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Abstract: Myotonic dystrophy type 1 (DM1) is a progressive multisystemic disease caused by the
expansion of a CTG repeat tract within the 3′ untranslated region (3′ UTR) of the dystrophia myotonica
protein kinase gene (DMPK). Although DM1 is considered to be the most frequent myopathy of
genetic origin in adults, DM1 patients exhibit a vast diversity of symptoms, affecting many different
organs. Up until now, different in vitro models from patients’ derived cells have largely contributed
to the current understanding of DM1. Most of those studies have focused on muscle physiopathology.
However, regarding the multisystemic aspect of DM1, there is still a crucial need for relevant cellular
models to cover the whole complexity of the disease and open up options for new therapeutic
approaches. This review discusses how human pluripotent stem cell–based models significantly
contributed to DM1 mechanism decoding, and how they provided new therapeutic strategies that
led to actual phase III clinical trials.
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1. Introduction

Myotonic dystrophy type 1 (DM1 or Steinert’s disease, OMIM#160900), is the most
common type of muscular dystrophy in adults, with an estimated prevalence of one
in every 2000 births [1]. Clinically, DM1 is extremely variable, with various symptoms
affecting multiple organs, including progressive muscle wasting, muscle hyperexcitability
(myotonia), cardiac arrythmias, insulin resistance, gastrointestinal dysfunctions, posterior
iridescent cataracts, and cognitive, intellectual, or behavioral impairments. Congenital
myotonic dystrophy corresponds to the most severe form of the disease, starting at birth
and considered as a life-threatening condition [2,3].

DM1 is an autosomal dominant disease belonging to a large group of disorders
associated with the expansions of simple repetitive elements within specific genes [4].
In the specific case of DM1, this is an expanded trinucleotide (CTG) repeat in the 3′

untranslated region of the DM1 protein kinase gene (DMPK). The number of those repeats
globally correlates with the symptoms’ severity, as well as with the age of onset. In the most
severe congenital forms, the number of repeats can reach over 1000, while in non-affected
individuals, the number of repeats is around 35 [5]. The number of CTG repeats commonly
increases in successive generations, thus the children of DM1 patients will likely have more
severe phenotypes than their parents [6]. The number of CTG repeats is usually unstable
within the patient’s lifetime, and tends to increase in some body tissues [7]. Several studies
have suggested that one of the main pathological mechanisms for DM1 was dependent
on an RNA gain-of-function of the mutated DMPK transcripts [8–11]. Indeed, it has been
observed in muscular biopsies of DM1 patients that the resulting CUG-containing RNAs
(CUG-RNA) accumulate in the cell nucleus into microscopically visible structures called
foci [12,13]. These ribonuclear foci, considered to be the most prominent histopathological
hallmark of the disease, sequester crucial RNA binding factors. Typically, members of
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the muscleblind-like (MBNL) family are trapped in those structures, thus preventing their
normal functions in the regulation of alternative splicing [10,11,14]. Some results also
suggest that the stress responses triggered by the toxic CUG-RNA cause the up-regulation
of the MBNL antagonists CELF1 [8,15–17]. Both MBNL and CELF1 proteins are required for
normal splicing regulation during development, and their imbalance in DM1 results in the
abnormal presence of fetal alternative splicing in the tissues of adults patients [14,18–20]. So
far, hundreds of genes affected by those mis-splicings have been described in DM1 patients,
with a couple that have been associated with clinical symptoms such as muscle weakness,
myotonia, and insulin resistance [21–26]. More recently, different findings have suggested
that the pathogenic mechanisms of DM1 may be more complex, involving epigenetic
changes, dysregulated gene expression and translation efficiency, antisense transcripts,
micro-RNA deregulation, and RNA translation (for recent reviews see [27,28]).

Despite the undeniable advances in the understanding of the DM1 disease, there is
currently no curative treatment available to halt or slow down the disease progression.
Medical care is thus limited for now to symptomatic treatment, and therapeutic advances
are urgently needed [28–31]. Up until now, several animal models and cell-based assays
have been developed to study the physiopathology and evaluate the potential therapeu-
tics [32–36]. Most of the cell-based assays developed so far have included patient-derived
fibroblasts or skeletal muscle cells, also named myoblasts [12,37–42]. Although studies
using these approaches have been crucial for our current understanding of the physiopathol-
ogy of DM1, each has its limitations. In particular, the multisystemic aspect of DM1 still
requires the development of relevant cellular models to cover all the complexities of this
disease. Over the past 20 years, the development and the increased accessibility of human
pluripotent stem cells have displayed an exceptional potential for human disease modeling
and drug testing (for recent reviews see [43,44]). In the present review, we will discuss the
development of human pluripotent stem cell-based models for DM1 and their contribution
to the advances in myotonic dystrophy research.

