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Mateusz Kciuk 1,2,* , Damian Kołat 3 , Żaneta Kałuzińska-Kołat 3 , Mateusz Gawrysiak 4 , Rafał Drozda 5,
Ismail Celik 6 and Renata Kontek 1

1 Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16,
90-237 Lodz, Poland

2 Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
3 Department of Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60,

90-136 Lodz, Poland
4 Department of Immunology and Allergy, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland
5 Department of Gastrointestinal Endoscopy, Wl. Bieganski Hospital, 91-347 Lodz, Poland
6 Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey
* Correspondence: mateusz.kciuk@edu.uni.lodz.pl

Abstract: The application of immunotherapy for cancer treatment is rapidly becoming more widespread.
Immunotherapeutic agents are frequently combined with various types of treatments to obtain a
more durable antitumor clinical response in patients who have developed resistance to monotherapy.
Chemotherapeutic drugs that induce DNA damage and trigger DNA damage response (DDR)
frequently induce an increase in the expression of the programmed death ligand-1 (PD-L1) that can
be employed by cancer cells to avoid immune surveillance. PD-L1 exposed on cancer cells can in turn
be targeted to re-establish the immune-reactive tumor microenvironment, which ultimately increases
the tumor’s susceptibility to combined therapies. Here we review the recent advances in how the
DDR regulates PD-L1 expression and point out the effect of etoposide, irinotecan, and platinum
compounds on the anti-tumor immune response.

Keywords: cytotoxic drugs; DNA damage response; immunotherapy; programmed death ligand-1
(PD-L1)

1. Introduction

Surgery, chemotherapy, and radiation therapy constitute the main approaches to cancer
treatment. One alternative way of targeting cancer concentrates on boosting the patient’s
immune system so that it can act against the tumor. The term “cancer immunotherapy”
refers to a set of treatment methods that involve either the modification of the immune
system of the host or the employment of immune system components to combat cancer.
Cytokines, immune cells, and monoclonal antibodies are a few examples of immune system
components that have been utilized in the treatment of cancer [1]. Due to the fact that
cancer cells are derived from normal cells, they may not express antigens against which an
immune response can be developed [2].

Although there are several cancer antigens distinguished, they may not trigger a
significant level of the immune response. Moreover, the antigen may not be efficiently
uptaken, processed, and presented, leading to a diminished and insufficient immunological
response. Afterwards, activation of specific T and B cells in the lymph nodes is necessary for
the immune cells to migrate to the tumor site, where they can act. In case of the successful
elimination of tumor cells, the second wave of antigen presentation may occur and the
phenomenon known as “epitope spreading” could expand the immune repertoire that is
directed against the tumor [2].
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The death of cancer cells in response to the drug may be sufficient to trigger an
immune response [3]. The release of antigens can activate the T-cells [4] that detect the
dying cancer cells exhibiting calreticulin (CRT) and phosphatidylserine (PS) on their surface.
These molecules are recognized by the immune cells such as macrophages enabling the
elimination of cancer cells [5,6]. Immature dendritic cells (DCs) and macrophages express
the transmembrane receptor CD91 (also known as LRP1) on their surface that interacts
with CRT on tumor cells. Moreover, the autophagy-dependent release of ATP work as a
recognition signal for DCs exhibiting P2X purinoceptor 7 (P2RX7) on the surface and leads
to the inflammasome-mediated secretion of interleukin 1β (IL-1β). Moreover, the secretion
of high-mobility group protein 1 (HMGB1)—a ligand for toll-like receptor (TLR-4)—is
required for DCs activation and effective antigen presentation [7]. These molecules, called
damage-associated molecular pattern molecules (DAMPS), stimulate the activation of the
immune system [8,9].

All these components work in concert to bring about the sequential events of tumor
cell recognition and recruitment of DCs, phagocytosis, antigen processing, maturation,
and presentation to T lymphocytes. Last but not least, the cascade produces an interferon
(IFN)-mediated immune response involving γδ T cells and cytotoxic CD8+ T lymphocytes
(Figure 1) [10].

As described above, the immune response can identify cancer cells and eliminate
them through a variety of processes that involve cooperation between the innate and
adaptive branches of the immune system. T-cells play a significant part in this process. The
activation of these cells helps to activate an immune response that attacks cancer cells. A
specific peptide epitope of the antigen has to be displayed on the major histocompatibility
complex (MHC) of an antigen-presenting cell (APC), and it has to form a complex with
the T-cell receptor on T cells to become activated. The second signal resulting from the
interaction of co-stimulatory molecules is essential for T-cell activation. T-cells will enter the
unresponsive condition of clonal anergy if they are not given any co-stimulatory molecules
to work with [11]. There are examples of both positive and negative regulators of this
process. While positive regulators boost anti-tumor activity, negative regulators impede the
killing process and instead promote the growth of tumors. Therefore, an immunotherapy
that targets the negative regulators to increase anti-tumor responses could be a viable
alternative therapeutic method of treating cancer [12].

Immune checkpoint pathways, such as the programmed death receptor-1 and pro-
grammed death ligand-1 (PD-1/PD-L1) signaling pathway, are crucial for the regulation of
immune self-tolerance that can be employed by cancer cells to avoid immune surveillance.
Inhibition of these T cell surface receptors leads to elevated autoimmunity, which in turn
generates an immune response against cancer [13,14].
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Figure 1. The interaction between tumor cells and immune cells. Tumor cells are detected by
adaptive (comprising of B and T cells) and innate immune system (mainly natural killer (NK) cells).
Effector CD4+ and cytotoxic CD8+ T cells are capable of recognizing peptide antigens presented on
MHC class II or MHC class I, respectively. (A) Immunogenic cell death (ICD) is associated with the
release of damage-associated molecular patterns (DAMPs) from dying cells. Such molecular patterns,
whether expressed on the surface of cells or released outside of the cell, can promote tumor antigen
presentation and boost adaptive immunity. Calreticulin (CRT) expressed on cancer cells interacts with
the CD91 receptor on dendritic cells (DCs) and high-mobility group protein 1 (HMGB1)—a ligand for
the toll-like receptor (TLR-4) receptor on DCs is released by cancer cells. Additionally, ATP released
from cancer cells interacts with the P2X purinoceptor 7 (P2RX7) on DSc. (B) DCs are required for
cytotoxic CD8+ T cell priming. In this process, DCs uptake antigens from tumor cells undergoing
apoptosis and with the support of CD4+ helper cells present them to CD8+ T cells. Moreover, DCs
can secrete tumor necrosis factor α (TNF-α,) and interleukins (IL-6, IL-8, and IL-12) that help to
trigger the anticancer immune response. (C) Activated CD8+ T cells can kill cancer cells through
the release of granzyme A/B (GZMA/B), perforins (PFN), or interferon gamma (INFγ) and TNFα
that (D) induce cell death through the activation of the extrinsic apoptosis pathway. The extrinsic
pathway is triggered with the binding of certain ligands to the TNFα receptor super family. This
leads to the oligomerization of the receptor and activation of procaspase-8 through the recruitment of
adaptor proteins and the formation of a death-inducing signaling complex (DISC). (E) Cancer cells
reshape the tumor immune microenvironment into an immunosuppressive surrounding that is rich in
regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), group 2 innate lymphoid cells
(ILC2s), and tumor-associated macrophages (M2) that release immunosuppressive interleukins (IL-4,
IL-10, IL-13, and IL-35) or transforming growth factor β (TGF-β) and up-regulate receptors (such as
programmed cell death 1 ligand 1 (PD-L1)) that “hide” tumor cells from the immune recognition (not
shown here). This topic has been extensively reviewed in [15–17] and will not be discussed in detail
here. Casp—caspase; FADD—FAS-associated death domain protein; TCR—T-cell receptor. Created
with BioRender.com accessed on 1 February 2023.

BioRender.com
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Monoclonal antibodies (mAbs) targeting PD-1/PD-L1 immune checkpoint have led
to a remarkable anti-tumor response in many cancer types [18]. There are now three anti-
PD-1 immune checkpoint inhibitors that are licensed for use in clinical settings. These
inhibitors include pembrolizumab [19–22], nivolumab [23–26], and cemiplimab [27,28].
Additionally, approval was given for three anti-PD-L1 antibodies: atezolizumab [29–31],
avelumab [32–34], and durvalumab [35–37]. The targeting of PD-1/PD-L1 with mAbs has
been reviewed by many authors [12,38,39].

