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Abstract: Mitochondria are highly dynamic organelles that serve as the primary cellular energy-
generating system. Apart from ATP production, they are essential for many biological processes,
including calcium homeostasis, lipid biogenesis, ROS regulation and programmed cell death, which
collectively render them invaluable for neuronal integrity and function. Emerging evidence indicates
that mitochondrial dysfunction and altered mitochondrial dynamics are crucial hallmarks of a
wide variety of neurodevelopmental and neurodegenerative conditions. At the same time, the gut
microbiome has been implicated in the pathogenesis of several neurodegenerative disorders due
to the bidirectional communication between the gut and the central nervous system, known as the
gut–brain axis. Here we summarize new insights into the complex interplay between mitochondria,
gut microbiota and neurodegeneration, and we refer to animal models that could elucidate the
underlying mechanisms, as well as novel interventions to tackle age-related neurodegenerative
conditions, based on this intricate network.

Keywords: ageing; Alzheimer’s disease; Amyotrophic Lateral Sclerosis; gut–brain axis; Huntington’s
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1. Introduction

The human gastrointestinal tract is host to a complex community of microbiota that
encompasses a wide variety of bacteria, archaea, protozoa, viruses and fungi. This gut
microbiome participates in a mutually beneficial and co-dependent relationship with the
human organism, ultimately forming a holobiont, an ecological unit composed of the
host and all its symbiotic microbes. There are multiple indications that the composition,
diversity and assembly of the human gut microbiome can influence various aspects of
human biology, including brain development, structure and function [1]. Although further
studies are needed to fully resolve the underlying mechanisms, the communication systems
that have been implicated include immune-modulatory responses, neuronal activity, as well
as enteroendocrine and microbial metabolite signaling. At the same time, mitochondria are
starting to emerge as key mediators of the interaction network that connects the gut and
the central nervous system (CNS), termed the gut–brain axis.

Mitochondria are sub-cellular, semi-autonomous organelles that serve as metabolic
hubs of the cells. They participate in a wide range of cellular processes, but most im-
portantly they act as key energy suppliers, producing the majority of a cell’s adenosine
triphosphate (ATP), a role that becomes even more significant in the energy-demanding en-
vironment of the brain and the CNS. However, a plethora of roles is increasingly attributed
to mitochondria in neurons and glial cells, as well as in neural stem cells and progenitor
cells, which are essentially an extension of their involvement not only in energy metabolism,
but also in Ca2+ homeostasis, protein synthesis, metabolite synthesis and programmed cell
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death. These roles include neural circuit development through axonal growth and regener-
ation, dendritic development and synaptic function [2–5]. Consequently, disturbances that
affect mitochondrial biogenesis, structure, function and dynamics, or disrupt mitophagy
and the dynamic balance between their fusion and fission, can influence neuronal func-
tion [2,6–10]. In agreement, ageing is characterized by the progressive deterioration of
mitochondrial structure and function, the loss of mitochondrial energetic capacity and
protein quality, the alteration of organelle content, the accumulation of mutations in mito-
chondrial DNA (mtDNA) and changes in mitochondrial morphology [11,12]. Moreover,
there are several emerging paradigms that pose mitochondrial dysfunction as a common
feature of neurological and neurodevelopmental disorders, while recent studies have sur-
passed this correlation between neuronal dysfunction and mitochondrial impairment and
have attributed a causative role to the latter [6,7,13–15].

In 1967, Lynn (Sagan) Margulis proposed a theory about the origin of the eukaryotic
cell based on the evolutionary mechanism of symbiosis. According to the endosymbiotic
theory, mitochondria, along with photosynthetic plastids and cilia, compose the three
classes of eukaryotic organelles with free living ancestors. More specifically, these or-
ganelles have a symbiotic origin as they were initially prokaryotes acquired by archaea
or proto-eukaryotes and later evolved symbiotically to form anaerobic bacteria, photo-
synthetic bacteria and eventually algae [16]. Due to this probable prokaryotic origin,
mitochondria share many features of their structure and function with the intestinal bacteri-
ome [17–20]. It is therefore not surprising that the gut microbiome can affect mitochondrial
functions through a variety of metabolites, including short-chain fatty acids (SCFAs), colanic
acid (CA), neurotransmitters, bile acids, reactive oxygen species (ROS), pyrroloquinoline
quinone, fermentation gases and modified fatty acids [21–29], while new evidence keeps
surfacing. A recent study demonstrated that gut dysbiosis can influence mitochondria
and the mitogen-activated protein kinase (MAPK) signaling pathway via the acetylation
and succinylation of relevant proteins [30]. Likewise, a novel communication axis was
recently described in the fly, where bacteria offer vitamins for the synthesis of mitochondrial
coenzymes that influence host energy and reproduction [31]. In this review, we present the
most important gut microbiome-derived metabolites that influence host mitochondria and
summarize novel insights into the complex interplay between mitochondria, gut microbiota
and neurodegeneration. Moreover, we provide a brief overview of animal models that
could elucidate the underlying mechanisms as well as potential interventions to tackle
age-related neurodegenerative conditions based on this intricate network.

2. Animal Models Employed to Investigate the Communication between
Host-Microbes, Mitochondria and Neuronal Function

Rodents, Caenorhabditis elegans and Drosophila melanogaster are commonly used model
organisms that display important neuronal functions and possess microbial communities
of their own. On top of that, they offer a vast and diverse scientific toolkit, this way
constituting valuable systems for mitochondria–microbiome–brain axis research. A cross-
species holistic approach can significantly contribute to the elucidation of mitochondria–
microbiome interactions and the causative links connecting them with neuronal functions
in health and disease. Complementary to human studies, data from model organisms
can be used to unravel this intricate crosstalk and even help discover microbiome-related
therapies in neurodegeneration and ageing research [32].

