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Abstract: Lynch syndrome (LS) is an inherited disorder in which affected individuals have a signif-
icantly higher-than-average risk of developing colorectal and non-colorectal cancers, often before
the age of 50 years. In LS, mutations in DNA repair genes lead to a dysfunctional post-replication
repair system. As a result, the unrepaired errors in coding regions of the genome produce novel
proteins, called neoantigens. Neoantigens are recognised by the immune system as foreign and
trigger an immune response. Due to the invasive nature of cancer screening tests, universal cancer
screening guidelines unique for LS (primarily colonoscopy) are poorly adhered to by LS variant
heterozygotes (LSVH). Currently, it is unclear whether immunogenomic components produced as a
result of neoantigen formation can be used as novel biomarkers in LS. We hypothesise that: (i) LSVH
produce measurable and dynamic immunogenomic components in blood, and (ii) these quantifiable
immunogenomic components correlate with cancer onset and stage. Here, we discuss the feasibility
to: (a) identify personalised novel immunogenomic biomarkers and (b) validate these biomarkers in
various clinical scenarios in LSVH.

Keywords: Lynch syndrome variant heterozygotes; colorectal and non-colorectal cancers; frameshift
mutations; neoantigens; immune responses; immunogenomic biomarkers

1. Introduction

Lynch syndrome (LS) is the most common inherited cancer predisposition syndrome
caused by germline pathogenic variants (PV) in the DNA-mismatch repair (path_MMR)
genes, MLH1, MSH2, MSH6, and PMS2, or by deletions in EPCAM [1,2]. Approximately
10–15% of early-age-onset colorectal cancer (CRC) is attributable to LS, which has a preva-
lence of 1 in 280 people in Australia, Canada, and USA populations [3]. CRC, which is
a traditional hallmark cancer of LS, accounts for up to 80% of primary tumour sites [4,5].
CRC is commonly prevented and cured by screening, surveillance (mainly by colonoscopy),
and modern surgical and medical treatments, with an average 10-year survival rate of 90%
for stage I disease [6,7]. Approximately 5% to 10% of all CRC cases are caused by high
penetrance familial cancer syndromes, including LS [8,9]. The majority of LS-variant het-
erozygotes (LSVH) develop colorectal cancer, amongst other cancers, including endometrial,
ovarian and prostate cancers [10]. The incidence of multiple cancers in other body organs
is also higher in LSVH than in the general population [11]. The higher mortality rate is of
concern in developing countries notably due to poor surveillance and a lack of early-stage
screening methods, late diagnosis, and inadequate/inappropriate treatment [12].

Identification of individuals with hereditary cancers, including their surveillance based
on empiric risks, leads to improved cancer outcomes [13,14]. More specifically, ascertain-
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ment of families with LS (in which there are no premonitory lesions) and the identification
of PV and best-practice clinical surveillance dramatically reduces morbidity and mortal-
ity [13–15]. The recommended frequency, invasiveness, and procedure-associated risks of
colonoscopies (and other cancer-screening tests) are known to influence adherence to and
compliance with cancer-screening guidelines [16–19]. Existing screening and surveillance
guidelines for LSVH are based on average age-specific cumulative cancer risk [20].

Furthermore, these guidelines fail to consider the fact that there is substantial het-
erogeneity between LSVH with different PV, which presents challenges for diagnosis and
management [21,22]. Detection of tumour-derived, cell-free, nucleic acids in stool and
blood has emerged as a promising biomarker in gastrointestinal cancers, and various assays
for their detection have been developed. These include the stool-based DNA multi-marker
(ColoGuard®) or the blood-based assay for methylated Septin 9 DNA [23,24]. However,
even with extremely sensitive techniques, most early-stage tumours and precancerous
lesions do not release detectable amounts of circulating tumour DNA especially for non-
colorectal cancers [25–27]. Due to a lack of prospective data, the current guidelines also
rely on invasive cancer screening tests and retrospective data from patient cohorts whose
molecular testing was initially biased and generalised using a “one-size-fits-all” approach
for every LSVH [8,28]. Therefore, there is a need to identify alternative, personalised, non-
invasive means for detecting and monitoring for the development of both premalignant
and malignant lesions with high sensitivity and specificity in LSVH [16,17,29].