2. PD-1/PD-L1 Pathway

PD-1, also known as CD279, is a transmembrane protein anchored in the cell mem-
brane of activated T and B lymphocytes. PD-1 plays a crucial role in preventing immune-
mediated tissue damage by suppressing the actions of self-reactive and inflammatory
effector T lymphocytes against non-hematopoietic tissues [40,41]. The protein is built up
of an extracellular IgV domain (ED), a transmembrane domain (TM), and an intracellular
cytoplasmic tail (ICT). ICT comprises tyrosine-bearing signaling motifs: immunoreceptor
tyrosine-based switch motif (ITSM) and immunoreceptor tyrosine-based inhibitory motif
(ITIM) [42,43]. Phosphorylation of ITIMs and ITSMs leads to the recruitment of Src ho-
mology region 2 domain-containing phosphatases (SHP-1 and SHP-2) [43,44]. SHP2 is
preferably recruited to the ITSM motifs, while SHP1 can bind both tyrosine motifs [45].
This event suppresses PI3K/AKT/mTOR [46] and PLCg-1/RAS/MEK/ERK1/2 [47] (for
full names of the proteins see the Abbreviations section) signaling pathways responsible for
the control of interleukin 2 (IL-2) expression and leads to the degradation of forkhead box
protein O1 (FOXO1)—a transcription factor capable of PD-1 expression control. This results
in the down-regulation of PD-1 levels [48,49]. SHP-1 and SHP-2 inhibit subsequent T-cell
receptor (TCR) signaling pathways exhibiting the negative effect of T cell proliferation
and the generation of cytokines including IFN-γ and IL-2, which eventually results in
immune evasion by tumor cells [11]. Evidence shows that at least one of the mechanisms
by which PD-1 inhibits activation of the PI3K/AKT pathway relies on phosphatidylinositol
3,4,5-trisphosphate 3-phosphatase and the dual-specificity protein phosphatase/casein
kinase II (PTEN/CK2) axis [50]. This topic was recently reviewed in [43].

PD-1 binds to particular ligands known as programmed cell death ligands PD-L1 (B7-
H1) and PD-L2 (B7-DC) that belong to glycoproteins present on the surface of tumor cells.
PD-L2 is thought to be expressed only in APCs, including DCs, macrophages, monocytes,
and some B cells. Limited evidence suggests it may also be involved in tumor evasion in
some cases [51–53].

In the PD-L1 structure, ED, TM, and the intracytoplasmic region can be distin-
guished. The ED domain of PD-L1 encompasses Ig variable distal and proximal re-
gions. The intracytoplasmic region contains three conserved amino acid motifs: RMLD-
VEKC, DTSSK, and a QFEET motif. The RMLDVEKC motif is crucial for the phos-
phorylation of the signal transducer and activator of transcription 3 (STAT3) and the
other DTSSK motif works as a suppressor of this process [54,55]. Binding of PD-L1 to
PD-1 results in a reduction in the generation of cytokines as well as a suppression of
the proliferation and function of T lymphocytes [11,12,54]. The expression of PD-L1 in
cancer cells is controlled by several signaling pathways and proteins often mutated or
up-regulated during malignant transformation, including COX2/mPGES1/PGE2 [56],
hypoxia-inducible factor alpha (HIF1α) [57–59], nuclear factor NF-kappa-B p105 subunit
(NF-κB) [60], PI3K/AKT/mTOR [61,62], RAF/MEK/ERK/MAPK [63–66] pathway, and
STATs [67,68].

3. Canonical DNA Damage Response

DNA damage response (DDR) plays a central role in the control of the genomic stability
of cells. DNA damaging agents trigger complex signaling pathways that direct the fate of
damaged cells. Depending on the type of insult, different pathways are triggered to finally
provide output reliant on the abundance of the trigger and the metabolic state of the cell.
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These signaling events may result in (a) damage tolerance, (b) DNA repair, (c) cell death, or
(d) cell-cycle arrest. Despite the large number of DNA damage types that can be introduced
in the DNA structure by a variety of DNA-damaging factors, the DDR signaling shares
common features [69]. Here we focus on the cellular response to the DNA strand breaks as
it is the prevailing type of DNA damage introduced by anti-cancer agents.

The DDR pathway is always initiated with the detection of damage by specific proteins.
Double-strand breaks (DSBs) are sensed by MRN complexes composed of MRE11-RAD50-
NBS1 proteins. This event leads to the recruitment and activation of serine-protein kinases,
including ataxia telangiectasia mutated (ATM). Furthermore, the mediator of DNA damage
checkpoint protein 1 (MDC-1) is recruited at the damage sites and works as a platform for
ATM recruitment, leading to its retention at the chromatin close to the damage location.
ATM undergoes autophosphorylation and works as a master regulator of response to DSBs
as it phosphorylates a multitude of targets in the DDR including MDC1, nibrin (NBS1),
TP53-binding protein 1 (53BP1), breast cancer type 1 susceptibility protein (BRCA1), and
histone protein H2AX. The phosphorylation of H2AX leads to the formation of γH2AX
foci (H2AX protein phosphorylated on Ser139) that recruits the MDC-1 platform protein
and provides a positive feedback loop that amplifies the damage response. MDC-1 also
supports the formation of repair complexes through the recruitment of E3 ubiquitin-protein
ligases including RNF4, RNF8, and RNF168 that are necessary for the recruitment of other
factors, including 53BP1 and BRCA1 to the sites of damage [70–72].

In contrast, single-stranded DNA (ssDNA) that occurs at stalled replication forks as
a result of minichromosome maintenance (MCM2-7) complex helicase activity and as an
intermediate in DNA repair pathways is sensed by serine/threonine-protein kinase ATR.
Similar to ATM, ATR kinase exists as an inactive dimer that undergoes autophosphorylation
and dissociation in response to DNA damage. ATR is recruited to the replication protein
A/ATR-interacting protein (RPA-ATRIP) complexes formed on the ssDNA. Moreover,
full activation requires the presence of other factors including topoisomerase 2-binding
protein 1 (TOPBP1) and a cell cycle checkpoint control protein complex 9-1-1 (composed of
RAD9-RAD1-HUS1) [69,71].

In the downstream events, ATR and ATM kinases activate serine/threonine-protein
kinases CHK1 and CHK2 responsible for the inhibition and degradation of M-phase
inducer phosphatases CDC25A and CDC25C, which normally contribute to the progression
of the cell cycle through the dephosphorylation of cyclin–cyclin-dependent kinase (CDK)
complexes. Furthermore, the activation of cellular tumor antigen p53 (TP53) protein up-
regulates the expression of pro-apoptotic proteins and cell cycle inhibitors that ultimately
results in cell cycle arrest or cell death [71,73,74]. This topic has been reviewed by multiple
authors and will not be discussed here in detail [75–77].

4. DNA Strand Break Repair

Poly [ADP-ribose] polymerase 1 (PARP-1) is one of the earliest responders to strand
breaks that catalyze the transfer of polymer ADP-ribose residues (PAR) to many down-
stream targets including histones, DNA repair proteins, transcription factors, as well as
PARP-1 itself. This event allows the relaxation of DNA molecules near the damage site and
recruitment of other DDR proteins containing PAR-binding modules that are involved in
multiple pathways of DNA repair, including base excision repair (BER) and nucleotide exci-
sion repair (NER), mismatch repair (MMR), single-strand break (SSBR), and double-strand
break (DSBR) repair proteins [70,72,78].

DSBs can be repaired in one of two major ways: homologous recombination (HR) [79]
or non-homologous end joining (NHEJ) [80]. The pathway that is used to repair DSBs
is influenced by the phase of the cell cycle and the status of the chromatin. PARP-1 can
detect breaks in the DNA, and its activity plays a role in the early recruitment of various
proteins such as damage sensors MRE11 and NBS1. The early recruitment of MRE11
nuclease may also promote DNA repair via HR. Moreover, the interaction of ATM with
PARs can stimulate kinase activity in vitro. PARP1 is also essential for the early and prompt
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mobilization of BRCA1 to DSBs. In contrast, PARP1 may restrict the activity of HR through
PAR-ylation of BRCA1 allowing its association with receptor-associated protein 80 (RAP80)
to inhibit this type of DNA repair [78].

