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Abstract: Circulating glucocorticoids increase during stress. Chronic stress, characterized by a
sustained increase in serum levels of cortisol, has been associated in different cases with an increased
risk of cancer and a worse prognosis. Glucocorticoids can promote gluconeogenesis, mobilization
of amino acids, fat breakdown, and impair the body’s immune response. Therefore, conditions
that may favor cancer growth and the acquisition of radio- and chemo-resistance. We found that
glucocorticoid receptor knockdown diminishes the antioxidant protection of murine B16-F10 (highly
metastatic) melanoma cells, thus leading to a drastic decrease in their survival during interaction with
the vascular endothelium. The BRAFV600E mutation is the most commonly observed in melanoma
patients. Recent studies revealed that VMF/PLX40-32 (vemurafenib, a selective inhibitor of mutant
BRAFV600E) increases mitochondrial respiration and reactive oxygen species (ROS) production in
BRAFV600E human melanoma cell lines. Early-stage cancer cells lacking Nrf2 generate high ROS levels
and exhibit a senescence-like growth arrest. Thus, it is likely that a glucocorticoid receptor antagonist
(RU486) could increase the efficacy of BRAF-related therapy in BRAFV600E-mutated melanoma. In
fact, during early progression of skin melanoma metastases, RU486 and VMF induced metastases
regression. However, treatment at an advanced stage of growth found resistance to RU486 and
VMF. This resistance was mechanistically linked to overexpression of proteins of the Bcl-2 family
(Bcl-xL and Mcl-1 in different human models). Moreover, melanoma resistance was decreased if
AKT and NF-κB signaling pathways were blocked. These findings highlight mechanisms by which
metastatic melanoma cells adapt to survive and could help in the development of most effective
therapeutic strategies.
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1. Introduction

Stressful events may precede cancer and stress-related psychosocial factors appear
associated with higher cancer incidence and poorer survival [1]. The question of whether
there is a link between stress and cancer has confused and interested both researchers and
patients. Study after study has asked whether people who develop cancer have experienced
more stress in the years before diagnosis and, conversely, if people who have experienced
extreme stress are more likely to develop cancer. In this regard, epidemiological evidence
continues to accumulate on the effect of psychosocial, behavioral and physic stress in
relation to cancer risk, progression, and mortality [2–4]. Consequently, stress management
appears essential for cancer patients, and particularly in the case of melanoma, a pathology
in which there is a narrow barrier between benign lesions, malignant transformation, and
metastatic spread [5].
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Stress-induced diseases are the consequence of an excessive adrenergic response and
mainly due to a glucocorticoid-dependent deterioration of the immune system. Stress is
linked to a lower efficiency of natural cell repair processes [6], and emerging evidence
suggest that DNA damage is increased by exposure to psychological stress and stress
hormones [7]. Nevertheless, the key question is whether stress mediators may have a direct
impact on DNA mutations, repair mechanisms, epigenetic changes, cancer spread and
metastasis. In this sense, results from recent research are mixed since some experts suggest
that stress can cause cancer, while others believe it may only contribute to the condition,
see, e.g., [2,8].

Recent studies indicating that stress could facilitate cancer growth and even metastatic
spread are mainly animal studies [3]. As pointed out by Eckerling et al. [3], “the stress
response can facilitate cancer growth and metastasis through a direct action on the molec-
ular characteristics of malignant tissue, on its microenvironment, on antitumor immune
activity, and on other indirect modulators of progression”. For instance, cortisol increases
the expression of the HPV16 E6 and E7 oncogenes, which facilitate degradation of p53 and,
thereby, tumor initiation [9]. Moreover, stress conditions and/or increased levels of cortisol
are associated to poor/bad nutrition, poor sleep and vitamin D deficiency, all factors that
may favor the development of cancer [1].

In colon and gynecological cancers (endometrial, ovarian and triple negative breast
cancers), it has been demonstrated that high glucocorticoid expression or glucocorticoid
receptor (GR) activation are linked with cancer progression, development of treatment resis-
tance, and/or a poorer patient prognosis [10–15]. Moreover, overexpression of GR induces
cisplatin resistance through p38 MAP kinase in cervical cancer patients [16]. Prolonged
serum elevation of glucocorticoid levels can negatively influence mitochondrial function
leading to mitochondrial damage with a negative impact on cellular metabolism [17]. In
addition, stress can reduce the body’s resistance to some types of viruses, which are now
known to be significantly involved in the initiation of around 15% of cancer cases. Human
papillomavirus [18], Epstein-Barr virus [19], Kaposi sarcoma-associated herpesvirus [20],
and hepatitis C and B viruses [21] can be reactivated by catecholamines and glucocorticoids
(e.g., [22,23]). Glucocorticoids are among the most potent immunosuppressive agents and,
thus, may favor the progression of cancer [24]. They inhibit the synthesis of almost all
known cytokines and of several cell surface molecules required for immune function [25].
Around 15–20% of all cancer cases are preceded by infection or chronic inflammation at the
same organ site and, in many cases, inflammation exists long before tumor formation [26].
All these facts suggest that stress and glucocorticoids, in particular, could be involved in
the initiation of the carcinogenic process, and favor the transformation of a physiological
microenvironment into a protumoral milieu.