2. Conventional Cellular Models for DM1

The first cellular models developed to study DM1 largely consisted of cultures of
primary dermal fibroblasts and skeletal muscle myoblasts. Those cells are isolated from
the patient’s biopsy and conserve the physiological characteristics of their origin tissue
environment. Primary fibroblasts were widely used due to their reasonable accessibility
in patients. However, primary myoblasts are obviously more relevant for neuromuscular
disorders due to their potential to initiate an in vitro myogenic differentiation and fusion
into multinucleated myotubes. The insights provided by the use of these patient-derived
cells have been crucial for the understanding of the pathomechanisms involved in DM1.
The characterization of these models revealed the nuclear retention of the mutant DMPK
transcripts while these transcripts are correctly spliced and polyadenylated [12,45]. This
phenomenon causes their aggregation within discrete ribonuclear foci, as well as a re-
duction in the DMPK protein levels [12,45–47]. The observation of an aberrant nuclear
accumulation of the RNA-binding protein, CELF1 (also called CUG-BP), in cells derived
from DM1 patients, led to the suggestion that DM1 is caused by an RNA gain-of-function
mechanism [8,48]. CELF1 is a splicing regulatory factor that binds to single-stranded UG
motifs, and its up-regulation has been associated with the abnormal splicing of downstream
targets [49]. Those observations confirmed the hypothesis of an RNA gain-of-function
mechanism, altering cellular function, including the alternative splicing of various genes.
This idea was later reinforced by the identification of RNA-binding proteins that bind
specifically to CUG repeats and are sequestered by the hairpin structures of the retained
CUG-containing DMKP mRNA [10]. In particular, the members of the MBNL RNA-binding
proteins family (MBNL1, MBNL2, and MBNL3) are trapped within the nuclear RNA foci in
DM1 patient cells [11]. MBNL proteins are splicing regulatory factors involved in the devel-
opmental switch between the fetal and adult isoforms of many transcripts. Consequently,
the imbalance of MBNL proteins due to their nuclear sequestration of CUG-RNA results
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in the alternative splicing misregulations of several genes in DM1 [20]. Thus far, MBNL
related mis-splicings have been established as a central cause of the disease, since several
of the genes affected were connected to DM1 phenotypic features [21–26].

Thus, the use of primary cellular models for DM1 has been crucial for the identifica-
tion and the reproduction of several DM1-associated molecular features. In particular, it
highlighted the nuclear aggregation of mutant mRNAs that sequester the MBNL1 protein,
leading to subsequent alternative splicing defects [47,50–53]. Among these primary cellular
models, fibroblasts are still widely used both to identify new pathogenic mechanisms, and
validate or identify new potential therapeutic compounds. As an example, an increase in
autophagic flux, in association with an alteration of the endosomal–lysosomal pathway, has
been recently identified in DM1 primary fibroblasts in comparison with control cells [54].
The identification of these pathogenic mechanisms consequently opens new perspectives in
terms of therapeutic development [55–57]. Illustrating this, a comparative transcriptomic
analysis of primary fibroblasts isolated from healthy donors and DM1 patients revealed
an impaired cell cycle progression and DNA damage response in DM1, leading to the
identification of the therapeutic potential of senolytic compounds for DM1 [56].

Despite these advances, several limitations challenge the use of primary cell cultures.
The first concern is the accessibility and availability of patients’ biopsies, especially muscle
biopsies. Another point to consider is the fact that primary cells in culture rapidly undergo
senescence and can be maintained only for a limited time in vitro. This phenomena has
been shown to be even more pronounced in DM1 cells compared to control cells, as the
former shows a reduced proliferative capacity due to a premature entry into replicative
senescence, thus limiting the extension of their culture [58,59].

To circumvent these limitations, several studies report the generation of immortal-
ized cell lines derived from DM1 primary fibroblasts, trans-differentiated fibroblasts, and
myoblasts [37–40,60,61]. In theory, those lines can be kept in culture indefinitely. They
are obtained by maintaining the telomere length through the re-expression of the catalytic
subunit of the human telomerase (hTERT), coupled with the overexpression of CDK4
that inhibits p16 activity [60,62]. In addition, clonal selection during this immortalization
process leads to the generation of homogeneous cell cultures, providing more consistent
and reproducible results [37]. Overall, those immortalized cell lines retain the molecu-
lar hallmarks of DM1 related to the toxic RNA gain-of-function mechanism, including
nuclear foci and splicing defects. The benefit of their long-term culture potential thus
represents a valuable biological resource for high-throughput screening approaches [38,61].
However, the effects of the viral transduction for the genomic integration of hTERT and
CDK4 transgenes in immortalized cells are not fully characterized and may alter disease or
tissue characteristics.

