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Abstract: Progenitor cells isolated from the fetal liver can provide a unique cell source to generate
new healthy tissue mass. Almost 20 years ago, it was demonstrated that rat fetal liver cells repopulate
the normal host liver environment via a mechanism akin to cell competition. Activin A, which is
produced by hepatocytes, was identified as an important player during cell competition. Because
of reduced activin receptor expression, highly proliferative fetal liver stem/progenitor cells are
resistant to activin A and therefore exhibit a growth advantage compared to hepatocytes. As a result,
transplanted fetal liver cells are capable of repopulating normal livers. Important for cell-based
therapies, hepatic stem/progenitor cells containing repopulation potential can be separated from fetal
hematopoietic cells using the cell surface marker δ-like 1 (Dlk-1). In livers with advanced fibrosis,
fetal epithelial stem/progenitor cells differentiate into functional hepatic cells and out-compete
injured endogenous hepatocytes, which cause anti-fibrotic effects. Although fetal liver cells efficiently
repopulate the liver, they will likely not be used for human cell transplantation. Thus, utilizing
the underlying mechanism of repopulation and developed methods to produce similar growth-
advantaged cells in vitro, e.g., human induced pluripotent stem cells (iPSCs), this approach has great
potential for developing novel cell-based therapies in patients with liver disease. The present review
gives a brief overview of the classic cell transplantation models and various cell sources studied as
donor cell candidates. The advantages of fetal liver-derived stem/progenitor cells are discussed, as
well as the mechanism of liver repopulation. Moreover, this article reviews the potential of in vitro
developed synthetic human fetal livers from iPSCs and their therapeutic benefits.

Keywords: fetal liver stem/progenitor cells; iPS cells; cell transplantation; Dlk-1; human organoids

1. Introduction

The liver regulates many essential physiological processes that require the mainte-
nance of a constant liver mass. However, chronic injuries disrupt the hepatostat, resulting in
diminished regenerative capacity and impaired hepatic function [1]. Chronic liver diseases
(CLDs) lead to cirrhosis and cancer, major causes of death [2]. Organ transplantation is
presently the only therapeutic option, but organ shortage is a fundamental limitation [3,4].
Thus, new therapeutic approaches are in high demand, in turn requiring better comprehen-
sion of essential mechanisms involved in the progression of chronic diseases. Decades ago,
hepatocyte infusion became a promising alternative to liver transplantation [5]. Landmark
studies in rodents have shown that hepatocytes repopulate the liver, but only under very
specialized experimental conditions [6–9]. Importantly, hepatocytes do not significantly
replace tissue mass in normal livers [10], and therefore, studies have been focused on
identifying other cell sources that efficiently repopulate the liver. To date, rat fetal liver
stem/progenitor cells (FLSPCs) are the only cells that can significantly repopulate a normal
liver and replace functional tissue mass [11,12]. Moreover, different protocols have been
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developed to produce engineered human induced pluripotent stem cells (hiPSCs). Studies
are currently aiming to generate human hepatic cell lines with a growth advantage in vitro
that can be used for novel cell-based therapies in patients with liver disease.

2. Cell Transplantation Models and Donor Cell Candidates
2.1. Major Cell Transplantation Models

Decades ago, elegant studies demonstrated a “Proof-of-principle” that transplanted
rodent hepatocytes significantly replace functional liver mass and exhibit great translational
potential. Rhim et al. [6] infused mature lacZ-positive hepatocytes into transgenic mice,
which over-express an albumin-urokinase plasminogen activator (uPA) fusion construct, a
hepatotoxic transgene leading to severe liver injury [13] Using X-gal staining to detect lacZ
donor cells, the authors observed up to 80% tissue replacement after cell infusion [6]. Two
years later, in 1996, Grompe’s team [7] described a murine model of hereditary tyrosinemia
type 1, characterized by fumarylacetoacetate hydrolase deficiency (Fah−/−), resulting in
lethal liver dysfunction. Transplanted hepatocytes repopulated more than 90% of the
Fah−/− mouse liver within two months and restored functional tissue mass [7]. Both
cell transplantation models demonstrated that genetic modifications of the recipient liver
create hepatic microenvironments, leading to a strong growth advantage for donor-derived
hepatocytes. Twenty years later, Hui’s team [14] generated a Fah−/− rat model, which
harbored the major characteristics of human hereditary tyrosinemia type 1 as well as
developed advanced liver fibrosis, which have not been seen in Fah−/− mice [7] and Fah−/−

swine [15]. In Fah−/− rats, the authors showed efficient repopulation of hepatocytes, which
prevented fibrosis progression [14].