Nevertheless, moving from the level of animal research to human clinical research,
both epidemiological studies and clinical trials have generated somewhat uncertain re-
sults, indicating only a small, not necessarily significant, effect of stress on cancer pro-
gression [3,27,28] (www.clinicaltrials.gov accessed on 5 January 2023). Consequently, the
current medical routine does not include specific measures designed to prevent stress
responses as a means of improving cancer survival [3]. Nevertheless, it seems reasonable
to suggest that stress management interventions should be tested in the critical periods
that affect cancer progression, especially in the short postoperative period and adjuvant
treatments. In addition, more experimental studies will be needed to assess the long-term
effects of treatments.

2. Melanoma Incidence, Prognosis and Therapeutic Challenges

Skin melanoma accounted for 4% of all new cancer diagnoses in EU-27 countries
in 2020 (all cancers, excluding non-melanoma skin cancers) and for 1.3% of all deaths
due to cancer (https://ecis.jrc.ec.europa.eu accessed on 3 January 2023). Ultraviolet (UV)
solar radiation is the main source of skin damage that can lead to skin cancer. Both
UV radiation and stress cause the body to produce reactive oxygen species (ROS) [29].

www.clinicaltrials.gov
https://ecis.jrc.ec.europa.eu
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Those can increase inflammation and damage our skin’s DNA, leading to mutations and,
possibly, skin cancer [29,30]. In fact, coupled with genetic and environmental factors,
inflammation and stress have been suggested to play a role in melanoma formation and
progression [31,32].

As in other tumors, the best prognosis is achieved by early removal of tumors. The
two most common types of melanomas are [33]:

(a) Superficial spreading melanoma: this type accounts for 70% of melanomas and most
often affects the legs of women and the torsos of men. Tumor cells usually have
mutations in the BRAF gene.

(b) Nodular melanoma: 15 to 30% of melanomas, appears anywhere on the body, and
grows rapidly.

The shallower the melanoma is in the skin, the greater the chance that surgery will
cure it. Almost 100% of shallow and newer melanomas are cured by surgery. However,
melanomas deeper than about 1 mm in the skin have a higher risk of metastasis to lymph
nodes and spread through the blood. Once the melanoma has reached the lymph nodes,
the 5-year survival rate varies between 25% and 70%. Once melanoma has metastasized to
distant parts of the body, the 5-year survival rate is about 10% [34].

If the melanoma has spread to distant areas, surgery is not usually an option. Chemother-
apy, such as dacarbazine and temozolomide, can be given intravenously to treat melanomas
that have spread, but they still do not prolong survival and are given to people who have
no other options. Radiation therapy may be used when the cancer has metastatized the
brain (www.cancer.org accessed on 15 December 2022)

BRAF (vemurafenib, dabrafenib and encorafenib) and MEK (trametinib, cobimetinib
and binimetinib) inhibitors have proven to improve survival in BRAF-mutant unresectable
or metastatic melanoma [35], although half of the patients develop resistance within a
year [36]. As the concurrent inhibition of the BRAF and MEK proteins could decrease
MAPK-acquired resistance, and lead to a longer duration of response and overall survival,
BRAF/MEK inhibitors are currently used in combinations in the clinical practice [37].

PD1, PD-L1, CTLA-4 and LAG-3 are immune checkpoint proteins physiologically
expressed by immunocompetent cells to maintain immunological homeostasis and prevent
autoimmunity. However, they can be used by cancer cells to down-regulate antitumor
responses and evade the immune response [38]. Melanoma was the first malignancy to be
treated with immunological checkpoint inhibitors (ICIs) [39]. ICIs are monoclonal antibod-
ies that selectively bind to these proteins and reestablish the anti-tumor immune responses.
Four classes of ICIs are approved by the FDA for the treatment of melanoma: ipilimumab
(an antagonist of the cytotoxic-T lymphocytes antigen 4, CTLA-4) [40]; nivolumab and
pembrolizumab, antagonists of programmed cell death protein 1 (PD-1) [41]; atezolizumab,
an antagonist of programmed cell death ligand 1 (PD-L1) [42]; and relatlimab-rmbw, (a
combination of the LAG-3-blocking antibody relatlimab and the programmed death recep-
tor 1-blocking antibody nivolumab) [42]. Despite the increase in survival associated with
the introduction of ICIs therapies [43], approximately half of the patients with melanoma
do not obtain a lasting benefit [44,45].