Along with these DM1 immortalized cell lines, cell models engineered to express
exogenous CTG repeats have been widely developed. These models rely on the transient
or stable expression of the CTG repeats in the 3′ UTR of a truncated DMPK gene in human
or murine cell lines, such as HeLa, HEK, or C2C12 cells [19,24,63–68]. These models
reproduce several DM1-associated features, such as the nuclear foci, the sequestration
of MBNL proteins, and the splicing defects. However, in the absence of the complete
DMPK genomic context, the expression of these CTG constructs is usually controlled by a
strong promoter such as CMV promoter, which induces an overexpression greater than
the endogenous DMPK promoter does [24,64–66]. In addition, due to the difficulties of
cloning long DNA strands made of CTG repeats [69,70], most of these studies have been
using a construct coding for a sequence of 960 CTG repeats, interrupted multiple times
by non-repeat short sequences. If interrupted repeats can be found in some patients, their
relation to physiopathology and their symptom severity are not well defined yet.

In conclusion, since the first descriptions of the causal mutation of DM1 30 years
ago, different cell models have largely contributed to the knowledge of DM1, mainly on
its muscle physiopathology. However, as DM1 is a multisystemic disorder, and many
tissues and cell types are affected by this disease. Consequently, there is still a crucial
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need for relevant cellular models to cover all the complexities of DM1. This understanding
of the disease’s complexity is crucial to the identification of new therapeutic approaches.
In addition, the comprehension of the physiopathology mechanisms is also limited, due
to the difficulty in obtaining material that reflects early stages of the disease (Figure 1).
Recent advances in human pluripotent stem cell biology have opened up the possibility of
generating new relevant cellular models for DM1. These new tools allowed priceless access
to cells impossible to obtain from biopsies, bringing new insight on the disease. In the
context of DM1, those studies even led to the identification of new therapeutic approaches
actually under clinical investigation.
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3. The First DM1 Human Pluripotent Stem Cell-Based Models to Study CTG
Repeat Instability

In the early 2000s, DM1 was one of the first examples of monogenic diseases to be
captured using the physiological source of pluripotent stem cells, namely human embryonic
stem cells (hESC) [71]. Thanks to the popularization of preimplantation genetic diagnosis
(PGD), the elimination of affected embryos provided a valuable source for hESC lines with
genetic abnormalities.

Since the first report of DM1-specific hESC, several studies have described the deriva-
tion of additional DM1-specific hESC lines with less than a dozen available on 1 January of
2023 at the International Human Embryonic Stem Cell Registry (www.hescreg.eu, accessed
on 1 January 2023) [72–74]. However, the use of disease-specific hESCs presents different
limitations. First, the number of disease-specific PGD embryos is limited. Importantly, the
use of these cells still raises ethical questions, which may result in limited and cautious
investments [75,76]. In addition, the interpretation of experimental results obtained from
those cell lines can be complicated due to the absence of a clinical history of the donor.

More recently, the outstanding breakthrough of human-induced pluripotent stem cell
(hiPSC) generation opened a new era for disease modeling. The generation of hiPSCs relies
on the genetic conversion of a patient’s somatic cells into an embryonic-like state, lately
allowing for the generation of all kinds of patient cell lines [77]. A growing number of
studies have described the generation of hiPSCs derived from primary fibroblasts of DM1
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patients [78–82]. More recently, hiPSC lines have been generated from DM1 immortalized
lymphoblastic cells, opening up the possibility of using a patient’s blood samples, which
are more accessible than skin biopsies [83].

At the pluripotent state, DM1-specific hPSCs have mainly been used to address
questions related to the instability of CTG repeat length. On that topic, Du and colleagues
first showed that CTG repeats are highly unstable during the reprogramming process
and during their subsequent passages in culture. Notably, the expansion occurrence of
the repeats will be enhanced if the initial CTG tract is longer [82]. A substantial increase
of abnormal methylation was also observed in the hiPSCs derived from DM1 patients’
fibroblasts, indicating that aberrant methylation patterns can be re-established following
reprogramming [72]. Interestingly, the instability of these CTG repeats is detected only in
undifferentiated cells and not when those cells are differentiated into a specific cell type,
contrasting to what is described in patients [79,82,84]. This variance could be related to the
methylation status of the DMPK gene and the activity of mismatch repair enzymes, which
have been shown to be involved in the CTG instability in mice models [85–88]. Consistent
with this hypothesis, the mismatch repair components MSH2, MSH3, and MSH6 have
been found to be highly expressed in DM1-specific hiPSC compared to their parental
fibroblasts [82,89]. The role of MSH2 in CTG repeat stability has been recently confirmed
by using DM1-specific hESCs depleted for this mismatch repair protein [90]. Regarding
the epigenetic changes, a hypermethylation has been observed upstream of CTG repeats
when these CTG repeats exceeded 300, which may be related to the larger CTG expansion.
Notably it has only been observed in DM1 maternally-derived hESC lines, suggesting that
DMPK methylation may account for the maternal bias of congenital transmission [91].