In 1998 and 1999, two research groups at Einstein described cell transplantation models,
in which the authors blocked hepatocyte proliferation and accomplished long-lasting cell
cycle arrest in rat livers by pretreating the animals with retrorsine [8] or irradiation of the
recipient liver [9] in conjunction with two-thirds partial hepatectomy prior to cell infusion.
Both treatments led to near-total liver tissue replacement by transplanted hepatocytes
after several months. A few years later, Petersen’s team [16] used the retrorsine derivative
monocrotaline as an alternative to retrorsine-based hepatocyte transplantation in mice and
rats to create an effective selective pressure for donor hepatocytes.

The described landmark studies not only demonstrate the ability of rodent hepatocytes
in effectively regenerating damaged liver tissue mass, but they also enable the evaluation of
the repopulation potential of alternative cell sources to hepatocytes (see below). In addition,
several immunocompromised rodent models were developed that can be used to study
the expansion properties of human-derived/engineered cells, e.g., uPAtg(+/−)/Rag-2−/−,
uPAtg(+/−)/SCID, uPAtg(+/−)/Rag-2−/−/γc−/−, Fah−/−/Rag-2−/−/Il-2rg−/−/NOD (FRGN),
Fah−/−/Rag-2−/−/Il-2Rγc−/−/SCID (FRGS), TK-NOG mice and Sprague Dawley/Rag-
2−/−/Il-2rg−/− (SRG) rats [17–24].

2.2. Various Cell Sources for Transplantation

The availability of “healthy” hepatocytes for human cell transplantation is limited,
and therefore, research is focused on the evaluation of alternative cell types. Stem and
progenitor cells represent a promising cell source of functional hepatocytes because they
exhibit high proliferative activity and differentiate into hepatocytes and/or bile ducts.

Oval cells [25] are adult liver progenitor cells that can be induced in rodent models
by 2-acethyl amino-fluorene, a choline-deficient diet, or D-galactosamine [25–27]. Cell
transplantation studies have shown that oval cells are capable of repopulating recipi-
ent mouse and rat livers, but only in hepatic microenvironments with induced strong
growth advantage for transplanted cells, i.e., under selective conditions, such as in Fah−/−,
monocrotaline-treated or retrorsine-treated liver [28–30].

In 1999, Petersen et al. [31] reported that bone marrow cells form oval cells when
transplanted into injured rat livers. Following studies showed evidence that bone marrow
cells can differentiate into hepatocytes [32], and up to 50% repopulation was achieved
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under highly selective conditions in the Fah−/− mouse [33]. However, the obtained tissue
replacement after bone marrow cell infusion occurred through cell fusion between host
hepatocytes and donor-derived myelomonocytic cells, rather than through cell differentia-
tion [34–36]. Additional studies determined that transplanted bone marrow cells did not
give rise to increasing oval cells in injured livers [37].

Human umbilical cord blood-derived hematopoietic stem cells, another candidate for
cell transplantation, have shown engraftment and hepatocytic differentiation potential after
infusion into nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice.
However, therapeutic repopulation levels have not been observed [38–40]. Other research
has focused on murine and human mesenchymal stem cells (MSCs), which were isolated
from bone marrow or umbilical cord blood. Several reports have demonstrated that trans-
planted non- or pre-conditioned MSCs are capable of engrafting and differentiating into
hepatocyte-like cells in immunodeficient NOD/SCID, Pfp/Rag-2−/− or SCID mice [41–45].
Christ’s team transplanted pre-differentiated rat and human adipose tissue-derived MSCc
into retrorsine-treated dipeptidyl-peptidase IV-negative (DPPIV−) F344 rats or Pfp/Rag-2−/−