Mouse models of neurodegenerative disorders have been at the forefront of gut–brain
axis research. There are several studies that prove how versatile and powerful mammalian
models are in deciphering the complex interactions between the gut microbiome and neu-
ronal pathophysiology, especially due to their phylogenetic proximity to humans [33–36].
One of the greatest advantages of rodents in this field of research is the highly regulated
conditions of animal houses that allow scientist to manipulate the composition of intestinal
microbiota at will; animals can be completely germ free (GF), specific pathogen free (SPF) or
have particular microbial strains included or excluded from their gut microbiome, offering
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a unique tool for the study of host–symbiont interactions. Therefore, it is not a surprise that
some of the most important insights on the implication of mitochondria in the gut–brain
axis have been recently uncovered using mouse models. Nevertheless, the complexity of
the organism and the technical challenges of maintaining and working with rodents create
limitations that are difficult to be overcome, making the contribution of simpler model
organisms essential.

C. elegans has been an extremely valuable system for understanding host–microbiome
interactions [37]. Among its numerous advantageous features, C. elegans is a bacterivore,
which means that bacteria are its fundamental nutritional source. Its natural engagement
with a variety of bacterial species, along with its relatively simple and fully mapped
neuronal circuitry, render C. elegans a powerful tool to examine the microbial influence on
neuronal functions, under physiological and pathogenic conditions. Fluorescent labeling
of mitochondrial-targeting sequences, in combination with its transparent body, allow the
in vivo study of mitochondrial dynamics at an organismal level and with high resolution.
Moreover, due to the evolutionary conservation of molecular and cellular processes between
the nematode and other more complex organisms, as well as key nematode features
that include the detailed characterization of its development, a short lifespan and body
transparency, C. elegans has been broadly used as a model to study ageing and human
disease, including neurodegenerative disorders [38]. Therefore, the nematode can be used
effectively and with translational relevance to human physiology for the study of the
microbiome–gut–brain axis. Furthermore, both nematodes and bacteria are suitable for
high throughput experimental approaches, which are not possible in mice, and can offer a
whole new perspective in the prevention, diagnosis and therapy of brain diseases.

Moreover, D. melanogaster has been proven an excellent genetic model for the analysis
of complex behavioral phenotypes [39]. Its significance lies on the ability to reveal, through
an advanced genetic and connectomic toolkit, how interactions between the genome and
the environment can affect neuronal networks and eventually modulate development
and behavior. During the last few years, Drosophila has been utilized to investigate the
microbiota–brain communication in general, but also in the context of ageing and neu-
rodegeneration [35,40–42]. It is noteworthy that the internal bacterial microbiome of
most Drosophila species involves approximately 20 strains, mostly of the Acetobacter and
Lactobacillus genera [43]. These strains can be cultured and genetically modified in vitro,
thus favoring the elucidation of causative relationships between microbiota and physiolog-
ical functions. It is therefore not a surprise that Drosophila models of neurodegenerative
disorders have been extensively used in order to examine the effects of prebiotic, probiotic
and symbiotic formulations on neuronal pathogenesis [44–50].

3. Bacterial Metabolites Affecting Mitochondrial Function and Dynamics

Given the multifaceted role of mitochondria, it is not a surprise that alterations in
their function have been linked to a variety of human pathologies. Bacterial metabolites
with an impact on mitochondrial bioenergetics display a great therapeutic potential. It is
well documented that bacteria release products, known as Pathogen-associated Molecular
Patterns (PAMPs), which are recognized by Pattern Recognition Receptors (PPRs) and acti-
vate innate immunity [51]. Some of these PPRs induce mitochondria-mediated responses,
as their activation has been reported to increase respiration and induce the production
of mitochondrial ROS. In turn, ROS elevation triggers the activation of the NOD-, LRR-
and pyrin domain-containing protein 3 (NLRP3) inflammasome leading subsequently to
inflammatory cytokines release [52–54]. Among PAMPs, lipopolysaccharide (LPS) seems
to have a prominent role in mitochondrion-based responses, since its penetration in the
epithelium, due to an impaired intestinal barrier, has been shown to affect mitochondrial
function via enhancing mitochondrial fission, increasing ROS production and, thereby,
promoting microglia inflammation or even causing accumulation of damaged mitochondria
due to downregulation of PTEN-induced kinase 1 (PINK-1)-mediated mitophagy [55–58].
Intriguingly, many bacterial pathogens target mitochondria and ROS production to pre-
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vent mitochondrion-driven innate immune responses. For example, Listeria secretes a
pore-forming toxin that forms ion-permeable pores in the plasma membrane and results in
mitochondrial fragmentation [59], while pathogens of the genera Streptococcus, Clostridium
and Staphylococcus affect mitochondrial morphology and function in a similar manner.
Likewise, other bacterial toxins have been reported to disrupt the mitochondrial membrane
potential or even interfere with apoptosis pathways [60,61].

Beyond immunity-inducing molecules, there are many other metabolites of gut micro-
biota that have been reported to affect mitochondrial function. Notably, SCFAs have attracted
particular interest due to their dual role as energy-supplying fuel and signaling/regulatory
molecules, a property that links the immune system with energy intake. SCFAs, such as
propionate, acetate and butyrate, are produced by anaerobic intestinal bacteria upon fermen-
tation of dietary components [62]. Propionate is mostly produced by Bacteroidetes, butyrate by
Firmicutes, while acetate is produced by most gut anaerobes [63]. Colonocytes use butyrate
as their primary source of energy via mitochondrial β-oxidation, although acetate can also
be utilized via the same process [64–66]. Interestingly, colonocytes from GF mice have been
shown to exhibit a deficit in mitochondrial respiration and undergo excessive autophagy,
while butyrate supplementation or introduction of a butyrate-producing strain into GF mice
restores both phenotypes in a fatty acid oxidation-dependent manner [67].