4. Progressive Development of Multi-Lineage hPSC-Derived Platforms for DM1

Proper disease modeling using pluripotent stem cells requires two major conditions:
the possibility to differentiate into the lineages principally affected, and the ability of those
derived cells to reproduce the key hallmarks of the disease. The last two decades have
witnessed unprecedented advances in the capacity to direct the differentiation of hPSC
into specific cell types, resulting in a substantial usage of disease-specific PSCs to address
physio-pathological questions.

In the context of DM1, Mateizel et al. were the first to describe the ability to differentiate
DM1 hESC into a homogenous mesenchymal progenitor cell population [92]. The presence
of the key characteristics of DM1 (nuclear mutant mRNA aggregates, MBNL proteins
sequestration, alternative splicing defects) validated the pathological relevance of this first
DM1 hPSC-based model. Those models have been subsequently used for high-throughput
drug screening and drug testing [93,94]. Since then, a growing number of studies have
successfully reported the possibility of reproducing classical DM1 molecular hallmarks
in more pathologically relevant cell types, but also to highlight the deregulation of new
molecular pathways (Table 1).

Table 1. Summary of the different pathological phenotypes identified in DM1 hPSC and
their derivatives.

DM1 Biomarker Assay References

Human DM1 Pluripotent Stem Cell

CUGexp RNA Foci RNA Fish [78,80,95–97]

CTG repeat instability PacBio sequencing, Small-pool PCR and
Southern blot [82,84,89,90]

Human DM1 Pluripotent Stem Cell-Derived Mesenchymal progenitors

CUGexp RNA Foci RNA Fish [94]

Splicing defect: INSR ex11, ATP2A1 ex22 RT-PCR [93,94]
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Table 1. Cont.

DM1 Biomarker Assay References

Human DM1 Pluripotent Stem Cell-Derived Myoblasts

CUGexp RNA Foci RNA Fish [81,95–99]

CTG repeat instability Small-pool PCR and Southern blot [79]

MBNL1 trapping in CUGexp RNA Foci RNA Fish and immunostaining [95,96,98–100]

Splicing defects in Myoblasts: ATP2A1 ex22, NFIX ex7 RT-PCR [79,81,98]

Splicing defects in Myotubes: INSR ex11, CAP3 ex16,
mTTIN ex5, MBNL1 ex5, ATP2A1 ex11, ZASP ex11,
TNNT3 ex7, NUMA1 ex16, BIN ex11, MEF2C ex2,

DMD ex78

RT-PCR [81,95,96,100,101]

Defect of proliferation KI-67 immunostaining [99]

Increased autophagy Western blot [99]

Decreased myogenic potential MF20 immunostaining [81,90,102]

Human DM1 Pluripotent Stem Cell-Derived Cardiomyocytes

CUGexp RNA Foci RNA Fish [95,103–105]

CTG repeat instability Small-pool PCR and Southern blot [79]

MBNL1 trapping in CUGexp RNA Foci RNA Fish and immunostaining [95,105]

Splicing defects: MBNL1 ex5, TNNT2 ex5, INSR ex11,
RYR2 ex4, SCN5A ex6, ANK3 ex40 RT-PCR [79,95,103,105]

Altered nuclear morphology Immunostaining [103]

Action potential and conduction velocity Patch-clamp [103,105]

Sodium channels and Calcium current
electrophysiological modifications Patch clamp [95,105]

Alteration of the beat impulse and duration Atomic Force Microscopy [103,106]

Human DM1 Pluripotent Stem Cell-Derived Neural Stem Cells and Neurons

CUGexp RNA Foci RNA Fish [78,97,107–109]

CTG repeat instability Small-pool PCR and Southern blot [79]

MBNL1 trapping in CUGexp RNA Foci RNA Fish and immunostaining [109]

Splicing defects in Neural progenitors: MAPT ex2-3,
MBNL1 ex5, MBNL2 ex5

Splicing defects in neurons: SORBS1 ex26
RT-PCR [78,79,97,108,109]

Reduced proliferation of neural progenitors KI-67 immunostaining [109]

Induction of autophagy in neural progenitors Western blot, Immunostaining [109]

Reduced viability of Neurons Immunostaining [110]

Glutamate-induced excitotoxicity in neurons Neuronal spikes and local field potentials
measured using microelectrode array [110]

Human DM1 Pluripotent Stem Cell-Derived Motor Neurons

CUGexp RNA Foci RNA Fish [107,111]

Splicing defects: NMDAR1 ex5, CAMKK2 ex16;
CAST ex17 RT-PCR [107,111,112]

Altered neurite morphology: enhanced neurite
outgrowth decreased axon branching TUJ1 or MAP2 Immunostaining [107,111,112]