mice and observed large hepatocyte-like cell clusters at 10 weeks after cell infusion [46,47].
Although these promising studies identified another donor cell source, significant tissue
replacement was not achieved in most of these studies. Nevertheless, MSC transplantation
has received increasing attention over the years because of its therapeutic effects based on
paracrine effects through the secretion of growth factors and cytokines, e.g., hepatocyte
growth factor (HGF), epidermal growth factor (EGF), tumor necrosis factor alpha (TNF-a)
and interleukin 6 (IL-6), which promote liver regeneration and the replacement of dam-
aged hepatocytes [48,49]. In a recent review, Liu et al. [50] summarized 160 clinical trials
in which stem cells were used for the treatment of end-stage liver diseases, cancer and
fibrosis/cirrhosis. The majority of used donor cells were MSCs derived from umbilical
cord, bone marrow and adipose tissue [50].

It was shown that amniotic epithelial cells (AECs) isolated from human term placenta
have the potential to differentiate into all three germ layers, including tissues of endoder-
mal origin (i.e., liver) [51]. After the transplantation of human or rat AECs into livers of
retrorsine-treated SCID/beige mice or DPPIV− F344 rats, respectively, cells were capable of
engrafting and differentiating into hepatocytes. Although repopulation levels were very
low with human AECs (up to 1%), rat-derived AECs formed big cell clusters containing up
to 4000 cells at 12 months, representing a promising cell source for transplantation [52]. In
subsequent studies, Strom’s research group demonstrated that human AEC transplantation
significantly extended survival and normalized the body weight in a mouse intermediate
maple syrup urine disease (iMSUD) model [53]. Other human AEC transplantation studies
achieved reduced liver fibrosis in CCl4-treated immunocompetent C57BL/6 mice [54,55] or
restored the glycosaminoglycan (GAG)-degrading enzyme α-l-iduronidase (IDUA) func-
tion in the livers of mucopolysaccharidosis type 1 (MPS1) NOD.129(B6)-Prkdcscid Iduatm1Clk

mice [56]. However, the achieved therapeutic benefits resulted in paracrine effects of AECs,
but significant repopulation levels were not shown in these cell transplantation models.

In 1981, a groundbreaking study described the isolation of murine pluripotent
embryonic stem cells (ESCs [57]. Two decades later, the differentiation potential of ESCs
into hepatocytes was investigated [58], which was the basis for several subsequent studies
evaluating the hepatic differentiation and repopulation potential of rodent and human
ESCs. However, therapeutic repopulation levels were not observed, and ethical concerns
and teratoma formation reduced interest in ESCs as a potential donor cell source for human
cell transplantation [22,59–61].

Evidence that fetal liver cells differentiate into both hepatic lineages was first shown
by Leduc and Wilson in 1963 [62] and Ebata and Mito in 1985 [63]. The authors transplanted
small tissue fragments isolated on embryonic days (EDs) 13, 14 and/or 18 into the spleens
of mice or Wistar rats and observed not only hepatocyte differentiation and long-term
survival up to 20 months in mice, but also differentiation into bile duct cells and hepato-
cytic nodule formation at 12 months in rats. Almost 20 years later, studies have described
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several methods for the isolation and purification of murine ED13.5 or 14.5 fetal liver cells
with hepatic differentiation potential, using fluorescence-activated or magnetic cell sorting
(FACS or MACS) [64–66]. After the transplantation of enriched epithelial ED12.5 cells
into retrorsine/CCl4-treated DPPIV− C57BL/6 mice, cells engrafted and up to 80% re-
population was observed at 4 months [67]. Kubota and Reid [68] isolated and enriched
epithelial rat ED13 fetal liver cells that differentiated into both hepatic lineages. Moreover,
a c-Met-specific antibody was used to purify rat ED14 fetal liver cells, which formed hepa-
tocytic cell clusters after infusion into retrorsine-treated animals [69]. In contrast, under
non-selective conditions, subsequent studies demonstrated that rat fetal liver cells can replace
>20% liver mass at 6 months [12]. The advantages of rat fetal liver cells are discussed in
CHAPTER 3.