Furthermore, butyrate and propionate have been shown to induce ERK1/2-mediated
phosphorylation of peroxisome proliferator-activated receptor γ (PPARγ) leading to its
activation, a response that induces mitochondrial biogenesis and β-oxidation of fatty
acids [68,69]. In agreement, both fatty acids have been reported to augment mitochondrial
mass, expand mtDNA copy number and increase the levels of mitochondrial transcrip-
tion factor A (Tfam), while butyrate has been found to increase both mRNA and protein
levels of peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α), a
key regulator of mitochondrial biogenesis, through the activation of AMPK [70]. Interest-
ingly, increased O2 consumption, due to butyrate catabolism by β-oxidation and oxidative
phosphorylation in mitochondria, has been identified as a critical factor in the initiation
and the sustenance of a hypoxia induced factor (HIF) gradient, which contributes to the
maintenance of the epithelial tissue barrier and the regulation of immune responses in
the intestine [71,72]. Congruently, butyrate administration has been found to alleviate
lipid accumulation and oxidative stress in diet-induced obese mice, by enhancing fatty
acid oxidation and respiratory capacity. Interestingly, this effect was accompanied by a
shift of mitochondrial dynamics towards fusion and ultimately led to improved glucose
homeostasis and increased sensitivity to insulin [73]. Additionally, both butyrate and
propionate have been reported to inhibit the activity of histone deacetylases (HDACs) in
colon cells and immune cells and alter the activity of factors that influence inflammatory
responses and mitochondrial function, including FOXP3, NFκB, SIRT1 and PPARγ [74,75].
Butyrate has also been reported to decrease the negative impact of ceramides on mito-
chondrial function, which includes the inhibition of electron transport complex I and III,
and can induce apoptosis through various mechanisms, by mediating their conversion to
glycosyl-ceramides and gangliosides [76–80]. Such observations indicate that SCFAs can
affect mitochondrial function through multiple mechanisms.

O2 consumption by mitochondria can also be modulated by H2S, an amino acid-derived
microbiome metabolite, released in the lumen of the large intestine. It has been suggested that
low H2S levels can be efficiently oxidized by mitochondria in colonocytes, causing a spike in
O2 utilization and ATP production. However, high H2S concentrations exceed this detoxifica-
tion capacity and inhibit cytochrome oxidase c, thereby, hindering O2 consumption and ATP
generation, whilst inducing an inflammatory and hypoxia-like transcriptional response [81,82].
Moreover, H2S-induced redox changes have been suggested to alter mitochondrial bioener-
getics, inducing a reductive shift in the NAD+/NADH couple, and ultimately trigger the
metabolic reprogramming of colon cells [83]. Such interplay between H2S and mitochondria
seems to be an important factor in the pathogenesis of ischemic bowel conditions, as the study
of host–microbiome interactions in Chron’s Disease (CD) pediatric patients has revealed a
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significant downregulation of mitochondrial proteins implicated in H2S detoxification. This
effect is associated with the expansion of potent H2S-producing pathobionts and the depletion
of butyrate producers [84]. Interestingly, butyrate has been found to induce the expression
of host mitochondrial H2S detoxification components, while H2S inhibits the oxidation of
SCFAs, indicating the existence of a complex network of interactions between microbiota and
mitochondria affecting inflammatory responses [85].

An increasing amount of attention has also been drawn to nicotinamide (NAM), the
amide form of Vitamin B3 (niacin), that is a common metabolite of commensal bacte-
ria [86]. Inside cells, NAM is readily converted to nicotinamide adenine dinucleotide
(NAD+) through the salvage pathway and exerts a positive effect on mitochondrial quality
by inducing fission and their subsequent clearance through mitophagy. Consequently,
NAM has been shown to reduce mitochondrial mass and elevate mitochondrial membrane
potential (∆ψm), with a positive impact on cellular viability [87–89]. Similar results have
also been obtained with other NAD+ precursor molecules, such as nicotinamide riboside
(NR) and nicotinamide mononucleotide (NMN) [90–93]. Interestingly, recent evidence
has revealed the involvement of gut microbiota in host NAD+ metabolism, exposing the
existence of symbiotic metabolic reactions that ultimately facilitate the incorporation of
such precursor molecules and maximize their effect on mitochondrial function and cel-
lular homeostasis, further highlighting the importance of a healthy microbiome [94,95].
Urolithin A (UA) is a gut microbiota-derived metabolite of ellagic acid that has been re-
ported to induce mitophagy, reduce mitochondrial content and sustain organelle function,
ultimately leading to improved muscle and neuronal homeostasis during ageing and patho-
logical conditions [96,97]. Due to the tight association between impaired mitophagy and
neurodegeneration, both UA and NAD+ precursors treatments are considered promising
therapeutic interventions [98,99].

Other metabolites of commensal intestinal bacteria that have been documented to
interact with mitochondria include secondary bile acids, which modulate the activity of
transcription factors involved in lipid and carbohydrate metabolism, as well as phenolic
acids that have been reported to inhibit mitochondrial ROS production [100,101]. Re-
cently, microbial tryptophan derivative indole-3-propionic acid (IPA) has been identified
as a mitochondrion-affecting bacterial metabolite with a dual effect; acute treatment with
IPA was reported to enhance mitochondrial respiration, while chronic exposure led to
mitochondrial dysfunction in cardiomyocytes, possibly through the modulation of fatty
acid oxidation [102]. Moreover, IPA was found to induce the expression of the mitochon-
drial transcription factor Tfam in primary osteoblasts via the epigenetic regulation of its
promoter [103]. An effect on mitochondria has also been suggested for quorum sensing
molecules (QSM), bacterial products that serve both intra-bacterial communication as well
as host–pathogen interactions [104]. Treatment with the QSMs AI-2, Q011, Q015, Q093 and
C6-HLS has been reported to increase mitochondrial stress in myotubes, while Q099 was
found to decrease its levels [105].