Impaired communication of spinal motor neurons
with skeletal muscle targets:

Acetylcholine receptor clustering
Enhanced Calcium transient

Co-cultures, time lapse phase contrast
microscopy, immunostaining [111,113]



Cells 2023, 12, 571 7 of 18

4.1. Skeletal Muscle Cells

Up until now, the most efficient protocols for differentiating human pluripotent stem
cells into reasonably mature muscle cells relied on the forced ectopic expression of myogenic
specification factors [114]. Typically, the myogenic factor MYOD was one of the earliest
examples of “master” transcription factors shown to be capable of transdifferentiating
cells from one lineage (e.g., fibroblasts) into another (skeletal muscle) [115]. Based on this
approach, DM1 hiPSC-derived skeletal muscle cells were generated and characterized in
a couple of studies, pointing out their capacity to reproduce the main molecular features
associated with DM1 [96,98]. Dastidar and colleagues also demonstrated the possibility
of using these skeletal muscle cells derived from DM1 hiPSC to validate the potential of
CRISPR/ Cas9 technology for the gene editing of repeat expansions [98].

Where the ectopic expression of MYOD provides a quite simple way to generate
skeletal muscle cells from hPSC, this direct reprogramming approach circumvents the
early developmental stages. Thus, the details of how the cells are affected during this
differentiation process remains largely unclear [114]. Recently, more complex and sequential
protocols, using small molecules and growth factors, have been established to better
recapitulate the successive developmental stages involved in skeletal myogenesis [116,117].
DM1-specific hPSC-derived skeletal muscle cells obtained from different protocols were
shown to recapitulate the main pathological hallmarks, as previously described by the
primary skeletal muscle cells derived from patients [81,96,99–101]. Notably, the skeletal
muscle cells derived from DM1-specific hiPSC and hESC both present altered myogenic
fusion, as do the DM1-associated foci that sequester MBNL proteins and subsequently lead
to alternative splicing defects. It is interesting to note that the depletion of MBNL proteins
recapitulates these phenotypes, as recently demonstrated through the use of hiPSC depleted
in MBNL proteins using CRISPR/ Cas9 technology [81]. These results strongly support the
pathological contribution of MBNL proteins, but also highlight the temporal requirement
of these proteins during in vitro myogenesis. Where the generation of skeletal muscular
progenitors, namely myoblasts, is not affected, the late differentiation of myoblasts into
multinucleated myotubes is altered by the depletion of MBNL proteins, as is also observed
in DM1 [81].

As observed in DM1 patients, a recent study described a defective proliferation of
hiPSC-derived satellite cells. Those cells represent the resident muscle stem cells due to
their unique anatomical position at the periphery of the myofibers and their regenerative
capacities [99,118]. This proliferative impairment could be associated with an abnormal
induction of autophagy and defective mTOR signaling [99]. The overexpression of MBNL
proteins in DM1 hiPSC-derived satellite cells normalized these defects, validating the
importance and pathological role of these two pathways.

Despite these developments, several challenges remain. Notably, most of these studies
have used a two-dimensional cell culture system that does not mimic the native tissue
structure. Consequently, several three-dimensional models have recently started to be
developed to evaluate the possibility of establishing functional skeletal muscle tissue
from human pluripotent stem cells [119–121]. To date, only one study has successfully
described the generation of 3D neuromuscular structures from DM1 hiPSC lines [113].
In this study, the authors generated mature muscle fibers thanks to a protocol allowing
for the co-differentiation of hiPSC into skeletal muscle and motoneurons. They next
applied this model to different neuromuscular diseases, including DM1, for which they
observed abnormal calcium transient at the muscular level. In the absence of a precise
characterization for the molecular hallmarks of the disease, as well as the absence of an
isogenic control, the interpretation of these results is difficult. Nonetheless, this type of
development clearly opens the path to more complex models that could better recapitulate
the physio-pathological mechanisms.
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4.2. Cardiomyocytes