In addition, over 350 NCI-registered clinical trials are currently being conducted.
Many trials have been carried out to treat advanced or metastatic melanoma by using
monotherapy or combination therapy of chemotherapy, immunotherapy, radiotherapy, and
targeted therapy, and also new dosage forms or delivery systems (see [46]).

3. Intracellular Redox State and Oxidative Stress in Melanoma Initiation
and Progression

Oxidative stress associates to an excessive ROS production, byproducts of O2 metabolism
which also have key roles in cell signaling [47]. ROS-induced molecular damages and
signaling activation of specific pathways can affect carcinogenesis and tumor progres-
sion [48,49]. Oxidative stress and/or redox status alterations may lead to cell transitions
from quiescent to proliferative status, growth arrest and/or cell death depending on the

www.cancer.org


Cells 2023, 12, 418 4 of 18

importance of the redox imbalance [50]. Therefore, although oxidative stress and redox
status shifts can cause cancer cell death, it is also feasible that they help to generate cell
subsets capable of adapting and survive.

In addition to ROS, other reactive species can have a significant impact on the intra-
cellular redox status, i.e., reactive nitrogen species (RNS), reactive sulfur species, reactive
carbonyl species, reactive selenium species, chlorine and bromine species, also prooxidants
such as transition metals (e.g., Mg2+, Cu2+ or Fe2+) or vitamins (e.g., Vitamin C), and
some chemotherapeutic drugs (e.g., adriamycin and other anthracyclines, bleomycin, and
cisplatin which bind to DNA and generate ROS, or quinones, highly redox active molecules
which can cycle with their semiquinone radicals, leading to formation of ROS) [29].

Cancer cells, including melanoma cells, overproduce ROS compared to their normal
cell counterparts [51–53]. ROS can be generated by mitochondria, the melanosomes,
NADPH oxidase family enzymes, different arachidonic acid oxygenase activities, and the
nitric oxide synthase activities [54]. In addition, an increased metabolism, as compared
to normal melanocytes, interaction with immune and endothelial cells, UV radiation, and
changes in the antioxidant system are factors that must be also taken into account to evaluate
ROS levels and their effects on the growing melanoma [29]. For instance, H2O2 production
is higher in melanoma cells than in melanocytes, and H2O2 induces higher tyrosinase
activity (the rate-limiting enzyme in melanin synthesis) [55]. Moreover, melanin synthesis
associates with higher levels of ROS, which turns the melanin/ROS ratio into a vicious cycle
that favors the progression of melanoma [56]. Melanin, which is usually in an antioxidative
reduced state within the melanosome, evolves during the pathogenesis of melanoma into a
pro-oxidant substance that generates superoxide anion [57,58]. The important role of the
antioxidant response during melanomagenesis is suggested by the overexpression of heme-
oxygenase-1 (HO-1), a Nrf2 target. HO-1 is upregulated in B16-F10 murine melanoma
cells and in different melanoma tumor models growing in vivo. Cells overexpressing
HO-1, compared to controls, had increased proliferation rate, improved resistance to H2O2-
induced oxidative stress, higher angiogenic activity, augmented metastatic activity, and
decreased survival [59].

Cancer cells face replication stress caused by ROS-induced DNA damage, by oncogenic
stress associated to dysregulation of fork progression, or by chemotherapy and radiotherapy.
NOK-SI cells (human oral keratinocytes) stimulated with norepinephrine or cortisol showed
higher DNA damage compared to untreated cells, whereas the hormone-induced DNA
damage was reversed by pre-treatment with the β-adrenergic blocker propranolol [60].

Hence, there is much accumulated evidence of oxidative stress in melanoma cells
growing in vitro and in murine models growing in vivo (e.g., [54,57,61–66]). Consequently,
upregulation of their antioxidant defenses appears necessary to guarantee their survival, or
at least that of the most resistant clones.

4. Stress Hormones and Melanoma Growth

As suggested by different studies and as pointed out by Sanzo et al. [67], chronic
stress, involving environmental and psychological factors, could be a relevant cofactor in
melanoma progression and spreading. In this, different risk factors have been suggested,
i.e., excessive body mass index, high stress-related activities, or immunosuppression [68].
Moreover, stress hormones can cause upregulation of cytokines, i.e., VEGF, TGF, IL6 or
IL8, which are proangiogenic and/or favor tumor progression [32,69]. Therefore, it seems
plausible to infer that melanoma progression may be inhibited by blocking the molecular
signaling cascades involving specific cytokines.