On top of their complex functional aspects, mitochondria also exhibit intricacy in their
structure, as they are highly dynamic organelles, mainly organized into an interconnected
tubular network. The preservation of a healthy mitochondrial network heavily depends on
organelle fission and fusion events, collectively termed mitochondrial dynamics, and is of
paramount importance for the maintenance of cellular and organismal homeostasis [106].
Therefore, bacterial metabolites with an impact on mitochondrial dynamics are of particular
interest. Studies in the nematode C. elegans have recently revealed the effect of CA and me-
thionine on mitochondrial fragmentation. CA is an extracellular polysaccharide produced
by most E. coli strains and other members of the Enterobacteriaceae family. High levels of CA
in the bacterial food source of C. elegans have been found to trigger mitochondrial fragmen-
tation in its intestine and enhance the mitochondrial unfolded protein response (UPRmt)
through the activation of ATFS-1 transcription factor, ultimately promoting healthspan
and extending lifespan [26]. Additionally, CA secretion by ingested bacteria in the nema-
tode’s gut has been demonstrated to exert a dose-dependent benefit to the host and offer
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protection against stress-induced mitochondrial hyper fragmentation [107]. Furthermore,
bacteria-derived methionine has been found to regulate mitochondrial dynamics and lipid
metabolism in C. elegans. More precisely, methionine deficiency was shown to hinder
phosphatidylcholine synthesis, and ultimately cause mitochondrial fragmentation and
lipid accumulation, through a molecular mechanism that involves the induction of GRL-21
Hedgehog-like protein and the subsequent inhibition of the Patched receptor PTR-21 [108].
These findings indicate the existence of a close link between mitochondrial architecture and
bacterial inputs that needs to be further investigated.

Accumulating evidence for the impact of bacterial metabolites on mitochondrial dy-
namics has been revealed by utilizing the QSM N-3-oxo-dodecanoyl-L-homoserine lactone
(3O-C12-HSL) produced by Pseudomonas aeruginosa. 3O-C12-HSL has been reported to affect
mitochondrial network morphology and mitochondria energetic status, possibly to hijack
the cytoprotective mechanisms and, thereby, promote pathogen survival and spreading.
More specifically, treatment with 3O-C12-HSL has been found to cause mitochondrial
network fragmentation, cristae and inner membrane structure alterations, reduced mi-
tochondrial respiration and dissipation of mitochondrial membrane potential in mouse
embryonic fibroblasts and human intestinal epithelial cells [109]. Moreover, 3O-C12-HSL
displayed pro-apoptotic and/or cytotoxic effects in various cell types [110,111]. At the
molecular level, 3O-C12-HSL has been shown to alter the expression of proteins involved
in structural organization, stress response and ETC complexes, thus affecting ATP levels,
ROS production and the generation of inflammatory molecules [109].

Conversely, the relationship between gut microbiota and mitochondrial structure and
function does not appear to be one-way. A high-fat diet has been associated with impaired
mitochondrial bioenergetics and reduced mitochondrial activity in the gut epithelium,
triggering a spike in the availability of respiratory electron acceptors, such as O2 and NO3

−,
that drives the proliferation of E. coli and other Enterobacteriaceae in the gut of mouse mod-
els [112–114]. Likewise, the PPARγ-mediated induction of mitochondrial biogenesis and
β-oxidation of fatty acids, triggered by butyrate, has been reported to result in the limited
availability of respiratory electron acceptors mediating the dysbiotic expansion of poten-
tially pathogenic Escherichia and Salmonella in the lumen of the colon [115]. There has also
been evidence that mutations in the mitochondrial genome can affect the composition of
the gut microbial community. Results from mouse strains with identical nuclear DNA and
distinct mutations in their mitochondrial DNA suggest that mitochondrial ATP synthase
8 has an important role in the composition of gut microbial populations [116]. Moreover,
single nucleotide polymorphisms (SNPs) of mitochondrial DNA haplogroups have been
associated with specific microbiota compositions in humans [117]. Such reports indicate a
retrograde relationship between mitochondria and the gut microbiome that needs to be
further investigated in the future and must be considered during the design of potential
therapeutic interventions.

4. Mitochondria in the Gut–Brain Axis

The microbiota–gut–brain axis refers to the bidirectional communication network
among the intestinal microbiome, the gut and the brain, which is mediated by three main
routes: the neuronal, the endocrine and the immune pathway. The former largely involves
the function of the vagus nerve that innervates the gut and has been shown to play a
central role in the modulation of behavioral traits [118,119]. Commensal bacteria have been
reported to regulate the synthesis and the release of neurologically active molecules by the
intestinal epithelium, or even directly produce them. These molecules include hormones
and neurotransmitters, such as glucagon-like peptide-1 (GLP-1), ghrelin, cholecystokinin,
γ-aminobutyric acid (GABA), serotonin, dopamine and acetylcholine, which can alter the
function of the enteric nervous system and eventually regulate vagus nerve signaling to
the brain [120–126]. On the other hand, SCFAs and many other microbial metabolites such
as trimethylamines (TMAs), amino acid metabolites and vitamins can be released into
the bloodstream and directly affect the integrity of the blood–brain barrier, or regulate
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endocrine pathways, immune responses and oxygen homeostasis, ultimately modifying the
brain function [125,127–129]. A balanced presence of SCFAs has been suggested to improve
neuronal health by enhancing the integrity of the blood–brain barrier, promoting neurogene-
sis and suppressing neuroinflammatory responses, while amino acid metabolites have been
tightly associated with neurotransmitter synthesis and inflammation [130–142]. Addition-
ally, microbial components and metabolites can activate the secretion of cytokines or other
immune signaling molecules by mucosal immune cells, triggering inflammatory responses
when the epithelial barrier is breached. Interestingly, immune cells that have been activated
by microbial metabolites, have been reported to enter the bloodstream and affect the brain
in various manners, while continuous or reoccurring intestinal inflammation can lead to a
chronic systemic inflammatory state that promotes neurodegeneration [125,143,144]. As
a result, the disturbance of the tightly regulated communication network between micro-
biota, gut and brain can gradually lead to perturbations in neuronal development and
function [145–147].