For approximatively 80% of DM1 patients, cardiac deficiency often precedes skeletal
muscle involvement and causes a high incidence of sudden death (30%) [122]. The cardiac
phenotypes of DM1, characterized by electrocardiographic (ECG) abnormalities, include
conduction defects, as well as ventricular and atrial arrhythmias [123]. Over the last few
years, several studies have reported the generation of DM1 hiPSC-derived cardiomyocytes
(CMs), thanks to the establishment of guided differentiation protocols [95,97,103,105,106].
These cardiac differentiation protocols usually lead to a heterogeneous mixture of ventricular-,
atrial- and nodal-like cells. Despite this variability and the level of maturity of the cells gen-
erated, these different studies confirmed the presence of the conventional DM1 molecular
hallmarks, as previously observed in heart biopsies from DM1 patients. These included
the formation of aggregates of mutated DMPK mRNAs that trapped MBNL proteins and
consequently altered the alternative splicing affecting the expression of MBNL1, MBNL2,
TNNT2, RYR2, ANK3, and SCN5A transcripts [95,103]. A complete analysis of the molecular
defects is now available, thanks to an unbiased transcriptome-wide analysis performed
on DM1 IPSC-derived cardiac cells before and after the excision of the CTG expansion
repeat by CRISPR/ Cas9 [98]. Since several of the alternative splice defects and differ-
entially expressed transcripts observed in the DM1 condition are known to be involved
in the electrical properties of cardiac cells, the electrophysiological characterization of
DM1 hIPSC-derived cardiomyocytes has been investigated using patch-clamp recordings.
These analyses revealed increased calcium currents in DM1 hiPSC-derived CMs that can be
correlated with the increased expression of CACNA1C transcripts that encode the alpha-1
subunit of a voltage-dependent calcium channel CaV1.2 protein [95,105]. A functional cor-
relation has also been made between the alternative splice defect of the SCN5A transcript,
which encodes the NaV1.5 cardiac sodium channel, and alters the gating properties of this
ion channel [105]. Finally, differences in the mechanical properties of DM1 hiPSC-derived
CMs, including spontaneous action potential and beating, have been also detected using
Atomic Force Microscopy [103,106]. One study demonstrated the possibility of normalizing
these mechanical defects by treatment with anti-antiarrhythmic drugs, such as Ranolazin,
opening up the possibility of testing other therapeutic options on these phenotypes [103].

4.3. Neural Lineage

If the involvement of the skeletal and cardiac muscles is identified early in DM1,
the disease also induces important neurological manifestations [124]. The DM1 cognitive
profile is characterized by multiple deficits, including intelligence, memory, language,
apathy and anxiety-related disorders, and excessive daytime sleepiness [125]. Although
the pathological mechanisms have been extensively studied in regards to the skeletal and
cardiac muscles, whether this RNA gain-of-function mechanism can account for the neuro-
logical symptoms is still unclear. A previous analysis of brain biopsies from DM1 patients
indicated that the nuclear accumulation of mutant transcripts occurs both in neuronal
and non-neuronal cells [126]. However, these results are difficult to interpret, as nervous
system postmortem samples may be often damaged by the end-stage manifestations of the
disease. Thus, the lack of a neuronal cell model has particularly hindered efforts to study
the mechanisms causing these cognitive symptoms occur. To date, few studies have tackled
this question. Only a couple of studies have successfully described the generation of neural
stem cells (NSC) from DM1 hPSC that all exhibited nuclear aggregates of mutant transcripts
and defective alternative splicing [80,97,109]. As described for the progenitors of skeletal
muscle cells, an abnormal induction of autophagy, as well as defective mTOR signaling
associated with a decreased proliferative capacity, were observed in DM1 hESC-derived
NSC, suggesting a common mechanism for both the neural and muscle compartments [109].
As already mentioned, the development of three-dimensional (3D) models has attracted
great attention in the field of disease modeling. This is especially true in the context of
brain organoids that have been shown to reproduce specific brain structures and become
a pertinent model for investigating the development and mechanisms of neurological
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diseases [127,128]. Very recently, Morelli and colleagues successfully generated cortical
organoids from DM1 hiPSC lines. In these 3D structures, and after more than 2 months
of differentiation, the authors observed the alteration of excitatory synaptic signaling
in glutamatergic neurons that could be rescued by Dextromethorphan hydrobromide,
an antagonist of N-methyl-D-aspartic acid (NMDA). This result suggests that targeting
NMDA could represent an interesting therapeutic option for cognitive impairments in
DM1 patients [110]. In the near future, these more complex cell models should undeniably
improve our understanding of the mechanisms by which CTG repeat expansions affect the
development and the function of different sub-types of neurons, but also non-neuronal
cells. Illustrating this point, a recent study based on animal models of DM1 highlighted a
potential contribution of astrocytes to the physiopathology of the disease [129]. Regarding
the sub-types of neurons, different studies have shown that spinal motor neurons derived
from DM1 hPSC (hESC and hiPSC) reproduced the main molecular hallmarks of DM1,
but also exhibited a defective neuritic outgrowth that anterogradely contributes to the
NMJ defects observed in DM1 [107,111,112]. Interestingly, a preponderant role of MBNL
proteins has been associated with this phenotype [111].

It is now well recognized that DM1 hPSC lines and their derivatives represent a
versatile cellular platform capable of reproducing the main molecular and cellular hallmarks
of the disease, and suitable for the in vitro evaluation of new therapeutic strategies.