Through genetic mutations or epigenetic silencing, MMR-deficiency (dMMR) sig-
nificantly increases the genomic mutation rate and predisposes LSVH to a remarkably
higher-than-average risk and an excess incidence for all types of cancers [30]. Despite an
extremely good recovery rate in first cancers, LSVH often develop more lethal cancers at
a relatively young age [31]. This highlights the need for better molecular evaluation and
identification of patients who require more intensive molecular and clinical surveillance.
Personalised medicine plays an important role in managing patients, particularly patients
with PV in genes that predispose them to cancer [32].

LS cancers have a high mutational burden that results in a defined set of frameshift
peptide neoantigens [33]. Based on the increasing knowledge of the mutational landscapes
of cancers with dMMR, it can be predicted that mutant neoantigens trigger strong im-
mune responses by CD8+ cytotoxic T cells functioning as major mediators of anti-cancer
immunity [29,34]. Insertion and deletion mutations in microsatellites occur during DNA
replication, and the failure to repair the mutations due to the dMMR phenotype con-
tributes to tumorigenesis [35]. The induced shift in the protein reading frame generates
neoantigens that are recognised as foreign by the immune system [34]. T-cell immune
responses specific to the frameshift peptides (FSPs) have previously been observed in
the peripheral blood of both LSVH with CRC and in LSVH that had never developed
cancer or adenomas [36–38]. Immune responses such as these suggest that the immune
system has been pre-symptomatically exposed to FSPs generated by dMMR cells during
life [29,39]. Furthermore, there is a high prevalence of non-neoplastic or early dysplastic
dMMR cells in the intestine and other organs of LSVH, as well as mutations causing FSPs
in the colonic crypts [33]. In addition, LS has been associated with marked local immune
responses, including LS-related CRCs, adenomas, dMMR crypts, and even completely
normal-appearing colonic mucosa [29,33,40]. All of these observations suggest that the
adaptive immune system plays a critical role in suppressing and controlling the growth of
dMMR cancers in the host [29,41].

We hypothesise that the presence of PV and expression of neoantigens in LS generate
measurable and dynamic immune components that may correlate with cancer initiation
and/or progression [29,42]. If effectively characterised, this phenomenon could be used as
an alternative to the regular invasive cancer screening tests and as novel immunogenomic
biomarkers for early cancer detection, progression or control in LSVH.
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2. Frameshift Neopeptides, Neoantigens, and the Immune Responses in LS

When cancers with dMMR develop, they accumulate a large number of mutations [43,44].
Physiologically, the MMR system detects and corrects base mismatches caused by poly-
merase slippage during DNA replication. Microsatellites are repeated sequence segments
that are frequently affected by these mismatches. Uncorrected mismatches lead to the
accumulation of insertion/deletion mutations (indels) in dMMR cells [33,44,45] (Figure 1A).
Indels of specific coding microsatellites (MS) located within tumour suppressor genes,
particularly TGFBR2 and ACVR2, are major causes of malignant transformation and cancer
progression of dMMR cells [33,44]. MS indels are functionally significant, and their distri-
bution in manifested dMMR cancers is not random but follows Darwinian principles of
selection [33]. Recurrent MS indels however are well known and have been documented in
many independent studies for different types of dMMR tumours [45]. Mutations such as
these not only inactivate tumour-suppressive signalling pathways but also cause a shift in
the translational reading frame, resulting in novel FSPs as neoantigens [45]. The accumula-
tion of frameshift mutations in genes comprising coding microsatellites (cMS) is favoured
by dMMR. Due to mutation-induced frameshift peptides (neoantigens), microsatellite un-
stable (MSI) cancers are highly immunogenic. Nearly all MSI cancers express the same set of
neoantigens, which are the result of functionally relevant driver mutations [46] (Figure 1B).
As opposed to point mutations, which lead to the alteration of single amino acids, indel-
mediated frameshifts give rise to long segments of amino acid sequences that are completely
foreign to the host immune system [33,44,45]. As a result, the immunogenicity of dMMR
cancers is not only due to the sheer number of somatic mutations but also to the number of
potential epitopes in FSPs caused by indel mutations [44].