Today, studies focus on generating human hepatic cell lines for cell transplantation,
e.g., via using engineered human induced pluripotent stem cells (hiPSCs) [70–73] or via
conversion from fibroblasts [73–75]. Using different protocols for generating hepatocyte-
like cells from hiPSCs [73], induced hepatocyte-like cells (iHeps) exhibit some ability
to repopulate rodent livers under selective conditions [74]. The potential of hiPSCs is
discussed in CHAPTER 4.

3. Rat Fetal Liver Cell Transplantation

Rats, as an important model organism for biomedical research, have many advantages
over other animal models [14]. One of the most frequently used cell transplantation models
is the Fisher (F)344 rat [76], which utilizes the transplantation of DPPIV+ donor cells,
isolated from wild-type F344 rats, infused into mutant DPPIV− F344 rats [77]. In this
syngeneic cell transplantation model, transplanted and repopulating donor cells can be
detected with enzyme histochemistry or immunohistochemistry for DPPIV (CD26) in the
host hepatic parenchyma. Using the F344 rat model, five major observations were made
using rat FLSPCs. First, massive tissue replacement was achieved in the normal liver.
Second, tissue replacement by transplanted cells occurred through a mechanism akin to cell
competition. Third, activin A, a multifunctional cytokine produced in the liver parenchyma,
played a key role during cell competition. Fourth, injured hepatic microenvironments with
advanced fibrosis/cirrhosis could be effectively replaced by transplanted cells, and fibrosis
could be reversed. Fifth, fetal liver-derived endodermal stem cells could also differentiate
into non-hepatic lineages driven by the diseased host environment.

3.1. Repopulation by Hepatic Fetal Liver Stem/Progenitor Cells in a Normal Liver

In 2001, Shafritz’s team reported that rat epithelial ED14 fetal liver stem/progenitor
cells (FLSPCs) repopulated ~7% of the recipient liver at 6 months after cell infusion in
conjunction with two-thirds partial hepatectomy [11]. Subsequently, Oertel et al. [12]
transplanted high numbers of unfractionated rat fetal liver-derived cells and observed
>20% tissue replacement at 6 months.

The authors purified FLSPCs using magnetic bead cell sorting (MACS) for the cell
surface marker δ-like 1 (Dlk-1) to 95% homogeneity that contained the gene expression
characteristics typical for hepatic stem/progenitor cells, as well as all the repopulation
potential of unpurified FLSPCs [78]. Dlk-1, a glycoprotein highly expressed in human
and murine ED12.5 fetal liver cells [66,79], is also expressed in adult rat liver progenitor
cells [80,81]. These enriched Dlk-1-positive cell isolates contained all a-fetoprotein (AFP)+

hepatoblasts found in epithelial fetal liver cell fractions, and were also positive for E-
cadherin and 20% of the cells cytokeratin (CK)-19+ [78]. Importantly, only a few cells within
the repopulating Dlk-1+ fraction expressed the hematopoietic stem cell marker Thy-1 [82],
a surface antigen previously detected in developing rat and human fetal livers [83,84].

Additional FLSPC transplantation studies discovered increasing repopulation levels
in aging hepatic environments driven by the reduced regenerative capacity of the host
liver [85]. Importantly, FLSPCs maintained their full repopulation potential after long-term
storage at −80 ◦C and thawing, followed by transplantation into normal recipient rats [86].
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To date, significant repopulation under non-selective conditions was only reported using
the described rat cell transplantation model. This raises the question of whether this
is an intra-species-specific phenomenon. There is evidence that mouse FLSPCs might
replace hepatic tissue mass under non-selective conditions [67]; however, murine cell
transplantation reports demonstrating significant tissue replacement in normal livers are
still non-existent. Although reports about human fetal liver cell transplantations are
limited [87–90], the majority of liver patients have been transplanted with hepatocytes [5,91].
It is unlikely that liver cells isolated from human fetuses will be used routinely for human
cell therapy, primarily because of ethical concerns. The small number of such cells obtained
from a single aborted human fetus at mid-gestation (equivalent to rat fetal liver cells
at ED13-14) is not sufficient for effective repopulation. In addition, the use of pooled
cryopreserved liver cells from multiple aborted fetuses can also increase the tendency
for rejection by the host. However, established rodent cell transplantation models have
been an excellent experimental tool, building a framework to study and engineer efficient
repopulation and the underlying mechanisms by which this occurs.

