are involved in developmental regulation still needs to be explored.

Insect metamorphosis is mainly controlled by 20E and JH [47]. The ecdysone synthesis
genes spook, shadow, and shade were significantly decreased in dsTcCTL15-injected beetles.
A reduction in the expression of these genes will hinder the synthesis of ecdysone, which
will have a fatal impact on the growth and development of insects [48]. The primary
response genes of 20E, such as E74, Br-C, and Ftz-F1, have important regulatory roles
in insect metamorphosis and development [49–51]. However, their mRNA abundance
was not significantly affected between the dsTcCTL15-injected beetles and dsTcVer-injected
beetles (Figure 7A). Hence, we demonstrated that the death from eclosion deficiency in
TcCTL15-silenced pupae might have been largely due to the suppressed ecdysone synthesis.
Insect metamorphosis processes are not only affected by 20E and JH but are also regulated
by crustacean cardioactive peptide, bursicon, and their receptors [52]. A knockdown
of CCAPR2 and Rickets showed eclosion arrest in T. castaneum [52]. The phenomenon
of eclosion defect was also observed in dsTcCTL15-injected individuals. Additionally,
CCAPR1 and CCAPR2 were down-regulated, which indicates that the knockdown of
TcCTL15 affected the expression of genes related to eclosion regulation, leading to eclosion
failure and then mortality.

The involvement of TcCTL12 (CTL-X) in the reproduction of T. castaneum has been
preliminarily studied recently [21]. In this study, a significant reduction in the fertility of
offspring and dysplastic ovary were observed in dsTcCTL15-injected female individuals.
To our knowledge, this was the first time that it was found that CTLs can affect ovary
development in insects, which differs from the previous findings that the knockdown
of TcCTL12 resulted in thinner oviducts [21]. It is rare for direct evidence to clarify the
relationships between CTLs and the reproduction of insects. In the cotton bollworm
Helicoverpa armigera, CTL14 interacted with Vg and participated in innate immune responses
under a Beauveria bassiana challenge [53]. The reproductive success of insects mainly
depends on Vg biosynthesis and its uptake process during vitellogenesis [54]. The mRNA
level of TcVg was significantly decreased in dsTcCTL15-injected females, suggesting that
the reduction in Vg levels might be involved in impaired ovary maturation and fecundity.
Similarly, the association of the suppression of CTL1 and decreased Vg expression in
embryos was also found in T. castaneum [6]. However, the detailed mechanisms remain
largely unknown. In adults, JH has well-known roles in regulating insect reproduction,
stimulating vitellogenesis, and oocyte maturation, and a knockdown of JH biosynthesis
or action-related genes affects Vg biosynthesis or uptake [55,56]. Here, we found that
an RNAi-mediated knockdown of TcCTL15 expression significantly down-regulated the
mRNA levels of the JH-biosynthesis-related gene TcFDH, which might cause a reduction in
Vg mRNA levels and abnormality of reproduction. Taken together, these results indicate
that the knockdown of TcCTL15 resulted in reductions in TcVg and TcFDH at the mRNA
level, caused female reproductive capacity and ovary development defects, and finally led
to impaired fecundity. A recent study found that TcFOXO could bind to the conserved
sequence motif of TcFDH and negatively regulate the expression of TcFDH to participate
in beetle reproduction [55]. In this study, no difference in TcFOXO at the transcript level
was observed between dsTcCL15-injected group and the dsTcVer-injected group. Hence, the
underlying mechanisms of TcCTL15 affecting reproduction need further investigation.

5. Conclusions

TcCTL15, a multiple-domain transmembrane protein of CTL-X was identified in T.
castaneum. rTcCTL15 could directly bind to G+ and G- bacteria through certain PAMPs
and agglutinate various bacteria in vitro. TcCTL15 likely mediated the expression of AMPs
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by regulating classical immune pathways against pathogens in vivo. Moreover, it was
required for metamorphosis and reproduction. These results showed that TcCTL15 plays
crucial roles in the innate immunity, metamorphosis, and reproduction of T. castaneum,
suggesting it might be a potential target transmembrane protein for pest control. Taken
together, the current study deepens our understanding of the functional diversification
of CTL-X in T. castaneum and its underlying mechanisms in regulating immunity, growth,
and development.
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