In addition to an already marked immune activation in LSVH (as a result of new cod-
ing mutations arising in every cycle of cell division), dMMR further generates frameshift
mutations that lead to highly immunogenic neoantigens that trigger an immune response
in the body [29,34,36]. Specific immune responses against these neoantigens are triggered
in LSVH. Neoantigens are proteins specific to tumours that are not expressed in normal
cells. Because these neoantigens are selectively expressed on tumours, they may minimize
immune tolerance and the risk of autoimmunity [47]. Recent evidence shows that neoanti-
gens are recognized by the immune system and can be targeted to enhance anti-tumour
immunity. In addition, tumours with low mutational loads continue to express neoantigens
and are susceptible to some forms of immune attack [46,47]. A cancer antigen is an antigen
recognized by the immune system and produced when the cancer genome is altered, in-
cluding cancer testis antigen and neoantigens. The formation of neoantigens can be caused
by mutations in cancer cells that alter the proteins from ‘self’ [48,49].

The association between strong immunogenicity and dMMR is generally explained
by the accumulation of frameshift mutations within runs of coding mononucleotide se-
quences and the synthesis of neoantigens [36,50,51]. Neoantigens can trigger the immune
system to launch an attack against the cells producing these proteins (Figure 1B) [34,36,52].
Neoantigens are also capable of eliciting a CD4+ T cell-specific response in addition to
CD8+ T cells, while T lymphocytes play a critical role in controlling cancer progression
(Figure 1B) [29,34,53,54]. In our recent work [55], we observed that cancers attributable
to HIV/HPV infection were the least reported histologically confirmed cancers in a large
European cohort of LSVH [56]. Previously, we hypothesised that LSVH may control a
range of acute and chronic infections, including HIV/HPV-infections, and perhaps also
cancers attributable to these infections. We originally theorised that this may be due to
the continuous hyperinflammatory status of the immune system in LSVH caused by the
uninterrupted production of neoantigens [29,33,40].
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Figure 1. Schematic illustration of pathogenesis and characterisation of immunogenomic bi-
omarkers in blood. (A) Deficiency in mismatch repair (dMMR) occurs when the microsatellite (MS) 
indel is not repaired by MMR genes. (B) LS, which occurs due to dMMR. When MS indels are not 
repaired in LSVH, frameshift neopeptides are formed and accumulate on the cell surface and in the 
bloodstream as neoantigens. These neoantigens trigger immune responses that accumulate in the 
circulation and infiltrate the neoplasm during early carcinogenesis. (C) Immune cells (including pro-
inflammatory and checkpoint molecules) in blood and tumour-infiltrating cells correlating with dif-
ferent neoplasm/tumour stages (D) Immunogenomic biomarker analysis to detect cellular and acel-
lular immune components in blood. Biomarker profiles correlated with clinical parameters in digital 
pathology results for cancer diagnosis and prognosis assessments. 
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Rationale: 

LS cancers are characterised by a higher-than-average burden of mutational 
frameshift neoantigens, which trigger a large pool of immune response components in the 
bloodstream [29,33]. To date, there have been no previous approaches that followed this 
logic, either by studying recurrent FSPs derived from functionally relevant driver muta-
tions or by evaluating dynamic immune components responsive to frameshift neoanti-
gens in blood as immunogenomic biomarkers for high-sensitivity cancer detection in LS 
[29,66]. 