3.2. Cell Competition Drives Liver Repopulation

Years ago, it was demonstrated that ED14 rat fetal liver cells repopulate the normal
host liver environment via a mechanism akin to cell competition [12], originally described
in Drosophila wing development [92]. Increasing knowledge in cell competition has accu-
mulated within the past two decades. In a recent article, Bowling et al. [93] reviewed cell
competition as a striking process characterized by the elimination of less fit (loser) cells by
more fit (winner) cells, a process characterized by three steps. First, cell competition occurs
between two different fit cells in the tissue. Second, more fit cells eliminate less fit cells
via different mechanisms, and third, tissue replacement occurs while sustaining constant
tissue mass.

Cell transplantation studies, in conjunction with two-thirds partial hepatectomy, which
is required for cell engraftment into a normal liver, showed that rat FLSPCs, with their
high proliferative activity, generate new tissue mass in host parenchyma exhibiting lower
proliferation rates. They act as winners by cell-competition-induced apoptosis to make
space in the liver by inducing host apoptosis near the boundaries of the transplanted cell
clusters in order to maintain the original liver size (Figures 1 and 2) [12], a phenomenon also
reported in Drosophila [94,95]. To date, certain mechanisms have been discussed through
which winners out-compete loser cells [93,96,97]. However, the exact mechanism(s) of
how growth-advantaged fetal liver cells eliminate growth-disadvantaged host hepatocytes
remains not fully understood. The observation of increasing repopulation levels by FLSPCs
in aging host livers, characterized by increasing activin A levels and its target gene p15INK4b,
suggested activin A/p15INK4b signaling as the pathway driving cell competition [85].
Because FLSPCs are resistant to the growth-inhibitory effects of activin A due to reduced
activin A receptor expression [85], endogenous host hepatocytes—the main producers of
activin A [98], which is a well-known hepatocyte growth inhibitor [98–101]—become losers.
However, it is unlikely that the proliferation of FLSPCs alone drives cell competition. There
is evidence that metabolic activity impacts cell fitness [93]. Activin A down-regulates many
genes involved in hepatocyte metabolism [85,98], another piece of evidence suggesting that
activin A signaling is involved in liver tissue replacement by making FLSPCs superior over
host hepatocytes, resulting in tissue clearance of the later.
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3.3. Replacement of Functional Tissue Mass in Diseased Livers

The four major cell transplantation studies [6–9] described in Section 2.1 demonstrate
the capability of hepatocytes to effectively regenerate damaged hepatic tissue mass; how-
ever, these models do not represent common clinical circumstances. To study the influence
of the diseased microenvironment on the outcome of cell transplantation, established rodent
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disease models must be used. Using two fibrosis models (fibrosis induced by thioacetamide
[TAA], biliary fibrosis by bile duct ligation [BDL]) in DPPIV− F344 rats, dramatic changes in
activin A/p15INK4b and its target genes were detected in fibrotic livers (Oertel, unpublished
data). Yovchev et al. [102] transplanted unfractionated ED15 FLSPCs into rat livers with
TAA-induced advanced fibrosis/cirrhosis. After FLSPC infusion into the portal vein, small
cell clusters were already detected at day 7, and repopulation levels with up to 41% tissue
replacement were observed at 4 months. Importantly, even after transplantation without
partial hepatectomy, FLSPCs engrafted and differentiated into both hepatic lineages, hepa-
tocytes and bile duct epithelial cells, and >25% repopulation was achieved, associated with
reduced fibrosis [102]. These observations suggest that changes in the activin A/p15INK4b

axis in fibrotic livers create local tissue regions with impaired regeneration, which enables
engraftment and drives the compensatory proliferation of infused cells. Using a second
fibrosis model, FLSPCs migrated and engrafted in the fibrotic liver and formed hepatic cell
clusters expressing hepatocyte nuclear factor (HNF)4a and claudin (Cldn)-7 at 2 months af-
ter cell infusion into the spleens of bile-duct-ligated rats without partial hepatectomy [103].
A substantial number of cells that engrafted in the spleen differentiated into hepatocytes
and bile duct structures. Moreover, FLSPCs differentiated into non-hepatic endodermal
lineages expressing caudal type homeobox 2 [Cdx2], pancreatic and duodenal homeobox 1
(Pdx1) and keratin 13 (CK-13). Therefore, FLSPCs contain multipotent endodermal stem
cells that colonize the diseased splenic microenvironment and differentiate into multiple
gastrointestinal tissues, including that of the liver, pancreas, intestine, and esophagus [103].