5. Towards Translational Applications

Pathological analyses using hPSC have led to the identification or validation of drugs
for a growing number of diseases, including spinal muscular atrophy, amyotrophic lat-
eral sclerosis, and Wolfram Syndrome [130–132]. Some of these therapeutic candidates
are currently under clinical trials. In the context of DM1, hPSC has become a basis for
identifying and validating a large variety of therapeutic strategies, such as small molecules,
small oligonucleotides, and gene-editing strategies, capable of normalizing pathological
phenotypes. To date, the combination of hPSC-based drug testing with drug repositioning
has led to the identification of a small molecule that has recently been evaluated in a phase
II double-blind parallel-group single-center trial [132].

5.1. Chemical Compounds

Based on their capacity to be propagated extensively in vitro, hPSC offer the possibility
of producing relevant in vitro models that are applicable to high-throughput testing for
drug discovery. Despite this property, there are still few examples of the use of DM1-specific
hPSC for high-throughput screenings. Maury and colleagues were the first to describe the
use of DM1 hESC-derived mesenchymal stem cells to evaluate 12,089 compounds for their
capacity to modulate the number of nuclear aggregates of mutant DMPK mRNAs, thanks
to a high-content screening [94]. This study highlighted cardiac glycosides as capable of
increasing the number of foci per nucleus, while making them smaller. Based on these
elements, further investigation was performed with digoxin, the most commonly prescribed
cardiac glycoside. Interestingly, digoxin was also found to be capable of normalizing
different alternative splice defects, both in DM1 hES-derived mesodermal stem cells and
skeletal muscle cells, and of normalizing the defective myogenesis observed in vitro [94].
However, these compounds are associated with significant side effects that have limited
their evaluation in DM1 patients.

In parallel to high-throughput screenings, the combination of PSC-based drug devel-
opment with drug repositioning, a strategy for identifying new uses for existing drugs, has
received great expectations. This strategy has many advantages over the traditional drug
discovery process, as it allows for the reduction in the duration of drug development, is
low-cost, highly efficient, and minimizes the risk of failure. It is by following this strategy
that the antidiabetic Metformin drug has been identified as capable of normalizing the
different alternative splice defects in DM1 hES derivatives [93]. As Metformin is a well-
known AMPK activator, it is of interest to note that different studies using AICAR, another
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AMPK activator, have also reported splicing correction in DM1 primary myoblasts and
DM1 mouse models, indicating AMPK as a therapeutic target for DM1 [133,134]. These
findings led to a recent completed phase II double-blind parallel-group single-center trial
that suggested a promising effect of Metformin on the mobility and walking abilities of
DM1 patients [132]. However, as this phase II clinical trial has been performed on a lim-
ited number of patients, the potential beneficial effect of Metformin on mobility, but also
other functional parameters, is currently being further explored in two phase III clinical
trials, sponsored by Tor Vergata (2018-000692-32) and Assistance Publique—Hôpitaux de
Paris (NCT05532813).

More recently, and thanks to the development of DM1 hiPSC-derived brain organoids,
Morelli and colleagues identified the dextromethorphan hydrobromide, an NMDA antago-
nist actually tested in ongoing clinical trials for the treatment of seizures and behavioral
hyperactivity (NCT01520363 and NCT00593957), as capable of normalizing the progressive
cortical neuron loss observed in these 3D structures. This proof-of-concept study demon-
strates the potential of using cortical organoids derived from hPSC to identify new drug
candidates for DM1 [110].

5.2. Gene Editing

The genome editing approach represents an alternative therapeutic strategy for cor-
recting the DM1 mutation. Xia and colleagues have performed the first-proof-of-concept of
this strategy in DM1 hiPSC-derived NSC [108]. Their approach consisted of introducing
2 poly(A) signals upstream of the DMPK CTG repeats by using a homologous recombina-
tion (HR) mediated by a pair of site-specific transcription activator-like effector nucleases
(TALEN). This strategy led to the decreased production of expanded CUG transcripts, the
diminution of nuclear RNA foci, and the reversal of aberrant splicings in neural progenitor
cells derived from DM1 hiPSCs. A second study from the same laboratory repeated the
experiment in DM1 hiPSCs at the pluripotent state, where intranuclear foci had already
been detected [78]. They found that edited DM1-specific hiPSCs remained pluripotent, as
attested by the teratoma formation, and could be successfully differentiated in neural pro-
genitor cells and cardiomyocytes that no longer expressed tissue specific to DM1-associated
splicing defects. More recently, this strategy has been modified by using CRISPR/Cas9
technology to insert the PolyA signals in the 3′ UTR region, still upstream of the expanded
CTG repeats. It has been demonstrated that the SpCas 9 nickase system can produce a
nick guided to a specific genome site using a sequence-specific gRNA that is preferentially
repaired by homology-directed repair (HDR), which allows the insertion of PolyA signals.
As a consequence, the elimination of toxic RNA CUG repeats promoted the pathological
phenotype reversal of DM1 iPSCs, neural progenitors, cardiomyocytes, and skeletal muscle
myofibers [97].