Recent findings highlight the essential role of mitochondria in the communication
between the gut and brain, as various gut microbiota metabolites that cross the blood–brain
barrier have been reported to affect mitochondrial physiology in the brain (Figure 1). A
prominent role in this interplay has been suggested for various SFCAs. It has been proposed
that propionate acts directly on neuronal cells and improves the function of mitochon-
dria, thus impeding the progression of multiple sclerosis and brain atrophy in human
patients [148,149]. Likewise, acetate has been found to act on microglia cells and restore
mitochondrial morphology and activity, are deteriorated by the absence of gut microbiota in
mice [150]. Moreover, acetate administration has been shown to modulate microglial phago-
cytosis of amyloid beta and alter disease progression in a mouse model of Alzheimer’s
disease (AD) [150]. Butyrate, produced by commensal microbiota, that enters the blood
stream and reaches the brain, has also been reported to increase mitochondrial activity,
enhance ATP production and consequently promote cellular viability [135,151]. In parallel,
butyrate has been shown to act as an HDAC inhibitor enhancing mitochondrial biogenesis
and, thereby, reversing mitochondrial impairment in amphetamine-treated rats [152,153].
Additionally, butyrate reduces gut permeability leading to low blood levels of LPS, which
has been shown to trigger mitochondrial dysfunction and neuronal loss [154,155].

Apart from SCFAs, various neurotransmitters that are affected by gut microbiota
have also been associated with mitochondrial function in neuronal cells (Figure 1). High
concentrations of dopamine have been found to inhibit respiratory complex I activity in
human neuroblastoma cells and induce mitochondrial depolarization and dysfunction in
the striatum of rats, possibly contributing to the pathogenesis of neuropsychiatric disor-
ders [156,157]. On the other hand, experimental evidence suggests that serotonin promotes
mitochondrial biogenesis and function in rodent cortical neurons and can ameliorate the
neurotoxic effect of oxidative stress [158]. Moreover, GABA can enter mitochondria and
stimulate the generation of NADH and succinate for the TCA cycle, thereby increasing
organelle activity. Conversely, hyperactive mitochondria sequester cellular GABA, thus
depleting it from synaptic regions and causing a reduction in GABAergic signaling that is
linked to defective social behavior [159].

A reverse relationship where neuronal activity regulates the function of mitochondria
in gut cells and affects intestinal microbiota has also been suggested. Data from C. elegans
have shown that expression of a Huntington’s disease (HD)-related polyglutamine peptide
(Q40) in neuronal cells can trigger UPRmt in intestinal cells by activating Wnt and serotonin
signaling [160]. Such mitochondrial dysfunction has been shown to weaken the epithelial
barrier and allow the transepithelial flux of bacteria, which is tightly linked to inflammatory
bowel conditions, e.g., CD [161]. Although further investigation is necessary, this com-
munication route could account to some extent for the increased intestinal inflammation
that is often manifested in patients suffering from neurodegenerative diseases such as AD,
Parkinson’s disease (PD) and HD [162–164].



Cells 2023, 12, 429 8 of 24

B
B

UPRmt UPRmt

Weak epithelial
barrier

Reduced gut
permeability

LPS

S Wnt/Serotonin
Signaling

Gh

B PA
S

D G
UA

NP

CAF

T

TUDCA
UDCA

D

Mitochondrial damage and dysfunction
GABA sequestration by hyperactive mitochondria

G

LPS
CAF

T

NEURODEGENERATION

Improved mitochondrial structure and function
Enhanced mitochondrial biogenesis
Increased mitophagy

B

P

A

G

S

Gh UA
NP

UDCA

TUDCA

NEURONAL SURVIVAL

Central
Nervous
System

Blood
Circulation

Brain

Epithelial cell

Endocrine cell

B

P

A

Gh

NP

G

S

UA

UDCA

TUDCA

D

LPS

CAF

T

Butyrate

Proprionate

Acetate

Ghrelin

NAD+ precursor

Urolithin A

GABA

Serotonin

Dopamine

Ursodeoxycholic acid

Tauroursodesoxycholic acid

Lipopolysaccharide

Toxin

Curli amyloid fibril

Bacterial metabolite

Gut microbiota

Intestinal lumen

Vagus
Nerve

Blood-brain
barrier

Figure 1. The implication of mitochondria in the gut–brain axis. Metabolites secreted by commensal
microorganisms can affect brain mitochondria by entering the bloodstream and crossing the blood–
brain barrier or by acting directly on the central nervous system through the vagus nerve. The impact
of such metabolites can promote neuronal survival by improving mitochondrial quality, enhancing
mitophagy and promoting organelle biogenesis, or favor neurodegeneration by inducing mitochon-
drial hyperactivation, damage and dysfunction. Gut microbial metabolites can also act indirectly by
affecting the permeability of the epithelium or by modulating the secretion of intestinal endocrine
cells. Reversely, the nervous system can affect intestinal microbiota by activating the mitochondrial
unfolded protein response (UPRmt) of gut epithelial cells, weakening the epithelial barrier.