IL-6 is dysregulated in many types of cancers, and increased serum levels of IL-6 have
been correlated with a worse prognosis in patients bearing different cancers, including
melanoma [29,70]. In this regard, it has been shown that solid tumor cells may secrete
high levels of IL-6, which is involved in fundamental processes in cancer metastasis, i.e.,
angiogenesis, proliferation, attachment, and invasion (e.g., [71,72]). In the classic B16-F10
melanoma model, known for its high metastatic potential, we observed that IL-6 (mainly
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derived from the melanoma cells) promotes the release of glutathione (GSH) from hepato-
cytes to the circulating blood [73]. This facilitates GSH to reach distant growing metastases.
The plasma membrane-bound γ-glutamyl transpeptidase (GGT) enzyme degrades extra-
cellular GSH, thus releasing cysteinyl-glycine (further metabolized by dipeptidases) and
γ-glutamyl amino acids [74–76]. Free cysteine, glycine and γ-glutamyl-amino acids are
taken up by the melanoma cells and can be used as GSH precursors [77]. Indeed, in the
B16-F10 model, GGT activity and the interorgan transport of GSH promote the synthesis of
GSH in the melanoma cells and their metastatic growth [78]. In this mechanism, the liver
plays an essential role because it is the major physiological reservoir of GSH [79].

The neuroendocrine and immune systems work in order of maintaining homeostasis
under conditions that favor overproduction of cytokines [80]. The hypothalamus-pituitary-
adrenal (HPA) axis can be stimulated by cytokines (e.g., IL-1, IL-6, or αTNF), which are
overproduced in many different immune, inflammatory or neoplastic processes [81]. Con-
sequently, the HPA axis increases secretion of ACTH, thereby activating the synthesis and
release of glucocorticoids from the adrenal glands [82]. Interestingly, pathophysiological
concentrations of cortisol have been shown to increase IL-6 production by, e.g., human
squamous cell carcinoma cells [83]. Moreover, in patients with advanced ovarian cancer,
increased levels of IL-6 in ascitic fluid correlated with increased salivary cortisol [84]. More
importantly, tumor-derived IL-6 impairs the ketogenic response to reduced caloric intake,
thus promoting a systemic metabolic stress response that blocks anti-cancer immunother-
apy [85]. Thus, suggesting a role of IL-6 to increase glucocorticoid secretion, and the
consequent immune suppression. Facts that raise the question of whether glucocorticoids
should be targeted in conjunction with immunotherapy interventions.

Glucocorticoids are useful in the primary combination chemotherapy of both acute
and chronic lymphocytic leukemias, Hodgkin’s and non-Hodgkin’s lymphomas, multiple
myeloma and breast cancer [86]. Glucocorticoids work through their receptors to perform a
variety of functions, including arresting growth or inducing apoptosis in lymphocytes [86].
The glucocorticoid-induced apoptosis appears to involve multiple signaling pathways,
i.e., transactivation of apoptosis inducing genes, such as Bim, and the negative modulation
of survival cytokines through inhibition of AP-1 and NF-κB mediated transcriptions [87–89].
However, they seem to blunt different chemotherapeutics, as it occurs, e.g., in ovarian
cancers [90] or in many other tumors [91]. Moreover, glucocorticoids are also likely to blunt
immunotherapies by interfering with immune responses [92,93]. Thus, it seems reasonable
to think that inhibition of the GRs may help to prevent these problems.

Furthermore, pathophysiological levels of noradrenaline favor overexpression of
VEGF, IL-8, and IL-6 in different human melanoma cell lines, and cytokine production are
progressively increased in the metastatic phenotypes [31]. β-adrenoceptors are upregulated
in human melanoma and their activation releases pro-tumorigenic cytokines [94], whereas
α-adrenoceptor stimulation appears to attenuate melanoma growth in mice [95]. Fur-
thermore, catecholamines have been found to increase proliferation of murine melanoma
B16-F10 cells [96]. Based on the results of retrospective and prospective observational
studies, Giorgi et al. recently suggested that β-blockers treatments should be considered as
a treatment in melanoma, although clinical trials would obviously be needed to test their
efficacy [97].

Therefore, based on this background, it is plausible that glucocorticoids and cate-
cholamines may influence melanoma growth and IL-6 production in its metastatic cells.
Further work in the B16-F10 melanoma model showed that plasma levels of ACTH, corti-
costerone and noradrenaline increase in mice bearing B16-F10 lung or liver metastases, as
compared to non-tumor-bearing controls [98]. Corticosterone and noradrenaline, at patho-
physiological levels, increased expression and secretion of IL-6 in the B16-F10 cells, which
involves changes in the DNA binding activity of NF-κB, cAMP response element-binding
protein, AP-1, and nuclear factor for IL-6 [98]. Moreover, in vivo inoculation of B16-F10
cells transfected with anti-IL-6-siRNA, treatment with the GR blocker RU-486 or with pro-
pranolol (a β-adrenoceptor blocker), increased hepatic GSH whereas decreased plasma IL-6
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levels and metastatic growth [98]. In addition, IL-6 may also promote mechanisms to avoid
the stress- and/or cytotoxic drug-induced metastatic cell death (e.g., increased expression
of several survival proteins, such as Bcl-2, Bcl-xL, Mcl-1, survivin, and XIAP) [98,99].