Figure 1. Schematic illustration of pathogenesis and characterisation of immunogenomic biomarkers
in blood. (A) Deficiency in mismatch repair (dMMR) occurs when the microsatellite (MS) indel
is not repaired by MMR genes. (B) LS, which occurs due to dMMR. When MS indels are not
repaired in LSVH, frameshift neopeptides are formed and accumulate on the cell surface and in the
bloodstream as neoantigens. These neoantigens trigger immune responses that accumulate in the
circulation and infiltrate the neoplasm during early carcinogenesis. (C) Immune cells (including
pro-inflammatory and checkpoint molecules) in blood and tumour-infiltrating cells correlating with
different neoplasm/tumour stages (D) Immunogenomic biomarker analysis to detect cellular and
acellular immune components in blood. Biomarker profiles correlated with clinical parameters in
digital pathology results for cancer diagnosis and prognosis assessments.

Increased density of tumour-infiltrating lymphocytes and heightened T-cell responses
are a cardinal feature of LS [34]. Moreover, mutated cancer proteins are known to elicit
strong antitumour-T-cell responses that correlate with clinical findings [36,57]. Neoantigen
degradation releases immunogenic neo-peptides on the surface of tumour cells presented
by human leukocyte antigen class I (HLA-I) molecules, against which a specific CD8+ T-cell
immune response is directed (Figure 1B) [34,51]. There are a variety of genomic mutations
that can lead to the formation of neoantigens, including non-synonymous mutations,
retained introns, post-translational modifications that alter amino acids, gene fusions,
and frameshift-in/del variants [49]. A major histocompatibility complex protein (MHC)
may bind these novel peptides during normal protein degradation and present them on
the cell surface as neoantigens (i.e., tumour-specific peptides that are recognized by the
immune system as non-self and cause cancer cell destruction) [58,59]. There are inherited,
sporadic, and somatic genetic contributions to genome instability that often interact to
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promote cancer through a variety of effects on genome instability that can be detected by
various diagnostic approaches [60]. Identification of these alterations not only provides
clues to newer cancer therapies that can use the patient’s immune system to eradicate
the disease, it is also important in the context of cancer predisposition, surveillance and
early detection [48]. Immune checkpoint blockade inhibitors, known as therapeutic cancer
treatments, are associated with genomic instability and neoantigen formation [60].

In addition, both cell-mediated and humoral responses of the immune system are
also central to inflammation influencing tumorigenesis [61,62]. The observation of an
elevated immune system in LSVH, as a response to neoantigens generated by cells acquir-
ing secondary (unrepaired) mutations during the replication process and inflammation
during carcinogenesis, warrants attention as a potential means for monitoring cancer
development in pre-symptomatic LSVH at the molecular level (using immunogenomic
biomarkers) [36,44,63,64].

In a previous study [36], which included both healthy LS patients without a history of
cancer and LSVH with CRC, FSP-specific effector T cells were detected in peripheral blood.
Analysis of the immune responses in these individuals revealed that the observed T-cell
responses were directed toward 14 different FSP antigens predicted from human genome
databases. It has been previously suggested that tumour-specific FSPs are responsible for
the high immunogenicity of dMMR tumours. In an ELISpot analysis to determine reactivity
against 14 predicted FSPs in MSI-H CRC patients, CD3/CD28-expanded TiTc from these
patients reacted strongly against several of the selected MSI-induced FSPs. These antigens
exhibited different mutation frequencies. In another study, a number of neoantigens derived
from genes with high mutation frequencies that exhibited immunogenic properties in vitro
were also found in LS [60].

The activation of immune responses against neopeptides in healthy LS mutation
carriers without a history of tumour development can be explained by the generation of
frameshift peptides already in haploinsufficiency when a dMMR gene becomes relevant. In
LSVH, the type and intensity of the infiltrating immune cells may reflect the pathological
tumour stage [65]. It is also possible that CD8+ T-cell immune responses predict outcome in
early-stage tumours, as the immunogenomic load correlates with cancer outcomes in LSVH
(Figure 1C) [65]. This implies that immune responses may not only be a predictor but also a
potential means to intervene in cancer development as immunogenomic biomarker profiles
correlate with clinical parameters and pathology results for cancer diagnosis and prognosis
assessments (Figure 1C) [66].