5. Neurodegenerative Disorders: Mitochondria and Microbiome

The interplay between the gut microbiome and mitochondria has also been implicated in
various human neurodegenerative conditions, such as AD, PD and Amyotrophic Lateral Scle-
rosis (ALS) (Table 1). As mentioned earlier, the production of SCFAs by the gut microbiome
has been found to modulate the maturation and function of microglia cells in the context
of AD. Indeed, the absence of acetate in GF mice has been reported to cause an immature
microglial phenotype, associated with increased mitochondrial mass and respiratory chain
dysfunctions (complex II-mediated deficiency), that impacts microglial phagocytosis in the
CNS. As a result, production of acetate was found to reduce phagocytosis of Aβ peptides
leading to an increase in Aβ depositions in a murine model of AD [150]. An additional link
between gut microbiota and mitochondria with an impact on AD has been established in the
case of UA, which has been reported to downregulate the expression of the amyloid-precursor
protein (APP) and its processing enzyme, β-secretase 1 (BACE-1), leading to decreased Aβ
production. This cytoprotective effect is achieved through its impact on the expression of
transglutaminase type 2 (TGM2), a high glucose-induced protein that is associated with the
inhibition of mitochondria–ER interactions, mitochondrial Ca2+ overload and mtROS accu-
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mulation. By reducing TGM2 transcription, UA has been suggested to favor the maintenance
of normal mitochondrial Ca2+ levels and ROS homeostasis, thereby preventing amyloidosis
and cell death under high glucose conditions [165,166]. Moreover, by acting as a mitophagy
inducer, UA has been shown to improve cognitive function, enhance microglial Aβ plaque
clearance, suppress neuroinflammation and abolish tau hyperphosphorylation in animal mod-
els of AD [97]. In addition to UA, mitophagy-inducing NAD+ precursors have been ascribed
with similar AD-protective properties [97,167–169]. Although these studies were monitoring
the effect of exogenously administered molecules, they strongly suggest that the capability
of commensal bacteria to produce UA or stimulate NAD+ generation by the host can have
a striking impact on the onset and the progression of AD through mitophagy modulation.
A more indirect connection between gut microbiota, mitochondria and neurodegeneration
has been proposed in the case of ghrelin, an intestinal peptide hormone whose secretion is
modulated by commensal bacteria [126]. Ghrelin has been found to protect from Aβ-induced
mitochondrial dysfunction in primary hippocampal neurons and exert a neuroprotective role
in AD mouse models, alleviating many pathological phenotypes and ultimately improving
cognitive function [170–172]. Doxycycline and other antibiotics of the tetracycline family have
been shown to act against Aβ aggregation and deposition. Although doxycycline and ri-
fampicin have also been reported to reduce neuroinflammation, there is currently no evidence
to support the implication of mitochondrial structure or function in such responses [173–175].

New evidence also assigns a neuroprotective role to bacteria and microbiome-derived
metabolites in the case of ALS. ALS-prone Sod1 transgenic (Sod1tg) mice have been re-
ported to exhibit an exacerbated disease phenotype when grown in germ free conditions or
treated with broad spectrum antibiotics [176]. More specifically, treatment with rapamycin
has been shown to augment motor neuron degeneration, induce apoptosis and cause mi-
tochondrial impairment [177]. Conversely, minocycline, a semi-synthetic tetracycline with
anti-apoptotic, anti-inflammatory and antioxidant properties, has been found to exert bene-
ficial effects on ALS through the inhibition of cytochrome c release [178,179]. Interestingly,
NAM, or NAM-producing bacteria of the species Akkermansia muciniphila, have been re-
ported to ameliorate the symptoms of GF mice, by altering the expression pattern of genes
related to mitochondrial structure and function, NAD+ homeostasis and superoxide radi-
cal removal [176]. Moreover, a significant percentage of gene promoters implicated in the
response to NAM or Akkermansia muciniphila display a common binding site for nuclear res-
piratory factor-1 (NRF-1), a transcription factor known to control mitochondrial biogenesis,
electron transport chain activity and oxidative stress [180–184]. Therefore, it is suggested
that downstream mechanisms of action for both NAM and Akkermansia muciniphila enhance
motor-neuron survival, by supporting mitochondrial integrity and function, which would
otherwise be disturbed during ALS progression [176]. Moreover, nicotinamide riboside (NR)
supplementation has been reported to decrease glial activation and delay motor neuron loss,
modestly increasing the survival of Sod1tg mice [185]. A similar ALS-protective property
has recently been assigned to the Lacticaseibacillus rhamnosus strain HA-114, which was re-
ported to rescue ALS-related phenotypes of transgenic C. elegans strains that express mutant
forms of human FUS or TDP-43. Intriguingly, this effect was traced to the modulation of
mitochondrial β-oxidation by L. rhamnosus fatty acids that were suggested to enter mito-
chondria independently of impaired carnitine shuttle, thus stabilizing energy metabolism
and improving lipid homeostasis in ALS models [186]. Additionally, comparative studies
between individuals with ALS and healthy controls demonstrated that butyrate-producing
bacteria are significantly underrepresented in the gut microbiome of ALS sufferers [187,188].
The aforementioned ability of butyrate to upregulate PGC-1α, combined with the reported
deregulation of PGC-1α expression in ALS patients and the emerging role of mitochondria in
ALS pathogenesis, suggests that microbiome composition is a major determinant of disease
onset and progression [14]. This notion is further supported by the fact that both butyrate
and propionate have been attributed with a neurogenesis-promoting effect, mediated by their
ability to enhance mitochondrial biogenesis, and have been reported to enhance differentiation
of neural stem cells through a ROS-dependent mechanism [14,189–191].
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Emerging evidence seems to enhance the hypothesis that the pathogenic process of
α-syn aggregation begins in the gut and gradually progresses in the CNS through the vagus
nerve [192–194]. α-syn aggregation has been shown to induce mitochondrial damage and
consequently cause oxidative stress and neuronal death [195]. Similarly, mitochondria of
the enteric nervous system and the CNS can also be targeted by gut microbiome-derived
metabolites and toxins that have been attributed with causative roles in the pathogenesis
of PD. Certain strains of Clostridium difficile produce toxins that inhibit mitochondrial ATP-
sensitive potassium channels, drive mitochondrial membrane hyper-polarization and induce
apoptosis [196]. Production of the neurotoxin β-N-methylamino-L-alanine (BMAA) by human
gut microbiota remains hypothetical; however, evidence suggests that chronic exposure to
dietary sources of BMAA can cause mitochondrial dysfunction and, along with protein
aggregation and immune system activation, ultimately cause neurodegeneration [197,198].
Moreover, VopE, a Vibrio cholerae-secreted toxin, is localized to mitochondria and interferes
with GTPases involved in mitochondrial dynamics [7,199,200]. Deregulation of the incretin
hormone GLP-1, which can occur in the case of gut microbiota dysbiosis, has been shown
to result in mitochondrial dysfunction via the activation of the NLRP3 inflammasome, and
has been associated with PD [201,202]. Moreover, a powerful clue of interconnection between
host–bacteria interactions, mitochondria and neurodegeneration was recently exhibited in
a C. elegans PD model, where a screen of E. coli mutants fed to the nematodes identified
curli amyloid fibril as a bacterial metabolite that promotes a-syn- induced mitochondrial
dysfunction, energy failure and neurodegeneration. Consequently, genetic or pharmacological
inhibition of the curli amyloid subunit CsgA was found to restore mitochondrial function and
reduced α-syn-induced neuronal death, thereby improving neuronal function [203].