HR repair represents a high-fidelity mechanism of DSB repair. It is initialized with
the recruitment of MRE11 that exhibits endo- and exo-nucleolytic activity that allows
the formation of ssDNA fragments. Moreover, it interacts with CtBP-interacting protein
(CtlP) and BRCA1 which help to control the resection process. Furthermore, CDKs and
ATM phosphorylate CtBP-interacting protein (CtIP) which promotes end resection and HR
through the recruitment of DNA helicase BLM and exonuclease 1 (EXO1) to the sites of
DNA damage. In the next step, ssDNA is covered with RPA protein followed by recruitment
of platform protein RAD52 and RAD51 recombinase that controls DNA strand invasion
together with BRCA2 protein [71,72,79,81].

In contrast, the NHEJ pathway is activated in response to the DSBs that arise through-
out the cell cycle. It is initiated with the binding of X-ray repair cross-complementing
protein 5/6 (KU70/80) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs)
that form nucleoprotein complexes often described as synapses. Other NHEJ components
include X-ray repair cross-complementing protein 4 (XRCC4), non-homologous end-joining
factor 1 (NHEJ1/XLF), and DNA ligase IV that form complexes and allow completion of the
repair process. Similarly to HR, the NHEJ repair pathway is controlled by PARP-1. PARP-1
binds and stimulates the catalytic activity of DNA-PKcs. Moreover, it may promote the
recruitment of chromatin modeling enzymes to sites of DSBs for efficient repair [71,82,83].

5. DNA Damage Response and PD-1/PD-L1

Radiotherapy and chemotherapy induce DNA damage in cancer cells, which ul-
timately lead to their elimination. Recent research has provided evidence to support
the hypothesis that DDR is a significant element impacting the effectiveness of cancer
immunotherapy. The effect of conventional chemotherapy on the immune system is be-
ginning to emerge. This is due to the fact that such agents are usually tested for their
anticancer activity in cell cultures in vitro and immunodeficient mice and do not include
any immunological follow-ups [84]. Accumulating evidence suggests that (re)activation
of tumor-targeted immune responses is essential to the success of both conventional and
targeted anticancer treatments (in addition to their direct cytostatic/cytotoxic effects).
Through the enhancement of the immunogenicity of malignant cells and blockage of the
immunosuppressive systems developed by cancers, the combination of chemotherapy with
immune checkpoint inhibitors can provide significant benefits for cancer patients [84].

For example, it was found that exposure of cancer cells to physical DNA damaging
factors including ionizing radiation [85,86] and chemical factors that induce DNA damage
such as topoisomerase inhibitors (camptothecin [87], doxorubicin [88–90], and irinote-
can [91]), alkylating agents (carboplatin [92,93], cisplatin [94–98], oxaliplatin [99], and
mitomycin C [100]), or antimetabolites such as decitabine [101–103] and 5-fluorouracil (5-
FU) [104–106] can lead to up-regulation of PD-L1 expression in the treated cells. Moreover,
a growing body of evidence indicates that the effectiveness of PD-1/PD-L1 therapy may
be connected to genomic instability (particularly microsatellite instability (MSI)) [107–113].
This profound response of tumors exhibiting high genomic instability may be partially
explained by excessive production and release of peptide neoantigens that favor the recruit-
ment or activation of tumor-infiltrating lymphocytes (TILs) and result in up-regulation of
PD-1/PD-L1 in immune and cancer cells [114]. The up-regulation of PD-L1 in cancer cells
might also increase the availability of epitopes to which anti-PD-L1 agents can bind and
might further explain the therapeutic efficacy of the combined treatments. Indeed, tumors
expressing high levels of PD-L1 respond well to anti-PD-1/PD-L1 treatments [115,116].
Multiple studies have shown that increased expression of PD-L1 also occurs following
CDK2/4/6 [117,118] and serine/threonine-protein kinase mTOR [119] inhibition and that
targeting of the above-mentioned kinases and simultaneous treatment with anti-PD-1/PD-
L1 agents may enhance the therapeutic effect exerted by these agents alone.
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The up-regulation of PD-L1 expression in response to DSBs-inducing agents such as
etoposide and camptothecin or ionizing radiation is dependent on the ATM/ATR/CHK1
pathway. Moreover, the cells that survive the exposure to ionizing radiation revert to
normal expression levels of PD-L1, indicating only transient up-regulation of this immune
checkpoint molecule in response to DNA damage. Moreover, cells lacking crucial DSBR
pathway components including BRCA2 or Ku70/80 exhibit up-regulated levels of PD-L1,
and this enhanced expression of the protein is mainly due to CHK1 activation following
DNA end resection by EXO1 rather than the result of DSB occurrence. This was confirmed
with an experiment using the CHK1 inhibitor in BRCA2-defective cells, where up-regulation
of PD-L1 was not observed. Furthermore, PD-L1 up-regulation in the absence of KU-80
and DNA damage is probably due to the build-up of replication-associated DSBs to which
KU80 may bind. In summary, tumors defective in BRCA2 or KU70/80 exhibit higher
expression of PD-L1 following ionizing radiation treatment due to the excessive rates of
DNA end resection in the absence of KU70/80 that promotes ATR-CHK1 signaling and
PD-L1 up-regulation [100].

Furthermore, in reaction to DSBs, both STAT1/3 and interferon regulatory factor 1
(IRF1) become active. It is important to note that the overexpression of PD-L1 requires
IRF1, which suggests that the DSB-dependent up-regulation of PD-L1 is driven by the
classical JAK1/2-STAT1/2/3-IRF1 pathway [100,106,120–122]. This is consistent with the
early findings on the mechanism of INFγ-induced up-regulation of PD-L1 [123].

6. Cytotoxic Agents, DDR, and Immunotherapy
6.1. Irinotecan

Irinotecan is one of the best-studied topoisomerase I inhibitors. It has been employed
in the treatment of various types of malignancies such as pulmonary, pancreatic, gastric,
ovarian, cervical, and colorectal cancer. Irinotecan prevents the relegation of strand breaks
introduced during the physiological activity of the enzyme through covalent binding
with topoisomerase. The formed ternary complex composed of the drug, DNA, and
topoisomerases work as an obstacle for replication and transcription machinery. Its collision
with the machinery results in the formation of DSBs and activation of the ATM-CHK2-TP53
signaling pathway which eventually leads to DNA repair or apoptosis, depending on the
severity and abundance of damage [124].

According to the findings of McKenzie et al., patient-derived melanoma cell lines are
more vulnerable to T-cell-mediated cytotoxicity after being treated with topoisomerase I
inhibitors, such as topotecan, camptothecin, and irinotecan. This effect is highly dependent
on the TP53 mutational status. The T-cell response is highly proficient when the TP53
is wild-type or possesses a mutation that does not affect the TP53 activity [125]. Irinote-
can treatment in murine models of cancer have provided evidence that the drug may
affect the tumor immune environment in several ways, including (a) increased prolifera-
tion of tumor-specific CD8+ T cell, (b) increase in immunostimulatory IFNγ production,
(c) decreased amount of FOXP3+ regulatory T cells [91], and (d) myeloid-derived suppres-
sor cells (MDSCs) that are normally responsible for immunosuppressive effects with (e) an
accompanying overall increase in MHC class I and PD-L1 expression in tumor cells. More-
over, irinotecan exhibited a synergic effect when given anti-PD-L1 antibodies [84,91,126].
In 2015, the liposomal version of irinotecan known as Nal-IRI received approval from
regulatory authorities around the world for the treatment of metastatic pancreatic adenocar-
cinoma in conjunction with 5-FU. It has also been demonstrated that Nal-IRI can increase
the T-cell-mediated cytotoxicity that is directed toward tumor cells in vivo. As a result,
when paired with an anti-PD-1 mAb, it exhibited a greatly improved anticancer activity.
This combined treatment increased the infiltration of CD8+ T lymphocytes into the tumor,
capable of producing cytotoxic effects [124,125,127,128]. The impact of irinotecan on the
DDR and the tumor microenvironment is shown in Figure 2.
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Figure 2. Effect of irinotecan and etoposide on the DNA damage (DDR) and immune response.
Cancer cell (A) Irinotecan inhibits DNA topoisomerase I which leads to the formation of single-strand
breaks (SSBs) and double-strand breaks (DSBs). Single-stranded DNA (ssDNA) in the replication fork
that arises due to helicase activity is coated with replication protein A (RPA) protein and a mediator of
DNA damage checkpoint protein 1 (MDC-1). MDC-1 serves as a platform protein for topoisomerase
2-binding protein 1 (TOPBP1), ATR-interacting protein (ATRIP), and serine/threonine-protein kinase
(ATR). In contrast, DSBs that arise through the conversion of SSBs and activity of topoisomerase
II inhibitors (here etoposide) are detected by the MRN complex composed of double-strand break
repair protein MRE11 (MRE11), nibrin (NBS1), and DNA repair protein (RAD50). The MRN complex
is involved in the recruitment and activation of ATM kinase. Activated ATR and ATM phosphorylate
have multiple targets including checkpoint kinases (CHK1/2). The phosphorylation of H2AX and
accumulation of MDC-1 contribute to further recruitment of ATR/ATM kinases and amplification
of damage signaling. CHK1 activation leads to the phosphorylation of signal transducers and
activator of transcription (STAT) proteins that control (up-regulate) the expression of interferon
regulatory factor (IRF1) and the major histocompatibility complex class I molecule (MHC-I). IRF-1
works as a transcription factor for programmed death ligand-1 (PD-L1) protein. Tumor immune
microenvironment (B) Topoisomerase inhibitors stimulate the anti-tumor immune response through
the increased proliferation and infiltration of CD8+ cells and the production of immunostimulatory
interferon gamma (INFγ). INFγ binds to and activates the interferon-gamma receptor (INFGR)
that contributes to the activation of tyrosine-protein kinase JAK (JAK)/STAT signaling to confer
the increased PD-L1 expression. Moreover, it also reduces the regulatory FOXP3+ T-cells and
myeloid-derived suppressor cells (MDSC) that normally attenuate the anti-tumor immune response.
Cells defective in double-strand break repair components (C): Inactivation of the breast cancer type
2 susceptibility protein (BRCA2) of homologous recombination (HR) pathway and X-ray repair
cross-complementing protein 5/6 (KU70/80) of the non-homologous end joining (NHEJ) pathway
contributes to the activation of CHK1/STAT/IRF/PD-L1 signaling. Created with BioRender.com
accessed on 1 February 2023.