Figure 1 schematically describes the pathophysiology of stress and its metabolic
consequences in metastatic melanoma-bearing mammals.
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Figure 1. Pathophysiology of Stress in Metastatic Melanoma. Stress-induced dysregulation of cen-
tral pacemakers and IL-6 (mainly from metastatic cells) favor the release of pituitary ACTH. IL-6
and catecholamines increase glutathione (GSH) release from the liver. Metastatic cell γ-glutamyl
transpeptidase degrades plasma GSH, providing extra cysteine for GSH synthesis. GSH is a main
physiological antioxidant involved in promoting metastases growth. Glucocorticoids (GCs) upregu-
late the Nrf2-dependent defense system in metastatic cells. Stress hormones decrease the immune
response and facilitate the provision of nutrients to the growing metastases. Tissue-specific microen-
vironments or the influence of tumor innervation can also be decisive in the behavior of metastatic
cells. ACTH, adrenocorticotropic hormone; CRH, corticotropin releasing hormone; AAs, amino acids,
FFAs, free fatty acids.

5. Glucocorticoids and the Antioxidant Defense of Melanoma Cells
5.1. Glucocorticoids, Nrf2 and the Antioxidant Defense of Melanoma Cells

The transcription activator Nrf2 is the master regulator of the antioxidant response and
upregulates the expression of antioxidant and detoxifying enzymes [100]. Nrf2 has a protec-
tive role in UV-induced oxidative stress, DNA damage, and apoptosis of melanocytes [101].
Given the important contribution of UV radiation for ROS formation, it is not surprising
that Nrf2 activity is induced by UV in melanocytes [100]. Nrf1 and Nrf2 transcription
factors, upon activation by oxidative stress, form heterodimers with different factors, i.e.,
Maf and Jun, to bind to the antioxidant/electrophile response element (ARE/EpRE) and
regulate the transcription of oxidative stress/cytoprotection-related genes [59,102]. This is
important because oncogene (i.e., KRAS, BRAF or MYC)-induced Nrf2 transcription activ-
ity associates to increases in melanoma growth and pharmacological resistance [103–105].
Elevated Nrf2 expression and a high GSH/GSSG ratio in melanoma are correlated with a
deeper Breslow index, invasive/metastatic phenotype, and poor survival [106–108]. In that
sense, it was shown that GSH protects melanoma from oxidative stress, contributing to its
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survival [107,109]. These results are in agreement with Beberok et al. who demonstrated
that treatment with the antibiotic Lomefloxacin induce oxidative stress, GSH depletion
and apoptosis in the COLO829 melanoma cell line [110]. Moreover, N-acetylcysteine (a
classical mucolytic drug) can promote melanoma metastases spread, a fact suggesting
that caution should be taken when administering GSH promoters to cancer patients [111].
Furthermore, the link between Nrf2 and immune tolerance has already been shown in lung
adenocarcinoma, where Keap1 mutations are present in up to 20% and lead to permanent
Nrf2 activation [112]. This is an important question in the case of metastatic melanomas
where the anti-PD-1 immune therapy represent the only optional treatment [113,114].

Since glucocorticoids increase ROS generation in metastatic B16-F10 melanoma cells [98]
and also in breast cancer cells [115], we investigated if the decrease in antioxidant enzyme
activities in invasive B16-F10 cells (iB16) knockdown for the GR (iB16-shGR) was associ-
ated with changes in nuclear Nrf1 and/or Nrf2. Nuclear Nrf2, and not Nrf1, decreased
in iB16-shGR cells isolated from lung or liver metastatic foci compared to control iB16
cells [116]. This is a fact that may be key since increased Nrf2 transcription activity has
been correlated with aggressiveness in different human cancers [117–119]. However, other
authors have found just opposite results postulating that GR signaling represses the an-
tioxidant response, e.g., by inhibiting the histone acetylation mediated by Nrf2 [120], or
by forming a glucocorticoid-GR complex that migrates to the nucleus where it binds to
glucocorticoid response elements and ARE/EpRE sequences [121,122]. These controversial
results should be analyzed in the light of the actual doses of glucocorticoids adminis-
tered. Ligand-occupied GR induces or represses the transcription of thousands of genes
by direct binding to DNA response elements and/or by physically associating with other
transcription factors, thus involving a vast array of molecular interactions [123]. It is then
essential to differentiate between pathophysiological and pharmacological levels, the lat-
ter being much higher (as reported in [120,122]) and potentially causing very different
results. Indeed, biological stressors can positively or negatively affect antioxidant enzymes
depending on the time and levels of exposure [124]. In fact, exposure to physiological
stressors induces the production of ROS and oxidative stress in, e.g., the rat liver [125].
More importantly, a meta-analysis of glucocorticoids as modulators of oxidative stress
concluded that glucocorticoids promote oxidative stress [126], which cannot be the result of
improving the antioxidant defenses. Although, glucocorticoids are currently used against
different cancers [127], they can also induce cancer resistance, a still unclear effect that may
promote growth and metastases [127,128]. In fact, at pathophysiological levels, glucocor-
ticoid signaling is antiapoptotic in cells of epithelial origin and in many malignant solid
tumors subjected to cytotoxic therapy [89,129–131]. It was shown, in the immortalized
human mammary epithelial cell line MCF10A, that GR-mediated protection from apoptosis
is associated with induction of the serine/threonine survival kinase gene, sgk-1 [132]. In
agreement with these ideas, GR antagonism has been shown to promote apoptosis in solid
tumor cells [133].