On the contrary, bacterial metabolites that improve mitochondrial function have been
assigned with a neuroprotective role in PD. NAM supplementation enhances the activity
of sirtuins (SIRTs) and poly ADP-ribose polymerases (PARPs), and protects mitochondrial
function in Drosophila models of PD, offering reduced neurodegeneration and increased
motor function [204,205]. Similarly, UA has been reported to protect from AD-related neu-
rodegeneration by inducing mitophagy and promoting mitochondrial biogenesis through
SIRT1/PGC-1α signaling [206,207]. Secondary bile acids produced by commensal bacteria,
such as ursodeoxycholic acid (UDCA) and tauroursodesoxycholic acid (TUDCA), have also
been shown to improve motor function in PD models and rescue dopaminergic neurons.
More precisely, TUDCA has been found to enhance the clearance of defective mitochondria
through the upregulation of key mitophagy players, such as PINK1 and Parkin, while
UDCA has been reported to reduce apoptosis by downregulating the expression of Bax
and other pro-apoptotic factors, such as caspase-3, caspase-8 and caspase-9. Eventually,
both UDCA and TUDCA have been shown to maintain mitochondrial quality and promote
neuronal function and survival [208,209]. In congruent with what has been described for
AD, ghrelin has been reported to antagonize dopaminergic neuron loss and the depletion of
dopamine in mouse PD models, a neuroprotective effect that has been partly attributed to
the restoration of mitochondrial function, the reduction in Bax expression and the decline in
caspase-3 activation [210,211]. Of note, a similar neuroprotective effect has been described
for the anti-apoptotic microbiome metabolite ferulic acid, although a link to mitochondria
is yet to be revealed [212,213]. Finally, butyrate has been proposed to ameliorate PD mani-
festations through both its HDAC-inhibitor activity and its direct impact on mitochondrial
function, especially its ability to decrease the detrimental effects of ceramides that have
recently emerged as potential drivers of PD pathophysiology [76,214]. Concerning the use
of antibiotics, there are studies indicating that doxycycline exerts a neuroprotective effect
and prevents some important hallmarks of PD, such as protein misfolding, neuroinflamma-
tion and oxidative stress [175]. However, no implication of mitochondria in the underlying
mechanisms has yet been described. On the other hand, minocycline is directly linked to
mitochondrial function in the context of PD, as it has been reported to reduce Ca2+ overload,
and, thereby, lead to transmembrane potential changes and inhibition of cytochrome c
release, ultimately exerting a cytoprotective effect on cerebellar granule cells [179,215,216].
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Table 1. Summary of mitochondria-affecting microbiome metabolites involved in neurodegenerative disorders.

Microbiome Metabolite Mitochondrial Effect Neuronal Effect Human Disorder Reference

Lipopolysaccharide (LPS)

Enhanced mitochondrial fission
and fragmentation

Increased ROS production
Downregulated mitophagy

Microglia inflammation PD, AD [55–58]

Short Chain Fatty
Acids (SCFAs)

Butyrate

Modified mitochondrial activity
Increased ATP production

Enhanced mitochondrial biogenesis

Increased neuronal function and proliferation
Decreased brain inflammation
Restricted action of ceramides

PD [135,151–155,214]

Upregulated mtDNA copy number
Increased mitochondrial biogenesis

Increased oxidative stress

Increased neural stem cell self-renewal,
differentiation and viability ALS [70,188–191]

Propionate Altered mitochondrial morphology
Restored mitochondrial respiration Increased Treg cell suppressive capacity MS [148,149]

Acetate
Altered mitochondrial mass

Rectified function of electron transport
complex II

Reduced microglial phagocytosis of Aβ
Increased Aβ deposition

Microglia maturation
AD [150]

Urolithin A (UA)

Restricted mitochondria ER-interactions
Reduced Ca2+ influx from the ER

Reduced mtROS accumulation

Suppressed Tau phosphorylation
Decreased APP and BACE-1 expression

Reduced Aβ production and cognitive impairment
AD [165,166]

Induced mitophagy
Enhanced microglial Aβ plaque clearance

Reduced neuroinflammation
Abolished Tau hyperphosphorylation

AD [97]

Induced mitophagy
Enhanced mitochondrial biogenesis

Reduced loss of dopaminergic neurons
Ameliorated behavioral deficits and

neuroinflammation
AD [206,207]

NAD+ precursors

Induced mitophagy
Enhanced microglial Aβ plaque clearance

Suppressed neuroinflammation
Abolished Tau hyperphosphorylation

AD [97,167–169]

Protected mitochondrial function Reduced neurodegeneration
Improved motor function PD [204,205]

Altered expression patterns of
mitochondrial genes

Increased mitochondrial integrity
and function

Enhanced motor neuron survival
Decreased glial activation ALS [176,180–185]
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Table 1. Cont.