BioRender.com
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6.2. Etoposide

About two-thirds of small-cell lung cancer (SCLC) patients have the advanced-stage
disease at diagnosis that is associated with a poor prognosis and a 5-year survival rate of
7%. This is attributed to the high rates of tumor cell proliferation, metastasis, and resistance
to currently available therapeutic options. The tumor is characterized by a high tumor
mutational burden (TMB) in many genes, which suggests that DNA errors brought on by
cell replication and mutations continue to build up and the immune system is unable to
recognize and destroy cancer cells [129]. For more than 20 years, the gold standard for
SCLC has been chemotherapy with platinum (either carboplatin or cisplatin) combined
with etoposide. In conjunction with carboplatin and etoposide, atezolizumab was the first
immune checkpoint inhibitor to be introduced as a first-line therapeutic option for extensive-
stage small-cell lung cancer (ES-SCLC) [130]. Recent studies have shown that immune
checkpoint inhibitors can improve the prognosis of patients with ES-SCLC [131,132].

Etoposide (epipodophyllotoxin) is another example of topoisomerase II poisons that
introduce DSBs [133]. As a consequence of DSBs occurrence, the ATM signaling pathway
is triggered which in turn results in the activation of CHK2 kinase [134,135]. A hyper-
sensitivity to etoposide and an increased rate of chromosomal abnormalities constitute
the consequences of mutations in the ATM kinase, which occurs in cells derived from
patients with ataxia telangiectasia [136,137]. The activation of ATM in reaction to etoposide
treatment entails the generation of the MRN complex foci [138–140]. Etoposide simulta-
neously activates ATR-mediated pathway and contributes to the recruitment of the 9–1–1
complex and activation of CHK1 kinase due to the accumulation of ssDNA coated with
RPA protein [134,135,141,142]. The presence of these RPA foci following etoposide treat-
ment may reflect an attempt by the cells to repair DSBs introduced by the agent through
the HR pathway [143]. Moreover, inhibition of DNA replication relies heavily on ATR
activation [135].

The majority of etoposide-induced topoisomerase-II-mediated DNA damage can be
repaired by NHEJ. This is consistent with the results of Malik et al. that have established the
key role of yeast KU70 of the NHEJ pathway for the survival of Saccharomyces cerevisiae
upon etoposide treatment [144–146]. Additionally, cells deficient in KU70 and KU80 but
not those with defective DNA-PKcs exhibit sensitivity to the etoposide treatment [147].
In contrast, Palmitelli et al. suggest that DNA-PKcs inhibition significantly improves
DNA damaging effects of etoposide with a twofold higher rate of chromatid breaks and
exchanges [148]. However, HR seems to be the primary pathway of etoposide-induced
damage repair. The formation of strand breaks associated with etoposide treatment is
associated with a reduction in the levels of KU70, KU86, and DNA-PKcs in addition to an
increase in the concentration of RAD51 protein, suggesting HR-mediated repair [149,150].

Cancer stem cells (CSCs) are a subpopulation of cells that have both the ability to
self-renew and the capability to develop into other cell types. It was discovered that cancer
cells can go through the epithelial-to-mesenchymal transition (EMT) in response to stimuli
from the cells that are present in the microenvironment of the tumor [151]. In turn, this
results in the production of cells that have characteristics that are comparable with those of
CSCs. In addition, the release of IL-6 into the milieu of the tumor by CSCs is the primary
factor responsible for the transformation of non-stem cancer cells into CSCs [152,153].
Additionally, IL-6 induces the expression of other cytokines that are advantageous for
the formation of CSCs. This topic was recently reviewed by our group [154]. Elevated
expression of PD-L1 as a consequence of the EMT/β-catenin/STAT3 pathway activation
improves the immune evasion of CSCs. Etoposide was shown to suppress the EMT/β-
catenin/STAT3 pathway and down-regulate PD-L1 expression in cancer cells [155]. It has
been demonstrated that etoposide can stimulate tumor-specific immunity, in which CD8+
cytotoxic T cells play an important role [156–158].

Contrasting evidence comes from the in vitro studies of etoposide treatment in breast
cancer cells and bone marrow stromal cells, where the drug induces up-regulation of PD-L1
on the cancer cell surface [159,160]. Moreover, teniposide (etoposide derivative) induces
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DNA damage in tumor cells, which is associated with the activation of the NF-κB pathway
and stimulation of interferon genes protein (STING)-dependent type I interferon signaling.
Both of these pathways contribute to the activation of DCs, which leads to the activation of
T cells. In addition, teniposide enhances the anticancer activity of anti-PD1 treatment in a
variety of mouse tumor models [161]. The DDR induction by etoposide and its influence
on the tumor microenvironment is presented in Figure 2.

6.3. Cisplatin and Other Platinum Compounds

Many types of human solid tumors are successfully treated with chemotherapeutic
drugs that crosslink DNA [162]. Two types of DNA crosslinks can be distinguished. The
intrastrand crosslink covalently connects two nucleotides of the same DNA molecule, while
the interstrand crosslinks (ICLs) develop when two different DNA strands are linked.
These latter crosslinks require bifunctional alkylating agents that have two reactive groups
that can form covalent bonds with DNA molecules [163]. ICLs constitute one of the most
difficult-to-repair lesions that cells encounter during their lifetime. The formation of ICLs
triggers DDR in cancer cells. The repair is carried out with the cooperative aid of at least five
repair pathways i.e., the Fanconi anemia (FA) pathway, HR, NER, MMR, and translesion
DNA synthesis (TLS) [164,165]. Unrepaired ICLs prevent strand separation of DNA during
DNA replication and transcription. As a consequence, cells die from mitotic catastrophe or
apoptosis [166].

Cisplatin has been widely used in the treatment of many cancer types. However, the
fundamental restrictions of cisplatin’s therapeutic use are the side effects and resistance
mechanisms that commonly accompany cisplatin-based therapy. Soon after the introduction
of cisplatin into the clinic, other platinum compounds were developed to mitigate the
negative effects of cisplatin. These include two of the most comprehensively studied
analogs of the drug: oxaliplatin and carboplatin [10,167].