A second approach targeting the excision of the CTG repeat expansion has been
more recently developed, thanks to the CRISPR/Cas9 technology [98]. The authors first
assessed the potential of CRISPR/Cas9 in DM1 hiPSC-derived skeletal muscle cells that
stably expressed the Cas9 and guided RNAs after lentiviral transduction. Genome edition
led to the correction of ribonuclear foci staining and the normalization of SERCA1 exon
22 mis-splicing in the DM1 myogenic cells. Edited DM1 hiPSC lines were also generated
with a non-viral gene method, using the nucleofection of ribonucleoprotein (RNP) com-
plexes composed of Cas9 proteins and specific synthetic single guide gRNA (sgRNA). The
excision of the expanded CTG repeats resulted in the disappearance of ribonuclear foci
in the corrected DM1 hiPSC, DM1 hiPSC-derived skeletal muscle cells, and primary DM1
myoblasts [98]. Along this line, this method has been successfully applied to the excision of
CTG expansion repeats in DM1 hiPSC-derived cardiomyocyte-like cells [135]. This resulted
in the disappearance of ribonuclear foci, as well as the complete reversal of the underlying
spliceopathy in DM1 cardiomyocytes, as demonstrated by an unbiased transcriptomic
analysis [135].
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Both approaches developed in DM1-hiPSCs demonstrated the potential of genome
editing for the treatment of the disease. These different methods promoted the persistent
reversion of the DM1 mutant phenotype in hiPSCs and their progenies. Further analysis
would help to better characterize the ON-target and OFF-target effects associated with
genome editing, such as the inversion of expanded CTG repeats induced by double strand
break generation on either side of the repeats that can be revealed by a double FISH analysis,
using sense and antisense oligo probes [97].

5.3. Antisense Oligonucleotides

In addition to the genome editing approach, one of the promising therapeutic strategies
is the use of antisense oligonucleotide (ASO), that targets the DMPK transcript containing
the CUG repeat expansion. Different studies have shown that ASOs have the potential
to decrease mutant mRNAs aggregates, leading to the release of MBNL1 and the normal-
ization of different defective alternative splicings in DM1 skeletal muscle cells, and in the
skeletal muscle-specific murine model of DM1 [68,136,137]. However, since ASOs do not
cross the blood–brain barrier after their systemic administration, and because the lack
of accessibility to DM1 neurons from patients, the therapeutic potential of the ASO had
not been evaluated for the treatment of neural symptoms in DM1. To explore whether
those therapeutic molecules could also benefit DM1 patients after intracerebroventricular
injection, Ait Benichou et al. have first evaluated the efficacy of the ASO gapmer (IONIS
486178) in neural progenitor cells derived from DM1 hiPSCs [138]. The gapmer, tested at
multiple doses, exhibited a maximal efficacy on intranuclear foci reduction and DMPK
mRNAs expression at 500nM in DM1 hiPSC-derived neural stem cells. This effect was
correlated with a nuclear redistribution of MBNL1 and MBNL2, as well as the correction of
splicing defects such as MBNL1 and MBNL2 exon 7 exclusion, APP exon 7, GRIN1 exon 4,
and SORBS1 exon 23 inclusions. These in vitro pre-clinical data allowed the setting up of
the evaluation of IONIS 486178 ASO potency in DMSXL mice, a systemic murine model
of DM1. Following an intracerebroventricular injection in adult heterozygous DMSXL
mice, the IONIS 486178 ASO induced a decrease of up to 70% in the levels of mutant
DMPK mRNAs throughout different brain regions. After neonatal administration, it also re-
versed behavioral abnormalities, confirming its therapeutic potential to target neurological
damages in DM1 [138].

6. Conclusions

The use of patient-derived PSCs for disease modeling and drug screening has resulted
in tremendous progress over the past few years. DM1 is one of the best examples for which
the full experimental paradigm of hPSC for disease modeling and drug screening has been
demonstrated, leading to the identification of new therapeutic strategies.

Despite the undebatable advantages of PCS-derived cells, one should keep in mind that
the comparison of animal and patient biopsies is still essential to validate the pertinence of
these models. Furthermore, the observations of the physio-pathological mechanisms made
in those models still need proper controls. The development of three-dimensional models
has also been proposed as systems that are more relevant compared to two-dimensional
cultures. Future research on in vitro human DM1 PSC-based three-dimensional models will
surely allow for a better capture of the disease’s complexity. Finally, the association with
“omic” technologies, such as single cell RNA sequencing, should represent a new stage of
research to unravel new pathological mechanisms. The adaptation of three-dimensional
models for high-throughput screening approaches might also represent an important
development for the identification of new therapeutic strategies for DM1.
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