Microbiome Metabolite Mitochondrial Effect Neuronal Effect Human Disorder Reference

Hormones Ghrelin

Inhibited mitochondrial depolarization and
ROS generation

Neuroprotection
Improved cognitive function AD [170–172]

Restored mitochondrial function
Reduced apoptosis

Reduced dopamine depletion and dopaminergic
neuronal loss PD [210,211]

Neurotransmitters

Dopamine Decreased mitochondrial respiration
Induced mitochondrial depolarization Dysfunction of the striatum Schizophrenia [156,157]

Serotonin Increased mitochondrial biogenesis and
function (respiration and ATP production) Reduced neurotoxic effect of oxidative stress PD [158]

GABA Increased mitochondrial activity Reduced GABAergic signaling
Defective social behavior Autism, Schizophrenia [159]

Secondary bile acids
Ursodeoxycholic acid (UDCA) Upregulated mitophagy

Reduced apoptosis
Rescued dopaminergic neurons

Improved motor function PD [208,209]
Tauroursodesoxy cholic acid (TUDCA)

Antibiotics

Rapamycin Mitochondrial impairment Augmented motor neuron degeneration
Induced apoptosis ALS [177]

Minocycline
Inhibition of cytochrome c release

Reduction of Ca2+ overload
Changes in transmembrane potential

Neuroprotection
Reduced neuroinflammation ALS, PD [178,179,215,216]
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6. Concluding Remarks and Potential Therapeutic Interventions

The communication between the gut and the brain has attracted increasing attention
as a target for the development of novel drugs against a variety of disorders related to
brain health and gastro-intestinal balance [32,146,217]. In parallel, mitochondria have
been appointed with key roles in the physiology of the gut–brain axis and neurodegenera-
tion, that need to be taken into consideration when designing new therapeutic strategies
against neuronal pathogenesis. Antibiotics can act in a targeted and time-specific man-
ner, in adjustable dosages and combinations, and therefore have been used extensively in
microbiota-gut–brain axis studies, as briefly mentioned in the previous section. Beyond
their usual application for the treatment of infections, the antibiotics use is suggested to
exert secondary anti-inflammatory actions and, thereby, positively influence many cases
of neurodegeneration [216,218]. Part of such effects could stem from the resemblance of
mitochondria to prokaryotes, as antibiotic treatment has been reported to trigger UPRmt

activation and subsequent responses, which include protease and chaperone induction,
antioxidant activity and metabolic regulation [219,220]. Although, such responses are gen-
erally considered beneficial, their long-term induction has been associated with detrimental
consequences for mitochondrial function and neuronal survival [221,222]. As a result, the
inclusion of antibiotics in therapeutic schemes against neurodegeneration is a subject that
requires further investigation [216].

The gut microbiome is regulated by prebiotics, diet-derived substrates that can be
selectively utilized by commensal microorganisms and offer a health benefit [223]. Al-
though the mechanisms of action for most prebiotics are not fully understood, they often
implicate the function of mitochondria [224]. Indeed, inulin supplementation has been
demonstrated to protect against mitochondrial dysfunction in the brain of pregnant female
rats and their embryos, after exposure to developmental neurotoxicants, such as acrylamide
and rotenone [225,226]. It is worthy to mention that some prebiotics can be also considered
as indirect regulators of mitochondrial function through the influence of SCFA production,
such as butyrate and propionate [227]. Similar evidence for a mitochondria-mediated neu-
roprotective effect exists for probiotics, live microbial preparations that confer health effects
on the host when consumed in adequate amounts [228]. Emerging findings suggest that
probiotics can promote mitochondrial biogenesis and improve mitochondrial metabolism
and dynamics [229,230]. Moreover, probiotic supplementation exerts neuroprotective ef-
fects on dopaminergic neurons and improve motor functions, by increasing mitochondrial
activity, anti-oxidative enzymes and SCFA production in 6-hydroxydopamine (6-OHDA)-
induced PD rats [231]. Moreover, the probiotic Acidophilus has been reported to reduce
mitochondrial dysfunction and, thus, have a beneficial effect in rat models of AD [232].
Such findings have led to the emergence of synbiotic formulations, which combine the use
of prebiotics and probiotics, as potential strategies to regulate the microbiota-gut–brain axis
and protect from neurodegeneration. Indeed, results from D. melanogaster have shown that
synbiotic treatment increases the lifespan by promoting the maintenance of mitochondrial
functionality and reducing both oxidative stress and inflammation during ageing, while ex-
hibiting PPARγ-dependent beneficial effects on AD onset and progression [45,46]. Similarly,
synbiotic treatment is reported to alleviate cognitive decline by reducing inflammation,
oxidative stress microglial activation, neuronal apoptosis and mitochondrial dysfunction
in obese, insulin-resistant rats [233].

Finally, the targeted supplementation of specific mitochondria-affecting metabolites,
in cases where their action has been mapped, could constitute a successful therapeutic
approach against neurodegenerative conditions. As an example, direct treatment with
butyrate has been found capable to ameliorate the degenerative phenotype of ALS G93A
mice, possibly by improving mitochondrial function [234]. Organic synthesis of microbial
metabolites, co-administration and even nano-delivery of individual or complex prepara-
tions should be considered in the design of novel therapeutic approaches. Alternatively,
the use of agonists for the corresponding receptors has also been proposed as an effi-
cient therapeutic strategy [235]. In summary, emergent scientific evidence indicates the
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key role of mitochondria highlighting their association with the intestinal microbiota and
neurodegeneration. Nonetheless, additional studies are needed to elucidate the exact
mechanisms. A deeper understanding of the subject may lead to the development of novel
mitochondria-targeted interventions to tackle neurodegenerative diseases and various
age-related pathologies.
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