Despite the belief that platinum-based treatments lack cell cycle selectivity, cytotoxicity
is boosted when the drug is delivered to cells during the S phase of the cell cycle. Cisplatin
induces a G2 cell cycle arrest and subsequent accumulation of cells in the G2/M phase
through the inhibition of the CDK2-cyclin A or B kinase, which is followed by apopto-
sis [168]. Only a minuscule fraction of the intracellular platinum can form a complex with
the DNA. Platinum compounds can interact with RNA [169,170] or various proteins which
may confer the platinum-based compound’s side effects and toxicity [171,172]. Although
physically different, cisplatin and oxaliplatin produce similar adducts at analogous lo-
cations in the DNA molecule [173]. The cisplatin-induced DNA damage is detected by
more than 20 different proteins from different DNA repair pathways including hMSH2
or hMUTSa (MMR), nonhistone chromosomal high-mobility group 1 and 2 (HMG1/2)
proteins, the human RNA polymerase I transcription ‘upstream binding factor’ (hUBF),
and the transcriptional factor ‘TATA-binding protein’ (TBP). Therefore, it is plausible to
postulate that DNA damage triggers many seemingly unrelated biological consequences,
each of which can be initiated by a different recognition protein [174].

Multiple molecular mechanisms of action were proposed for platinum compounds
such as cisplatin (Figure 3). For example, cisplatin was found to induce oxidative stress
through the excessive generation of reactive oxygen species (ROS). The concentration
of cisplatin and the length of exposure time are two of the most important factors that
determine the generation of ROS in cancer cells [175]. ROS cause both nuclear (nDNA)
and mitochondrial (mtDNA) DNA damage at rates of approximately 104 DNA lesions
per cell of an organism every day. These lesions include modified bases, interstrand and
DNA-protein crosslinks, SSBs, and DSBs [176,177]. The Jun amino-terminal kinase (JNK)
signaling plays a crucial role in cellular responses to oxidative stress. JNK triggers several
responses, including DNA repair, antioxidant synthesis, and cell death, depending on the
strength and length of the damage signal [178]. P73 is a homolog of the TP53 protein that is
involved in cell cycle regulation and apoptosis. Following treatment of cells with cisplatin
and transplatin, P73 establishes a complex with JNK leading to apoptotic cell death [179].
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Two factors are necessary for cisplatin to induce P73-dependent apoptosis: ABL tyrosine
kinase activation and the cellular proficiency of the MMR repair pathway that connects
damage sensing to apoptotic signaling [174].

Figure 3. Cellular and immune response to platinum compounds. (A) Cellular response to platinum
compounds: Platinum compounds induce DNA damage to both nuclear and mitochondrial DNA.
Mitochondrial DNA damage can lead to defects in the electron transport chain that contribute to
electron leakage and the formation of reactive oxygen species (ROS). ROS contribute to DNA damage
in both nuclear and mitochondrial DNA in a feedback mechanism. ROS also act as molecular
messengers and contribute to the activation of the Jun amino-terminal kinase (JNK) pathway that
together with the P73 protein trigger apoptotic cell death. C-ABL kinase activity and mismatch
repair (MMR)-proficiency are required for cell death to occur. DNA damage activates DNA damage
response (DDR), as indicated by the activation of serine/threonine kinases ATM and ATR. The
outcome of DDR relies heavily on cellular tumor antigen p53 (TP53) protein: (a) activation of TP53
in response to DNA damage triggers cell cycle arrest through up-regulation of cyclin-dependent
kinase inhibitor 1 (WAF1/CIP1), 45kd-growth arrest, and DNA damage (GADD45) and mouse
double minute 2 homolog (MDM2) or via WAF1/CIP1-mediated inhibition of cyclin-dependent
kinases (CDKs); (b) subsequent DNA repair via co-operation of nucleotide excision repair (NER),
MMR, homologous recombination (HR), Fanconi anemia (FA) pathway, or translesion synthesis
(TLS); or (c) apoptosis induction through intrinsic apoptosis pathway followed by ROS-damage
accumulation, TP53-dependent up-regulation of Bcl2-associated agonist of cell death (BAD), Diablo
IAP-binding mitochondrial protein (SMAC) and serine protease HTRA2 (OMI), or through activation
of FASL/FAS extrinsic apoptosis pathway. Cisplatin induces flice-like inhibitory protein (FLIP)
ubiquitination and degradation, which further activate the extrinsic pathway. (B) Effect of platinum
compounds on the antitumor immune response: Cyclic GMP-AMP synthase (cGAS)/stimulator of
interferon genes protein (STING) pathway and extracellular signal-regulated kinase (ERK) signaling
up-regulate programmed death ligand-1 (PD-L1) expression. The DNA-dependent protein kinase
catalytic subunit (DNA-PKcs) up-regulated in response to double-strand breaks (DSBs) associates
with PD-L1 conferring to the activation of the ERK pathway and further up-regulation of PD-L1. This,
on the one hand, contributes to immune evasion, but also increase the therapeutic efficiency of anti-
PD-L1 monoclonal antibodies (mAbs). Platinum compounds also enhance tumor recognition through
calreticulin (CRT) exposure on cell surface and high mobility group protein 1 (HMGB1) release,
induce CD4+/CD8+ T cell response, and suppress regulatory T cells (Treg) and myeloid-derived
suppressor cells (MDSC). APAF-1—apoptotic protease-activating factor 1; FADD—FAS-associated
death domain protein. Created with BioRender.com accessed on 1 February 2023.
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ATM, ATR, and DNA-PKcs are all rapidly activated in response to oxidative DNA
damage [180,181]. Nuclear foci composed of ATR and H2AX are formed at the location
of DNA damage in cells treated with cisplatin. ATR blockade using a dominant-negative
mutant prevents cisplatin-induced TP53 activation and renal cell death. In ATR-deficient
fibroblasts, cisplatin-induced TP53 activation and apoptosis are attenuated. Both CHK1
and CHK2 are phosphorylated in response to cisplatin treatment; however, CHK1 phos-
phorylation leads to the proteasomal degradation of the kinase. Therefore, ATR-CHK2
activation plays a crucial role in TP53-mediated apoptosis response [182,183]. In U87-MG
glioma cells, cisplatin treatment results in apoptosis with concomitant up-regulation of
cyclin-dependent kinase inhibitor 1 (WAF1/CIP1) which works as a suppressor of CDKs
activity [184]. Cisplatin causes apoptosis of ovarian cancer cells by increasing the levels
of TP53 in mitochondria and inducing the release of Diablo IAP-binding mitochondrial
protein (SMAC), cytochrome c, and serine protease HTRA2 (OMI). Apoptosis mediated by
cisplatin is dependent on TP53 and necessitates the release of SMAC. The release of SMAC
is directly triggered by TP53 in mitochondria [185]. There is also evidence that TP53 can
directly bind to cisplatin-damaged DNA complexes [167,186].

The apoptotic response triggered in response to platinum compounds is highly depen-
dent on TP53 phosphorylation by a multitude of activated signaling pathways including
extracellular signal-regulated kinase (ERK) [187,188], RAC-alpha serine/threonine-protein
kinase (AKT) [189], and protein kinase C (PKC) [190]. ERK phosphorylates TP53 leading
to up-regulation of WAF1/CIP1, 45kD-growth arrest and DNA damage (GADD45), and
mouse double minute 2 homolog (MDM2), providing the time necessary to repair induced
DNA damage [191]. Notably, phosphorylation of Bcl2-associated agonist of cell death
(BAD) on Ser-112 is mediated through the ERK pathway, while Ser-136 phosphorylation
is dependent on the PI3K/AKT pathway. Moreover, inhibition of the above-mentioned
pathways sensitizes cancer cells to cisplatin [189]. Similarly, inhibition of AKT results in
enhanced accumulation of TP53 in mitochondria and the release of SMAC conferring the
greater efficacy of cisplatin [185]. Furthermore, cisplatin also induces the extrinsic apoptosis
pathway as indicated by the activation of the FAS receptor, caspase 8, and effector caspases
3, -6, and -7 activation [192]. Moreover, cisplatin triggers apoptosis and flice-like inhibitory
protein (FLIP) ubiquitination and degradation in a TP53-dependent manner in vitro [193].

Platinum compounds exhibit a variety of effects on the anti-cancer immune response
(Figure 3). The up-regulation of PD-L1 in response to platinum compounds [9,93] is poten-
tially induced through the activation of the ERK1/2 pathway in vitro and in vivo [97,98].
Moreover, PD-L1 associates with DNA-PKcs that contribute to the activation of the ERK
pathway and as a feedback mechanism for the up-regulation of PD-L1. The inhibition of
PD-L1 with monoclonal antibody (H1A) sensitizes human triple-negative breast cancer
cells to cisplatin in vitro and in vivo [99], suggesting that the combination of the drug with
anti-PD-L1 treatments may enhance the therapeutic efficacy of chemotherapeutic drug
alone [9,194,195], at least in mouse tumor models. Moreover, cisplatin and oxaliplatin may
have different effects on CD8+ T cell fraction and function. Oxaliplatin seems to act as a
stronger activator of CD8+ T cells than cisplatin in preclinical models of head and neck
cancer [9]. Moreover, oxaliplatin was found to promote PERK/eIF2α/caspase 8/BAP31
signaling (see abbreviations section) to facilitate CRT exposure on the cancer cell surface
and HMGB1 release in a mouse model of colorectal cancer [196].