3. Research Questions in Lynch Syndrome Immunogenomic Biomarkers

(i) How can the measurable immunogenomic components in LSVH that occur as a result
of mutations in the mismatch-repair genes be characterised?

Rationale:

LS cancers are characterised by a higher-than-average burden of mutational frameshift
neoantigens, which trigger a large pool of immune response components in the blood-
stream [29,33]. To date, there have been no previous approaches that followed this logic,
either by studying recurrent FSPs derived from functionally relevant driver mutations or
by evaluating dynamic immune components responsive to frameshift neoantigens in blood
as immunogenomic biomarkers for high-sensitivity cancer detection in LS [29,66].

(ii) Could immunogenomic biomarker profiles serve endophenotypically as potential
biomarkers to reflect neoplastic changes (from early-stage to invasive and metastatic
cancer) in LSVH?

Rationale:

In a previous study, healthy LSVH and LS patients with CRC were shown to have an
FSP-specific effector T cell population in peripheral blood [36]. Several neoantigens from
genes with high mutation frequency that showed immunogenic properties in vitro were
also found in healthy LSVH. The immune responses may suggest a pathological tumour
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stage in LSVH [65]. In addition, the burden of blood immune responses may correlate
with cancer initiation in the earliest stages for clinical applications of immunogenomic
biomarkers [29] (Figure 2). Since immunogenomic biomarker profiles may correlate with
clinical parameters and pathology outcomes for cancer diagnosis and prognosis, this
implies that immune responses may serve not only as a predictor but also as a means to
intervene in cancer development [29,66] (Table 1).
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Figure 2. Clinical applications of immunogenomic biomarkers in carcinogenesis. In LS, im-
munogenomic biomarkers could be more sensitive for detecting malignancies than conventional
imaging or other approaches. This sensitivity can be exploited in several ways, such as detecting
cancers in LSVH before symptoms or radiological manifestations appear and detecting minimal
residual disease. As an alternative to invasive surveillance and cancer screening, immunogenomic
biomarkers can be used to screen for cancer even in the absence of other clinical evidence. They
can also be used to assess cancer prognosis in patients with LS who have completed all potentially
curative therapies. In patients with radiographically detectable disease, immunogenomic biomarkers
may also be more sensitive for tailored monitoring of tumour response (treatment monitoring tests).

(iii) Can immunogenomic biomarker profiles serve to prognosticate, i.e., predict disease-
free survival and overall survival for LSVH carrying the same or different novel PV?

Rationale:

Generally, certain aspects of the immune profile can predict a patient’s cancer progno-
sis [29,66]. However, it has proven difficult to establish a standard prognostic criterion for
LSVH. Alternatively, analysis of immunogenomic biomarkers in prospective cohort studies
may be able to answer this question. It is possible to predict cancer prognosis, survival and
treatment response in LSVH using immunogenomic biomarkers alone or in combination
with other factors/biomarkers (Table 1). In addition, immunogenomic biomarker profiling
can be used to build a prognostic model to provide clinicians with simple tools to accurately
predict prognosis and treatment outcomes of cancer in LSVH [29,67], or simple evaluation
of systemic immune-inflammation index as biomarkers in LSVH, an example of which is
from urinary system cancers [68]. In addition, longitudinal studies can be used where blood
samples are available at presymptomatic genetic diagnosis and at various (surveillance)
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follow-up times. Comparison of biomarkers for risk assessment is necessary because high
levels of immunogenomic biomarkers may predict the risk of recurrence or poor prognosis
of the disease [69].

Table 1. Different panels of immunogenomic biomarkers and other diagnostic/prognostic biomarkers
in cancer.