Importantly, at high levels or long-term exposure of ROS, p53 expression (promoted by
DNA damage) increases, activating prooxidant genes, interfering with the Nrf2-dependent
transcription of ARE/EpRE-containing promoters (and, thereby, inhibiting the Nrf2-mediated
survival response), and potentially resulting in cell death [134]. However, particularly in
highly aggressive human cancers, the p53 protein is reduced, lost, or mutated [135]. In
this scenario, we used AS101 (ammonium tri-chloro(dioxoethylene-O,O′-)tellurate), a syn-
thetic compound which has immunomodulating properties [136] and increases expression
of wild-type p53 [137]. We observed that AS101-induced up-regulation of p53 in iB16
melanoma cells caused a decrease in antioxidant enzyme expression without affecting
the nuclear levels of Nrf2 [116]. An effect that was reversed by using anti-p53 antisense
oligonucleotides [116]. Thus, proving that p53 can suppress the Nrf2-dependent transcrip-
tion of antioxidant enzymes in metastatic melanoma cells. Interestingly GR activation
may lead to inhibition of p53-induced apoptosis, an effect observed in, e.g., MCF-10Amyc
cells [138]. In agreement with this concept, in estrogen receptor-positive breast cancer cells,
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low GR expression has been linked to higher p53 expression [139]. Indeed, p53 can form a
complex with the glucocorticoid that causes a cytoplasmic sequestration of both molecular
structures [140]. These facts suggest a close link among GRs, p53 and Nrf2 which could be
involved in regulating growth and spread of BRAFV600E-mutated melanoma cells. Figure 2
summarizes, as a working hypothesis, potential molecular interactions that may involve
GRs and the Nrf2-dependent antioxidant defenses in melanoma cells.

Upon interaction of circulating melanoma cells with the vascular endothelium, a
cascade of molecular events associates to the classical docking and rolling, i.e., attachment
to the endothelial cells, release of proinflammatory cytokines, ROS and RNS, and tumor
cytotoxicity [141]. Independently of the tumor location (liver, lung, or subcutaneous),
in metastatic melanoma cells, GR knockdown decreased the expression and activities of
γ-GCS, superoxide dismutase 1 and 2, catalase, glutathione peroxidase, and glutathione
reductase, inducing a reduction in GSH levels [111]. Facts showing that GR knockdown
compromises the antioxidant defense of melanoma cells, and increases the endothelium-
induced tumor cytotoxicity [116]. Hence limiting their invasive capacity. This opens up
potential therapeutic application in case selective GR blockers may show pharmacological
efficacy under in vivo conditions.
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Figure 2. Glucocorticoids and the Antioxidant Defense of Melanoma Cells. The GR is encoded by the
NRC31 gene which can produce a number of receptor isoforms, the GRα being the primary receptor
involved in glucocorticoid (GC) signaling. The cytosolic GR complexes with different proteins,
i.e., Hsp90, Hsp70 and the FK506-binding protein 4. GCs diffuse through the plasma membrane
into the cytoplasm and binds to the GR resulting in the release of heat shock proteins. Based on the
two-part model proposed by Gerber et al. [142], the cytoplasmic GR interacts with glucocorticoids,
thus causing a conformational change and nuclear translocation. GR interacts with both the DNA and
other transcriptional machinery to orchestrate its genomic effects through three main mechanisms:
direct binding to glucocorticoid response elements, transcription factor tethering, and binding of
composite elements within the DNA [143]. Hypothetically, at high pharmacological levels of GCs,
primary repression could result from an excessive amount of GR monomers tethering to the ARE-Nrf2
complex (Nrf2 dimerizes with a basic region-leucine zipper bZIP protein and binds to the ARE to
activate gene transcription), then leading to recruitment of corepressors. In this mechanism, GR
associates with NF-κB or AP-1 [144,145], thus resulting in repression of their activity in a process
attributed to recruitment of transcriptional corepressors such as the nuclear receptor co-repressor 1
and the histone deacetylase 2 [146]. At lower extracellular levels of GCs (pathophysiological levels),
GR homodimers (predominantly formed) would recruit coactivators (such as the steroid receptor
coactivator-1, SRC-1; or the GR-interacting protein-1, GRIP-1) [147] and induce the transcription of
genes encoding antioxidant/defense enzyme activities. This double model may help to reconcile the
controversy in the results obtained by different groups.
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5.2. Combined Glucocorticoid Receptor Antagonism and BRAF Inhibition Promotes Regression of
Early Melanoma Metastases