As mentioned above, the tumor microenvironment can be shifted from an immuno-
suppressive to an immune-supportive state following the use of platinum compounds.
This is accompanied by the activation of dendritic cells (CD80+ and CD86+), increased
antitumor effector CD4+, CD8+ T cells response, and decreased immunosuppressive regu-
latory T and myeloid suppressor cells ratios as observed in mice models of ovarian, lung,
and colon cancer [92,194,195]. An increase in CRT, MHC class I, antigen presentation,
and T-cell infiltration are some of the mechanisms by which cisplatin improves tumor
immunogenicity after both short- and long-term exposure. The cyclic GMP-AMP synthase
(cGAS)/STING pathway is triggered in response to cisplatin treatment. With the increased



Cells 2023, 12, 530 13 of 31

expression of PD-L1, MHC-I, and CRT in tumor cells, cGAS/STING overexpression changes
tumor immunogenicity and improves anti-PD-L1 treatments in in vitro and in vivo mice
models [95,197]. Conflicting results were obtained in clinical studies of platinum-based
chemotherapy on PD-L1 expression, where the treatment resulted in a decrease in the
immune checkpoint molecule in tumors from lung cancer patients [198]. However, both
the additive and synergic effects of platinum compounds and anti-PD-L1 antibodies have
been described in the literature [94,95,197,199].

7. Current Challenges and Future Prospects

The field of immunotherapy is constantly expanding. Immune checkpoint inhibitors
are a promising new treatment option for cancer treatment. Multiple clinical trials have
shown that immunotherapy can extend both progression-free survival (PFS) and overall
survival (OS) in cancer patients. The abundance of mAbs that have been granted FDA
approval and the number of cancer types for which they are used continues to grow, which
is reflective of the enthusiasm for PD-1/PD-L1 inhibition and its potential application in
clinical practice [200]. Still, mAbs possess many drawbacks, such as a lack of oral bioavail-
ability or poor permeability of tumor tissues, which leads to the overall low response rate of
PD-1/PD-L1 inhibition that limits their clinical effectiveness. Additionally, mAbs therapy
may drive immunogenicity issues and cause serious immune-related adverse effects (irAEs),
with possible deadly outcomes [201–203]. Alternatively, many small molecule inhibitors
may have certain advantages in dealing with these problems (Figure 4). Small molecule
inhibitors are more suitable for oral administration and are less prone to the occurrence
of serious irAEs. Moreover, they are less expensive, have better tissue permeability, and
possess many more other important characteristics, which make them more favorable for
potential clinical use compared with mAbs [202].

Figure 4. Comparison of small-molecule inhibitors and monoclonal antibodies (mAbs). Based
on [202]. Created with BioRender.com accessed on 1 February 2023.
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Many crystal structures were published after the FDA approved the use of monoclonal
antibodies targeting the PD-1/PD-L1 axis, demonstrating the interaction mechanisms of
antibodies as well as small-molecule compounds with PD-1 and PD-L1. These studies
provided information on hot spots that can be employed for the design of new, more specific
compounds targeting this pathway [11]. Moreover, they showed that the PD-1/PD-L1 pro-
tein interaction surface is large and hydrophobic, with no profound binding pocket making
it difficult to target with small-molecule inhibitors. The hydrophobic nature of this hot
spot also necessitates the use of hydrophobic molecules with significant adverse properties
including toxicity and low water solubility [204]. Nonetheless, multiple compounds from
different chemical classes, including biphenyls [205–207], terphenyls [208,209], biphenyls
with a ring fusion [210], elongated biphenyls [211], and symmetric biphenyls [212,213],
were tested for anti-PD-1/PD-L1 interaction; however, they relied heavily on binding assay
without their examination in biological systems. Moreover, the number of false-positive
hits is still too high as in the case of salicylates NCI 211717 and NCI 211845. Moreover,
when screening drugs with in vivo mouse models, structural variation between mouse and
human PD-1/PD-L1 should be considered as it can greatly affect druggability profiles [204].
Humanized knock-in animals could help to circumvent this obstacle [214].

Currently, immunotherapy is used with different forms of treatment to obtain a long-
lasting antitumor clinical response in patients who are resistant to monotherapy. In many
cases, PD-L1 is up-regulated in response to chemotherapeutic agents. Besides their cytotoxic
effect, chemotherapeutic drugs may enhance the tumor infiltration of CD8+ T cells and NK
cells, the maturation of APCs (DCs or tumor macrophages), and in some circumstances,
the activity of MDSCs as evidenced by animal model studies. In this manner, primary
cytostatic and cytotoxic drugs re-establish an immune-reactive tumor microenvironment,
which increases the tumor’s sensitivity to PD-L1-targeted monoclonal antibodies. However,
the challenge is to combine the chemotherapeutic drugs with anti-PD-L1 agents to surpass
the effectiveness of agents alone and alleviate the side effects of the drugs. A given cytotoxic
drug or regimen needs to be selected not only based on its ability to effectively kill cancer
and inhibit the expansion of cancer cells but also based on its tendency to modulate the
activity of immune-active cells and to sustain the activity of immunotherapy. Moreover,
many currently used drugs have not been examined in the context of immune activation
against the tumor cells or their utility in combinations with checkpoint inhibitors [8].

However, one of the most significant drawbacks of chemotherapy is still a lack of
specificity. Chemotherapy will target both the highly proliferating tumor cells as well as
normal cells including lymphocytes. Therefore, lymphopenia is one of the most common
side effects associated with the use of DNA-damaging agents. This can hamper the utility
of immune–chemotherapy drug combinations for the treatment of cancer. This limitation
could be overcome with the use of targeted agents, which exhibit lower toxic effects for
normal cells compared with chemotherapy. However, the effect of such agents and their
combinations, not only on PD-L1 expression but also on the alterations in the tumor
immune microenvironment, need to be assessed before their use in the clinic [8,215].

Cancer chemotherapy and radiotherapy are intended to eliminate cancer cells largely
by generating DNA damage. In a typical situation, the body’s inbuilt DNA damage
response machinery will detect and fix any affected DNA. The cells have a chance of
survival if the damaged lesions can be fixed. To precisely and effectively kill cancer cells
with therapies that generate DNA damage, it is crucial to take advantage of certain defects
in the DDR machinery that are present in cancer cells but not in normal cells [216]. By
personalizing treatment to patients whose tumors lack specific DDR functions, targeted
therapy offers the promise of a larger therapeutic window. The majority of cancers, if not all
of them, will have lost at least one or more crucial DDR pathway resulting in an increased
dependence on the compensatory pathways that are still functional and capable of removing
arising DNA damage and thereby preventing cell death. This feature can be exploited in the
design of specific DDR inhibitors that target crucial components of the above-mentioned—
non-defective DNA repair pathway that is used by cells for survival. This phenomenon
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known as synthetic lethality may help to selectively eliminate cancer cells leaving the
normal cells unharmed (such cells still have the first pathway intact and can repair the
DNA damage) [217–219]. This strategy has been successful in the past, as evidenced by the
use of PARP inhibitors in the treatment of BRCA-mutated cancers [220,221]. More recently,
the expansion of effective and selective agents that target DDR signaling components has
emerged as a promising therapeutic option, and this trend is expected to continue [222].
There are also several different examples of DDR-targeted drugs coupled with radiation
and chemotherapeutic drugs that have shown evidence of success in preclinical and clinical
testing [216,223]. On the other hand, there are a number of crucially important questions
such as what dose of DDR inhibitor will serve as an efficient radiosensitizer, how much
benefit will be derived from prolonged exposure to the DDR inhibitor following delivery
of radiation-induced damage, or even whether radiosensitization by the DDR inhibitor
is distinctive in particular DDR-deficient genetic characteristics. To determine whether
enhanced antitumor cell effectiveness is paired with increases in healthy tissues toxicity, or if
there is evidence that suggests an improved therapeutic index, is another matter of concern
when combining different approaches. Although anticancer activity and normal tissue
toxicity can be evaluated using distinct models, it is preferable to make use of a syngeneic
or orthotopic immune-competent rodent model, in which antitumor activity and normal
tissue toxicity can be evaluated concurrently with the effect of such a combination on the
antitumor immune response. The conjunction of DDR therapeutics with chemotherapies
that induce DNA damage also has its challenges. There are two primary reasons for this: the
first is that chemotherapies are administered systemically, and the second is that they have
a tendency to have intersecting toxicities as DDR inhibitors, specifically gastrointestinal
and bone marrow toxicity. As a consequence of this, a significant number of clinical studies
have been stopped since the risks involved are intolerable. This topic was thoroughly
reviewed by O’Connor in an excellent paper [224] and the toxicity of DDR inhibitors was
discussed recently by Martorana et al. [225]. Moreover, the resistance to DDR inhibitors is a
major concern that influences the success of the therapy [226].