1. IMMUNOGENOMIC BIOMARKERS 2. OTHER BIOMARKERS

Panel 1 biomarker profiles (for polyp)
CD4,INFG, LAG3,PDL1,/CD274, IL12A, TNF [34]

A. Specific for colorectal cancer
(i) Faecal occult blood testing
(ii) Stool DNA, miRNA [24,70]
(iii) Faecal immunological test (FIT) [71]
(iv) Faecal bacteria
(v) Gut microbiota signatures [72]

Panel 2 biomarker profiles (for adenoma)
PRF1,FOXP3,CTLA4, IL-10,TREG CELLS [34]

B. Colorectal and non-colorectal cancers
(i) DNA, RNA, cfDNA, ctDNA, cfRNA, mRNA, microRNA, IncRNA
(ii) Circulating tumour cells
(iii) CA 125 Blood test [73]
(iv) Methylation tests [23]
(v) Growth factors tests
(vi) Tissue tests
(vii) Proteins and Glycoproteins tests [74]
(viii) Tissue tests
(ix) Volatile organic compounds (VOC) [75]
(x) Immune-Inflammation index [68]
(xi) Prostate cancer antigen 3 test (PCA3) [76]
(xii) Genomic Prostate Score [77]

Panel 3 biomarker profiles (for carcinoma)
CD8A, IL17A, IL1B, IL6 [34]

4. Validation of Immunogenomic Biomarkers

Immunogenomic biomarker panels can be compared with colonoscopy tests, which
are the current standard of care for CRC clinical surveillance. The LSVH patient will be
asked to provide blood before a colonoscopy or even before preparation for a colonoscopy.
As a single marker and in combination, the sensitivity and specificity of immunogenomic
biomarkers to identify high-grade dysplasia or adenoma during screening will be estimated.
Subjects with no symptoms who undergo a colonoscopy to detect CRC are eligible for the
procedure. After colonoscopy, the clinical findings will be correlated with the levels of
immunogenomic biomarker panels. For extracolonic cancers, the levels of immunogenomic
biomarkers will be correlated with histopathology findings [78,79].

For the detection of invasive colorectal neoplasms and for the screening of relevant
neoplasms, we will estimate the sensitivity and specificity of immunogenomic biomarkers
in the blood and their confidence intervals. We will then test the primary hypothesis to
confirm whether a particular biomarker test or panel is clinically accurate. Data analysis
will be guided by state-of-the-art information about candidate biomarkers and pathology
tests available at the time of the analysis. A variety of primary hypotheses are provided
in order to justify the size of the study sample. The final step will be the evaluation
of several alternative tests and multi-marker panels. As a secondary analysis, we will
examine how individual heterogeneity affects marker performance. In order to identify
immunogenomic biomarkers for early detection of cancer in blood samples collected from
LS patients diagnosed with cancer, those with an LSVH diagnosis, and healthy individuals,
a biobank collection of appropriately preserved blood and biopsy biospecimens will be
created for future validation and additional biomarker discovery [79,80].

Biomarker analytical validation is the process of determining how accurately and
reliably a test measures what analytes are of interest in a patient blood sample. Pre-
analytical, analytical, and post-analytical phases comprise the analytical validity of an
assay. Validation should demonstrate how robustly and reliably the test results correlate
with the clinical outcome of interest. In practice, clinical validity implies that the cancer
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biomarker assay can distinguish two or more distinct groups with different biological
characteristics. An assay’s clinical utility is its ability to improve clinical outcomes and
show if the biomarker/s improve patient outcomes or add value to healthcare decision-
making compared with current practice [81,82].

4.1. Pre-Analytical Validation

The evaluation of pre-analytical factors that may affect assay performance due to
specimen-related variability is an important step in biomarker validation. A standard
operating procedure (SOP) to control specific biomarker development steps is essential
to ensure optimal preanalytical processing. Optimization protocols for blood collection
and storage media are often developed in conjunction with other pre-analytical parameters
to establish best practice metrics. Guidelines for pre-analytical quality indicators and
harmonization of analytical stability and laboratory quality control (QC) were published in
a similar previous study [83].