The influence of a diseased environment on the outcome of cell transplantation was
also demonstrated in studies using mature hepatocytes transplanted into bile-duct-ligated
rats [104]. Ongoing biliary fibrosis forces the selective growth advantage and phenotype
transition of ectopic-infused hepatocytes. After one week, engrafted hepatocytes showed
biliary epithelial marker expression (SRY-related high-mobility group box [Sox]-9), and
after a second week, clear hepatocyte-derived ductules were observed. At two months,
ten % of the transplanted hepatocyte-derived cell clusters contained bile duct structures—
phenotype transdifferentiation [105,106] is driven by the secreted pleiotropic cytokine
osteopontin [107] in fibrotic livers [104].

4. Human iPSC-Derived Cells and Application for Human Liver Diseases
4.1. Human iPSC-Derived Hepatocytes, Challenges and Opportunities

iPSC-derived cells are on their way to clinics (first-in-human clinical trial of iPSC-
derived neural stem/progenitor cells in spinal cord injuries is a recent example) [108].
Additionally, cellular immunotherapies for cancer, such as lymphoma, have used off-
the-shelf natural killer cell products derived from an induced pluripotent stem cell (iPSC)
line [109]. In 2020, Japanese doctors transplanted hepatocytes derived from embryonic stem
cells into a newborn baby suffering from a urea cycle disorder. This treatment decreased
ammonium levels and provided a bridge for the recipient to eventually reach appropriate
conditions for a liver transplant [110].

Induced hepatocytes, or iHeps, are developed either as a single cell population from
iPSCs or within multicellular systems, such as organoids. iHeps have the potential to pro-
vide a cell source that is autologous and functionally amenable for therapeutic repopulation
(reviewed extensively in refs. [73,111,112]). However, there are existing challenges with
the generation of these cells and their performance in vivo: (1) Developed cells have low
proliferative activity and often show aberrant signatures from other endodermal organs,
which limits the engraftment, repopulation, and robustness of their fates in vivo. (2) There
is a limited ability to control cell fate and long-term stability of iHeps after cell infusion.
Specifically, using soluble factors to generate these cells limits the ability to control their fate
of these cells after transplantation. (3) Signals from a physiological “human” niche, such as
endothelial cells or pericytes, are widely missing (particularly after cell transplantation).
(4) For final human applications, the scale of the cells and manufacturing enough of them
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for human-based therapeutics is a challenge and will be an issue considering their low
proliferating capacity and the possible lack of appropriate niche signals.

Ongoing research is focused on advancing the maturation of cells; however, improved
maturation may come at the cost of limiting the proliferative capacity of these cells. In vitro
cultures may also promote the generation of aberrant signatures. Importantly, current
culture media lack the physiological levels of factors necessary to capture the in vivo
environment. Further work to identify the aberrant signatures of developed cells and
to compare them with in vivo counterparts to direct the improvement of cell identity is
critical for developing better therapeutic cells. Different computational methods have
been developed to address this challenge [113,114]. Additionally, it has been shown that
engineering gene regulatory networks in hepatic organoids enables the guided maturation
of cells, which has also been accompanied by a decrease in aberrant signatures [115]. It
was also shown that cells further undergo maturation after implantation [116]; therefore,
developing cells with high proliferative capacity, such as fetal liver stem/progenitor cells,
which can out-compete diseased cells or host hepatocytes, are an important objective to
achieve maturation following implantation. However, an immature phenotype with an
aberrant signature of other endodermal organs may result in maturation toward non-
hepatocyte identities, as seen with fetal liver cells in a diseased microenvironment [103].
This clearly limits the safety profile of these cells.