Large-scale functional genomic screens have identified a growing number of genetic
vulnerabilities throughout the DDR landscape beyond PARPi. This has led to a variety of
novel synthetic lethal targets and inhibitors, which may expand DDR inhibitor use beyond
HR and address PARPi resistance. For example, berzosertib (VX-970) is a first-in-class
ATR inhibitor that has been examined as monotherapy or in combination with cytotoxic
chemotherapy drugs (topotecan, carboplatin, cisplatin, and gemcitabine) in phase 1 clinical
studies and showed overall safety and clinical benefits in patients. These findings prompted
berzosertib–cytotoxic chemotherapy research. For example, berzosertib plus gemcitabine
improved PFS in a randomized phase 2 trial of platinum-resistant ovarian cancer. BAY
1895344 constitutes another oral selective and potent ATR inhibitor developed and tested
in vivo. Preclinical investigations of this agent as monotherapy in DDR deficit tumors
showed promising synergistic anticancer activity with DNA-damage-inducing chemother-
apy or radiotherapy. The anticancer activity of BAY 1995344 as a single-agent therapy
has been demonstrated to be quite promising; hence, more research is currently being
conducted in combination with a PARPi (niraparib) or an immune checkpoint inhibitor
(pembrolizumab). The effectiveness and safety of combining PARPi with anti-PD1/PD-L1
antibodies in treating various cancers have been the subject of multiple clinical inves-
tigations. There were no unexpected adverse events or additive toxicities seen in the
MEDIOLA trial (NCT02734004), a phase 1/2 study examining the combination of olaparib
and durvalumab (anti-PD-L1 antibody) in four different types of cancer: germline BRCA-
mutated metastatic breast cancer, germline BRCA-mutated platinum-sensitive relapsed
ovarian cancer, relapsed gastric cancer, and SCLC. A promising anticancer activity was
also revealed in a phase 2 trial of melanoma patients treated with the combination of ATR
inhibitor ceralasertib with durvalumab. This topic was extensively covered in other recent
reviews [227,228].
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The tumor immune microenvironment is profoundly impacted by tumor-promoting
inflammation, which in turn affects the success of cancer immunotherapy. Evidence is
mounting that inhibiting DDR in conjunction with an immune checkpoint inhibition may
increase inflammation in the tumor microenvironment, hence improving immune detection
and the killing of cancer cells. Micronucleus and cytosolic chromatin fragments generation
are both increased in cancer cells treated with DDR inhibitors due to the DSBs occurrence
and genomic instability induction. Pattern recognition receptors (PRRs), which are part
of the innate immune system and identify pathogenic nucleic acids such as virus DNA
or RNA, recognize the cytosolic DNA produced from DSBs and MNs. The detection of
cytosolic DNA by PRRs initiates IFNγ signaling and accompanying innate and adaptive
immune responses, similarly as in the case of DAMPs, facilitating the anti-tumor immune
response [228]. Several genotoxic treatments, both in the clinic and in animal models, have
been found to up-regulate the cGAS-STING pathway and enhance the efficacy of cancer
immunotherapy. Cancer immunotherapy can be improved by activating the cGAS-STING
pathway, which has been linked to the inhibition of ATM, ATR, CHK1, and PARP [229].
This topic was reviewed by Huang et al. and Wang et al. who summarized recent clin-
ical trials involving combinations of immune checkpoint inhibitors with DDR-directed
therapies [228,230].

Despite the significant response of melanoma, non-small-cell lung cancer, and lym-
phoma patients to PD-1/PD-L1-directed treatments, fewer benefits were observed in pa-
tients suffering from other cancer types. This could be a result of a scarcity of tumor
antigens, poor antigen presentation, and the composition of the tumor microenvironment.
The establishment of clinical biomarkers for anti-PD-1/PD-L1 treatments is therefore an
urgent need. Most of the research focused on PD-L1 as a prognostic marker of treatment re-
sponse. However, the inducible nature of PD-L1 expression and non-uniform expression of
PD-L1 even in a single tumor adds another layer of complexity to the problem [11,200,231].
Furthermore, this therapeutic approach may be especially useful for a subset of patients
who share certain DDR and immune biomarkers (e.g., HR-deficiency [232], TMB-high [233],
MSI-high [234,235], deficiency in MMR [236–238], and profound expression of immune
checkpoint molecules and their variation [239,240]). For example, TMB is associated with
the production of abnormal proteins that are degraded proteolytically, leading to the pro-
duction of neoantigens recognized by T-cells that release IFNs and lead to the stimulation
of IRF and PD-L1 up-regulation. Furthermore, both BER and MMR-deficient cells will
produce more neoantigens, leading to the up-regulation of PD-L1. Additionally, cells
defective in HR and NHEJ pathways may respond better to the anti-PD-L1 therapies due
to the release of DAMPs in response to chemotherapy or radiotherapy [241].

Moreover, drug resistance has considerably reduced the clinical benefits of immunother-
apy [200]. Among the resistant mechanisms involving the DDR in response to immune
checkpoint therapy, several factors can be distinguished including low neoantigen burden,
low PD-L1 expression in certain types of tumors, down-regulated tumor MHC expression,
recruitment of immunosuppressive cells, and the release of cytokines in the tumor milieu.
Nevertheless, by increasing DNA damage with DDR pathway inhibitors, tumor microen-
vironment inflammation can be altered, immunogenic cancer cell death can be triggered,
and anticancer immune responses can be stimulated [242]. For example, inhibiting ATR
increases the inflammatory IFN response and cytokine gene expression that is triggered by
radiation, both in vivo (especially CCL2, CCL5, and CXCL10) and in vitro (CCL3, CCL5,
and CXCL10) [243]. Combining an ATR inhibitor with an immune checkpoint blocker is
justified since, in addition to increasing DNA damage, the former also decreases PD-L1
levels and boosts anti-tumor immune responses [244].

Furthermore, various in vitro and in vivo studies have shown that classical
chemotherapeutic drugs such as platinum compounds including cisplatin [245–250]
and lobaplatin [251–253], antimetabolites including 5-FU [254] and decitabine [255], or
topoisomerase inhibitors such as doxorubicin [256–258] may trigger cancer cell pyropto-
sis [259]. It appears that the expression of gasdermines (GSDMs) in target cancer cells
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determines whether chemotherapeutic agents and cytotoxic lymphocytes promote pyropto-
sis or apoptosis. This tumor suppressor gene is frequently suppressed in cancer cells, most
likely as a result of promoter methylation. Therefore, DNA methyltransferase inhibitors
such as decitabine may sensitize cancer cells to pyroptosis by re-establishing gasdermin
E (GSDME) expression. By releasing inflammatory chemicals into the extracellular en-
vironment, pyroptotic cells trigger an inflammatory and immunological response. Cells
undergoing pyroptosis produce molecules that contribute to inflammation and therefore
may boost anti-PD-L1 therapies. These inflammatory factors include pro-inflammatory
cytokines IL-1β, IL-18, and DAMPs such as ATP, DNA, or HMGB1, and in doing so they
regulate the proportions of tumor-infiltrating immune cells such as T cells, NK cells, DCs,
monocytes, and MDSCs [260–263]. Pyroptosis, which is a highly immunogenic form of cell
death, generates local inflammation and draws inflammatory cell infiltration. This presents
a significant potential to alleviate the immunosuppression of tumor microenvironments
and elicit a systemic immune response in the treatment of solid tumors [262]. Indeed,
increased levels of GSDME in cancer cells resulted in a substantial rise in the number of
antigen-specific CD8+ T cells and intra-tumoral NK cells. It also resulted in a boost in the
expression of granzyme B, perforins, IFN-γ, and TNF-α in TILs, as well as an increase in
the phagocytosis of tumor cells by tumor-associated macrophages in a melanoma xenograft
model treated with serine/threonine-protein kinase B-raf (BRAF) and mitogen-activated
protein kinase kinase (MEK) inhibitors [264]. It has been, however, hypothesized that
a persistent inflammatory state raises the likelihood of cancer development. Because of
the local inflammatory milieu, angiogenesis, invasion, and metastasis are all more likely
to occur. It seems that the level of equilibrium that exists in the microenvironment be-
tween pro-tumorigenic factors and ones that are anti-tumorigenic is what controls the
formation of tumors. Moreover, the induction of pyroptosis may lead to damage to nor-
mal tissues. Nevertheless, the precise control of inflammasome activation and pyroptosis
could present an opportunity to significantly enhance the efficacy of immune treatment
in the near future [262,265,266]. This is evidenced by the number of clinical drugs and
pre-clinical compounds that activate pyroptosis in cancer cells and their combinations with
immune checkpoint inhibitors as reviewed recently by Wang et al. [263]. The existing links
between DDR induced by chemotherapeutic drugs, DDR-inhibitors, and immunotherapy
are presented in Figure 5.