Mifepristone (RU486) is a steroidal antiprogestogen (IC50 = 0.025 nM), as well as an
antiglucocorticoid (IC50 = 2.2 nM), and antiandrogen (IC50 = 10 nM) to a much lesser
extent [148]. Its relative binding affinity at the GR is more than three times that of dexam-
ethasone and more than ten times that of cortisol [149]. The proposed mechanism of action
of RU486 it is a competitive binding to the GR that prevents the dissociation of the heat
shock proteins from the receptor avoiding its subsequent translocation to the nucleus and
transcriptional activity [150]. RU486 does not bind to the estrogen receptor or the mineralo-
corticoid receptor [151]. Research work has revealed that progesterone can inhibit human
melanoma cell growth. The mechanism of inhibition is due to autophagy and this effect
of progesterone is not mediated through progesterone receptor [152]. Down-modulation
or pharmacological inhibition of androgen receptors suppresses melanomagenesis, with
increased intratumoral infiltration of macrophages and, in an immune-competent mouse
model, cytotoxic T cells [153]. However, intracellular signaling derived from activation
of progesterone or androgen receptors is different from that derived from GRs [154]. Re-
cent studies have demonstrated cytotoxic and anti-metastatic effects of RU486 in vitro
and in clinical trials involving meningioma, colon, breast, and ovarian cancers (e.g., Ritch
et al. [155]), whereas Alvarez et al. [156] demonstrated that RU486 impedes the prolifera-
tion of uveal melanoma cells (a highly metastatic and drug resistant cancer). Furthermore,
metapristone (the most active metabolite of RU486) inhibited cell viability and induced
early and late apoptosis in B16-F10 and A375 melanoma cells [157]. Metapristone treat-
ment resulted in decreased of Akt and ERK phosphorylation and of Bcl-2 and facilitated
overexpression of p53 and Bax in A375 cells. In addition, metapristone suppressed cell
migration and invasion by down-regulating the expression of matrix metalloproteinases (2
and 9), N-cadherin and vimentin, while E-cadherin expression was up-regulated [157].

The BRAFV600E mutation is the most commonly observed in patients, represents more
than 90% of BRAF mutations in melanoma, and can be detected early during melanoma
development [158]. B-Raf signaling create a balance between a pro-oncogenic signal and
a senescent proliferative arrest. Interestingly, in human fibroblasts BRAFV600E-induced
senescence was bypassed by the addition of glucocorticoids (albeit at pharmacological
doses), which allowed their cancer transformation [159].

Vemurafenib (VMF)/PLX40-32 (a selective inhibitor of mutant BRAFV600E) was the
first molecularly targeted therapy to be licensed in the US and Europe for treatment of
advanced melanoma. Its mechanism of action involves selective inhibition of the mutated
BRAF V600E kinase that leads to reduced signaling through the aberrant mitogen-activated
protein kinase pathway [160]. It has been reported that VMF increases mitochondrial
respiration-linked ROS generation in BRAFV600E melanoma cell lines [161]. However, VMF
also induces HO-1 upregulation in primary BRAFV600E melanoma cell lines, limiting the
efficacy of the drug and reducing the cancer cell recognition and killing by natural killer
cells [162]. Thus, possibly, a GR antagonist could increase the efficacy of BRAF-related
therapy in BRAFV600E-mutated melanoma. To test this hypothesis, we studied the effect
of RU486 [163] on the antioxidant defense of different human BRAFV600E melanoma cell
lines. We found that in vivo administration of RU486 to mice bearing metastatic BRAFV600E-
mutated melanoma cells decreases Nrf2- and redox state-related enzyme activities and,
in parallel, increases ROS production [109]. Further experiments showed that combined
treatment with RU486 and VMF strongly inhibits BRAFV600E-mutated metastatic melanoma
growth in vivo [109]. Importantly, melanoma growth inhibition was only observed if RU486
and VMF were administered simultaneously. However, if administration of VMF was de-
layed, the inhibitory effect of the association practically disappeared [109]. Thus, suggesting
that, despite RU486 administration, melanoma cells can spontaneously develop anti-VMF
resistance. Indeed, it is well known that the anti-melanoma effects of VMF are sort-lived,
and that patients present tumor relapse in a short period after treatment [164,165]. In fact,
melanoma cells showing acquired resistance to VMF have high rates of mitochondrial



Cells 2023, 12, 418 10 of 18

respiration associated with elevated mitochondrial oxidative stress [161]. Thus, suggesting
that targeting the antioxidant defense could be the right therapeutic choice.

It is also worth to mention that the most common adverse effects of VMF treatment,
i.e., pyrexia, arthralgia or skin rash, are usually treated with dexamethasone [166,167].
However, based on the above discussion, this therapy should be reconsidered as it has been
recently recommended by the Oncological Endocrinology research group of the Italian
Society of Endocrinology [168].