4.2. Multilineage Human Fetal Liver Organoids and Their Therapeutic Benefits

Although human fetal livers can serve as a source of endodermal and mesoderm cells
for regenerative medicine [117], access to fetal liver tissue is limited due to both ethical
and practical reasons, as mentioned above. Therefore, the development of alternative cell
sources with fetal liver-like characteristics is of tremendous value.

Recently, a human fetal liver organoid was developed that captures the complexity of
the natural liver, including cell types, signaling cues and hematopoietic niche [115,118]. This
platform was produced from hiPSCs via transiently expressing the GATA6 transcription
factor to trigger both endoderm and mesoderm differentiations and the co-differentiation of
progenitor cells through reciprocal cell–cell interactions. Without further supplementation
of growth factors, these cells co-differentiated in a stepwise fashion into a complex, fetal
liver-like tissue relying on self-produced, more physiological concentrations of the signal-
ing cues. Within two weeks, a vascularized hepatic-like tissue that contained CEBPa, AAT+

hepatoblasts, CD34+ endothelium and desmin+ stellate-like cells was generated. The devel-
oped tissue also contained DLK-1+ hepatoblast-like cells and showed the production of cell
types that are normally found in developing fetal livers, such as nestin+ pericytes [115,118].

In contrast to primary cells, human iPSC fulfills a cell source that can be induced to
differentiate, tested in vivo, assessed, and redesigned for better performance in regenerative
therapies. With the advent of synthetic developmental biology, it will be possible to
generate designer cells that mimic the key specifics of in vivo tissues [115,119]. For example,
synthetic fetal liver tissue may provide key fetal cell courses necessary for therapeutic
repopulation. Additionally, via genome editing technologies [119], one can re-design
certain characteristics for the generation of cells with more potent repopulation capacity
and safety switches for controlled in vivo monitoring and functions (Figure 3). Hence,
combining iPSCs and synthetic biology with knowledge obtained from fetal liver cells will
enable more effective therapeutic liver repopulation.
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Figure 3. Generation of synthetic fetal liver organoids using human iPSCs can provide a novel
platform for human liver repopulation during diseased conditions. Human skin cells can be re-
programmed to human iPSCs using reprogramming factors. Developed iPSCs can differentiate
toward synthetic multicellular fetal liver organoids using, e.g., GATA6 genetic circuits. Produced
organoids can represent a human cell source with a potentially competitive advantage for therapeutic
liver repopulation.

5. Concluding Remarks

Cell transplantation with an emphasis on candidate cells represents a promising alter-
native to whole liver transplantation [120–124]. In this regard, recent research has focused
on the mechanisms through which growth-advantaged cells out-compete host liver cells, as
well as on the characteristics of liver microenvironments that augment tissue replacement
by transplanted cells. Cell competition, or ‘survival of the fittest cells’, is a universal process
involved in the regulation of organ size, the elimination of mutant and injured cells, aging,
as well as cancer [93,125]. Besides FLSPCs, hepatocyte transplantation studies have also
shown evidence that cell competition is involved in tissue repopulation. Pasciu et al. [126]
reported that transplanted young rat hepatocytes, which normally do not repopulate a
normal liver [77], formed cell clusters in aged host liver. Hepatocytes transduced ex vivo
with a lentivirus vector encoding the human YapERT2 fusion protein exhibited a growth
advantage, driving repopulation in normal rat livers, and 10% and 14% tissue replacement
was achieved at 6 and 12 months, respectively [127,128], representing repopulation levels
with a therapeutic effect in human patients [129]. Despite all these amazing findings,
molecular pathways involved in cell competition driving liver repopulation still require
further study.

Using experimental models similar to human fibrosis/cirrhosis, studies have demon-
strated that transplanted FLSPCs generate new tissue mass in cirrhotic livers, reversing
fibrosis. These studies overturned the long-held belief that cirrhotic microenvironments
are contraindications for human cell therapies. Moreover, fetal livers harbor endodermal
stem cells that can form multiple gastrointestinal tissues, as well as candidate cells with
therapeutic potential for diseased organs beyond the liver. Such observations are important
contributions to the field of regenerative medicine and build the framework to generate
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designer cells derived from iPSCs with favorable fetal liver stem/progenitor cell features
in the future.
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