Figure 5. The existing links between the use of chemotherapeutic drugs, DNA damage response
(DDR) inhibitors, and immunotherapy with the crucial questions, advantages, and disadvantages of
their use. For reference see Section 7. Created with BioRender.com accessed on 1 February 2023.
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8. Conclusions

The understanding of the influence of the combinations of chemotherapeutic drugs
and DDR inhibitors on the tumor immune microenvironment may help to increase the
effectiveness of cancer treatment and limit the detrimental influence of therapies on normal
cells, alleviating potentially life-threatening side effects. Despite the promise it holds for
cancer patients, still many concerns remain. One of them is the appropriate selection
of patients that could benefit the most from the combinations of drugs. The advances
in the comprehension of the molecular biology of cancer and its response to potentially
complementary therapies now help to increase the likelihood of therapy success.
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Abbreviations

53BP1 TP53-binding protein 1
5-FU 5-fluorouracil
AKT RAC-alpha serine/threonine-protein kinase
APC Antigen-presenting cell
APAF-1 Apoptotic protease-activating factor 1
ATM Serine-protein kinases ataxia telangiectasia mutated
ATRIP ATR-interacting protein
BAD Bcl2-associated agonist of cell death
BAP31 B-cell receptor-associated protein 31
BER Base excision repair
BRAF Serine/threonine-protein kinase B-raf
BRCA1/2 Breast cancer type 1 susceptibility protein 1/2
CDC25A/C M-phase inducer phosphatases
CDK Cyclin-dependent kinase
cGAS Cyclic GMP-AMP synthase
CHK1/2 Serine/threonine-protein kinase CHK1/2
CK2 Casein kinase II
COX2 Cyclooxygenase-2
CRT Calreticulin
CSC Cancer stem cells
CtIP CtBP-interacting protein
DAMPS Damage-associated molecular pattern molecules
DCs Dendritic cells
DDR DNA damage response
DISC Death-inducing signaling complex
DNA-PKcs DNA-dependent protein kinase catalytic subunit
DSBR Double-strand break repair
DSBs Double-strand breaks
ED Extracellular domain
eIF2α Eukaryotic translation initiation factor 2A
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EMT Epithelial-to-mesenchymal transition
ERK Extracellular signal-regulated kinase
ES-SCLC Extensive-stage small cell lung cancer
EXO1 Exonuclease 1
FA Fanconi anemia
FADD FAS-associated death domain protein
FdUMP 5-fluoro-2′-deoxyuridine 5′-monophosphate
FdUTP Fluorodeoxyuridine triphosphate
FLIP Flice-like inhibitory protein
FOXO1 Forkhead box protein O1
GADD45 45kd-growth arrest and DNA damage
GDSM Gasdermin
GZMA/B Granzyme A/B
HIF-1α Hypoxia-inducible factor alpha
HMG1/2 Nonhistone chromosomal high-mobility group 1 and 2
HMGB1 High mobility group protein 1
HR Homologous recombination
hUBF Highly similar to Human upstream binding factor
ICD Immunogenic cell death
ICLs Interstrand crosslinks
ICT Intracellular cytoplasmic tail
IFN Interferon
IL Interleukin
ILC2s Group 2 innate lymphoid cells
irAEs Immune-related adverse effects
IRF Interferon regulatory factor
ITIM Immunoreceptor tyrosine-based inhibitory motif
ITSM Immunoreceptor tyrosine-based switch motif
JAK Tyrosine-protein kinase
JNK Jun amino-terminal kinase
KU70/80 X-ray repair cross-complementing protein 5/6
M2 Tumor-associated macrophages M2
mAbs Monoclonal antibodies
MCM2/7 Minichromosome maintenance complex
MDC-1 Mediator of DNA damage checkpoint protein 1
MDM2 Mouse double minute 2 homolog
MDSC Myeloid-derived suppressor cells
MDSCs Myeloid-derived suppressor cells
MEK Dual specificity mitogen-activated protein kinase kinase
MHC Major histocompatibility complex
MLH1 DNA mismatch repair protein MLH1
MMR Mismatch repair
mPGES1 Prostaglandin E synthase
MRE11 Double-strand break repair protein MRE11
MSH2/6 DNA mismatch repair protein MSH2/6
MSI Microsatellite instability
mtDNA Mitochondrial DNA
mTOR Serine/threonine-protein kinase mTOR
Nal-IRI Liposomal irinotecan
NBS1 Nibrin
nDNA Nuclear DNA
NER Nucleotide excision repair
NF-Kβ Nuclear factor NF-kappa-B p105 subunit
NHEJ Non-homologous end joining
NK Natural killer cells
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OMI Serine protease HTRA2
OS Overall survival
P2RX7 P2X purinoceptor 7
PAR Polymer ADP-ribose residues
PARP-1 Poly [ADP-ribose] polymerase 1
PARPi PARP inhibitor
PD-1/PD-L1 Programmed death receptor-1/programmed death ligand-1
PERK Eukaryotic translation initiation factor 2-alpha kinase 3
PFN Perforins
PFS Progression-free survival
PGE2 Prostaglandin E2
PI3K Phosphatidylinositol-4,5-bisphosphate 3-kinase
PKC Protein kinase C
PLCg-1 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-1
PLK Serine/threonine-protein kinase PLK
PRR Pattern recognition receptors
PS Phosphatidylserine
PTEN Phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase

and dual-specificity protein phosphatase
RAD50 DNA repair protein RAD50
RAD51 DNA repair protein RAD51 homolog 1
RAD52 DNA repair protein RAD52 homolog
RAP80 Receptor-associated protein 80
RNF4, -8, -168 E3 ubiquitin-protein ligases
ROS Reactive oxygen species
RPA Replication protein A
SCLC Small-cell lung cancer
SHP1/2 Src homology region 2 domain containing phosphatases
SMACK Diablo IAP-binding mitochondrial protein
SSBR Single-strand break repair
ssDNA Single-stranded DNA
STAT Signal transducer and activator of transcription
STING Stimulator of interferon genes protein
TBP TATA binding protein
TCR T-cell receptor
TGF-β Transforming growth factor β
TICs Tumor-initiating cells
TILs Tumor infiltrating lymphocytes
TLR Toll-like receptor
TLS Translesion DNA synthesis
TM Transmembrane domain
TMB Tumor mutational burden
TNF-α Tumor necrosis factor α
TOPBP1 Topoisomerase 2-binding protein 1
TP53 Cellular tumor antigen p53
Tregs Regulatory T cells
WAF1/CIP1 Cyclin-dependent kinase inhibitor 1
XLF Non-homologous end-joining factor 1
XRCC4 X-ray repair cross-complementing protein 4
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70. Kciuk, M.; Gielecińska, A.; Kołat, D.; Kałuzińska, Ż.; Kontek, R. Cancer-Associated Transcription Factors in DNA Damage
Response. Biochim. Biophys. Acta Rev. Cancer 2022, 1877, 188757. [CrossRef] [PubMed]

71. Kciuk, M.; Marciniak, B.; Mojzych, M.; Kontek, R. Focus on UV-Induced DNA Damage and Repair-Disease Relevance and
Protective Strategies. Int. J. Mol. Sci. 2020, 21, 7264. [CrossRef] [PubMed]
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