5.3. Anti-Death Adaptations Related to the Bcl-2 Family of Proteins in Advanced
BRAFV600E-Mutated Melanoma Metastases

Recent research indicate that a stress-like state promotes overexpression of fos, hsp70
and ubb, all required for adaptation to diverse cellular stresses. This state has a higher
tumor seeding capabilities compared to non-stressed cells, and confers intrinsic resistance
to MEK inhibitors, commonly used in melanoma treatment [169]. Furthermore, this stress-
like program can be induced by, e.g., heat shock, and promotes resistance to both MEK and
BRAF inhibitors in human melanomas [169]. Further mechanisms of acquired melanoma
resistance involve activation of the MAPK pathway. The PI3K-PTEN-AKT pathway is a
2nd resistance pathway, which often overlaps with the MAPK pathway [170,171]. Acquired
resistance to MAPK pathway targeted therapies (BRAF/MEK inhibitors) develops in most
patients at approx. 12 months [172]. Interestingly, it was also shown that GR-induced
MAPK phosphatase-1 (MPK-1) expression inhibits paclitaxel-associated MAPK activation
and contributes to breast cancer cell survival [173]. Moreover, the MEK/ERK signaling
pathway regulates expression of different Bcl-2-related proteins and survival in, e.g., human
pancreatic cancer cells [174,175]. We observed that different melanoma cells, surviving after
RU486 treatment, down regulated expression of different Bcl-2-related pro-death genes (i.e.,
bax, bak, bid), whereas upregulated anti-death bcl-xl and mcl-1 [109]. Thus, we investigated
if inhibition of Bcl-xL or Mcl-1 could improve the anti-melanoma effects of RU486 and
VMF. Previously, dexamethasone was found to inhibit TRAIL-induced apoptosis of thyroid
cancer cells via Bcl-xL induction [176]. Indeed, the treatment with RU486 + VMF + UMI-77
(UMI77 is a selective small-molecule inhibitor of Mcl-1 [177]) or RU486 + VMF + WEHI77
(WEHI77 is Bcl-xL-selective BH3 mimetic [178]) almost induced a complete regression of
advanced BRAFV600E-mutated melanoma metastases depending on which of these Bcl-
2-related proteins was preferentially overexpressed in the different human BRAFV600E

melanomas tested [109]. These findings are very relevant since melanoma regression was
also associated to an increase in host survival [109], and because BRAFV600E mutation can
also be present in other malignant neoplasms such as hairy-cell leukemia, colon carcinoma,
ovarian low-grade serous carcinoma, Langerhans cell histiocytosis and Erdheim-Chester
disease, glial neoplasms and thyroid carcinoma [179].

6. Conclusions

To date, and based on the epidemiological studies carried out, there is insufficient evi-
dence to establish a conclusive relationship between stress and the incidence/progression
of melanomas. However, the experimental and clinical evidence mentioned and discussed
in this review do make us suspect the existence of such a relationship. In this sense, and
specifically regarding glucocorticoids, we may summarize the following facts: (a) although
glucocorticoids are widely used in cancer therapy due to their proapoptotic properties
in different tumor cells (i.e., acute and chronic lymphocytic leukemias, Hodgkin’s and
non-Hodgkin’s lymphomas, multiple myeloma and breast cancer), they may also induce
a yet undefined resistant phenotype which may facilitate tumor growth and metastases.
In fact, different studies have demonstrated that glucocorticoids can suppress tumor pro-
gression, whereas other investigations reported that glucocorticoids inhibit chemotherapy-
induced cancer cell death. This controversial phenomenon may result from different
cancer subtypes, differential GR expression, different interactions at the transcription level
and the dosage of glucocorticoid given; (b) glucocorticoids, at pathophysiological levels
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(non-pharmacological), can induce antiapoptotic signals which are associated with cancer
resistance; (c) during early progression of skin melanoma metastases, RU486 (mifepristone,
a GR antagonist) and VMF (vemurafenib, a BRAF inhibitor approved by the FDA for the
treatment of late stage melanoma) induced a drastic metastases regression; (d) treatment at
an advanced stage of growth is associated to the development of resistance to RU486 and
VMF; (e) this resistance was mechanistically linked to overexpression of specific proteins of
the Bcl-2 family (i.e., Bcl-xL and Mcl-1); (f) melanoma resistance was decreased if AKT and
NF-κB signaling pathways were blocked; (g) the use of GR antagonists could increase the ef-
ficacy of the anti-melanoma immunotherapy. These facts highlight underlying mechanisms
by which metastatic melanoma cells resist and adapt to survive. Consequently, it seems
evident that elucidating the mechanisms involved in the pathophysiology of melanoma
and the response to treatment is essential in advancing towards the development of per-
sonalized therapies.
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