It is recommended that the following validation practices/steps be followed:

i. Pre-assessment of biomarkers and ensuring an expedient approach to assay development;
ii. Consider quality assurance and quality control procedures for blood-based assays for

each specific biomarker panel;
iii. Maintain optimal pre-analytical processing procedures and SOPs for control of

specific biomarkers;
iv. During analytical validation, it is advisable to use procedures that include strict

quality assurance, reproducibility protocols, and control procedures;
v. Whenever possible, reagents and assay controls (positive and negative controls) must

be included in the interpretation of assay results;
vi. Biostatistical and computational approaches to quantification and interpretation of

data must be considered. In addition, the development of algorithms for multiplex
signatures based on phenotypic, functional, and genomic data must be considered;

vii. An integrated bioinformatics approach needs to be considered for the integration of
complex high-throughput immunogenomic data consisting of multiple components;

viii. The use of reference standards and/or coordination efforts between centralized
laboratories (proficiency panels) is recommended to assess the robustness of semi-
quantitative methods and to enable analytical and clinical validation of biomarkers.

4.2. Outcome Measures

A. Primary outcome measure To test the sensitivity of a blood-based panel of im-
munogenomic biomarkers against colonoscopy and other cancer screening methods.
A consensus panel based on blood samples will be able to detect colorectal adenocar-
cinoma with a significant improvement in sensitivity and specificity [80,84]. However,
the persistence of immunogenomic biomarkers in the blood of already diagnosed and
treated patients may affect the specificity of the biomarkers. This is because they may
remain at high levels even after treatment for cancer or precancerous lesions.

B. Secondary Outcome Measures

i. To test the specificity of blood-based immunogenomic biomarkers compared
with pathology tests [80], using blood-based panels to detect colorectal ade-
nocarcinoma with the same or higher sensitivity as pathology tests. The
hypothesis is that they have a significantly higher specificity than 0.55 with an
expected specificity greater than 0.70.

ii. To analyse the sensitivity and specificity of a combined panel of blood-based
immunogenomic biomarkers for CRC detection [80,84]. To test the hypothesis
that combining the blood-based panel with the tissue-based panel will improve
the detection of colorectal adenocarcinoma: with a sensitivity greater than 0.98,
it will have a specificity of 0.55 or greater.

Using the area under the receiver operating characteristic (ROC) curves and logistic
regression models, models that have high sensitivity, specificity, positive predictive
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value, and negative predictive value for advanced neoplasms detection compared
to healthy individuals were found [85]. By multiplex flow cytometry, which ex-
amines a range of lymphocyte markers, phenotypic analysis of T cells can provide
information about their activation status. A baseline signature of immune cells and
pro-inflammatory markers with a higher baseline frequency of CD4+CD25+FoxP3+

Tregs should be identified. For this immunogenomic biomarker signature to be used in
routine clinical practice, it needs to be analytically and clinically validated (including
a panel of markers required to analyse and enumerate cells).

5. Conclusions

It is possible to identify measurable and dynamic immunogenomic components that,
if effectively characterised, can be used as novel diagnostic and prognostic biomarkers to
monitor cancer progression in both healthy and cancer diagnosed LSVH as an alternative
to invasive cancer screening tests, including colonoscopies. We have highlighted all major
steps of the entire biomarker validation process, including: (i) analytical validation, (ii) clin-
ical validation, (iii) clinical utility demonstration strategies, and (iv) applicable diagnostics
related to immune response cell assays. The use of immunogenomics in LSVH may provide
(i) novel and personalised immunogenomic biomarkers for non-invasive cancer screening
and surveillance, (ii) fewer invasive colonoscopies for CRC screening and diagnosis, and
(iii) novel insights into cancer immunotherapies and vaccine development. Ongoing and
future vaccine immunoprevention studies in LS will guide the development of technologies
that can then be applied more broadly to help these individuals with a higher-than-average
risk of cancer.
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