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Abstract: Three distinct hedgehog (HH) molecules, (sonic, desert, and indian), two HH receptors
(PTCH1 and PTCH2), a membrane bound activator (SMO), and downstream three transcription
factors (GLI1, GLI2, and GLI3) are the major components of the HH signaling. These signaling
molecules were initially identified in Drosophila melanogaster. Later, it has been found that the HH
system is highly conserved across species and essential for organogenesis. HH signaling pathways
play key roles in the development of the brain, face, skeleton, musculature, lungs, and gastrointestinal
tract. While the sonic HH (SHH) pathway plays a major role in the development of the central
nervous system, the desert HH (DHH) regulates the development of the gonads, and the indian
HH (IHH) acts on the development of bones and joints. There are also overlapping roles among
the HH molecules. In addition to the developmental role of HH signaling in embryonic life, the
pathways possess vital physiological roles in testes and ovaries during adult life. Disruption of
DHH and/or IHH signaling results in ineffective gonadal steroidogenesis and gametogenesis. While
DHH regulates the male gonadal functions, ovarian functions are regulated by both DHH and IHH.
This review article focuses on the roles of HH signaling in gonadal development and reproductive
functions with an emphasis on ovarian functions. We have acknowledged the original research work
that initially reported the findings and discussed the subsequent studies that have further analyzed
the role of HH signaling in testes and ovaries.
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1. The Hedgehog System

The hedgehog (HH) signaling was identified for their roles in the body segmentation of
Drosophila melanogaster [1]. The name HH represents Drosophila larvae’s spiked phenotype in
the cuticle, which appears like the HH animal’s spikes [2,3]. Subsequent studies found that
the HH signaling is highly conserved across species and is essential for organogenesis [4].
The HH system is composed of three HH ligands (sonic HH [SHH], desert HH [DHH]),
and indian HH [IHH]), two HH receptors (PTCH1 and PTCH2), a transmembrane activator
protein smoothened (SMO), and three downstream glioma-associated oncogene homologue
(GLI1, GLI2, and GLI3) transcription factors (TFs). HH signaling activates GLI TFs, which
translocate into the nucleus, and initiate the transcription of the target genes [5]. As the
HH ligands have common receptors, and common downstream signaling molecules, some
overlapping functions among HH molecules have been detected in many organs and
tissues. However, individual HH also carryout distinct physiological roles [2,6].

The major role of HH signaling is limited to embryonic development, particularly
in organogenesis. SHH plays an essential role in neuronal development, DHH acts on
the gonadal development and steroidogenesis, and IHH regulates various developmental
functions including bone development, as well as ovarian steroidogenesis and follicu-
logenesis [7,8]. Dysregulation of HH signaling results in the developmental defects in
brain, face, and other midline organs [9–12]. Proper development of skeleton, musculature,
gastrointestinal tract, and lungs does not occur in the absence of HH signaling [13–17]. The
revival of HH activities in adult life has been detected during tumorigenesis, and inhibition
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of HHs has been targeted for cancer therapy [18]. Most importantly, studies have demon-
strated that HH signaling plays an important role in both prenatal and postnatal gonadal
development and function [19–21]. HH signaling also regulates the gonadal functions in
adult life including steroidogenesis, spermatogenesis, and folliculogenesis [20–25]. Loss of
HH signaling can lead to infertility in both males and females [26–28]. In this article, we
have introduced the basic aspects of HH signaling and elaborated the role of HH signaling
in gonadal development and function.

2. The Hedgehog System in Health and Diseases
2.1. Physiological Roles of Hedgehog Signaling

HH signaling is primarily known for its essential roles during embryonic develop-
ment [2]. It also plays important regulatory roles in adult life, particularly in gonadal
functions. Aberrant activation of HH signaling has been detected in cancers [29]. HH
signaling molecules are differentially expressed in various tissues resulting in tissue-specific
regulatory functions. Different HH molecules may also express in the same tissue and
share common downstream signaling molecules; therefore, these signaling systems may
exhibit tissue-specific unique functions as well as overlapping and combined functions
among different HHs [8,30,31].

SHH is widely expressed in different organs and tissues, and it is the most potent HH
ligand among the three [32]. It is known for its role in the developmental patterning of
neural tube and limb buds [33–37]. SHH regulates the proliferation and differentiation
of neuronal precursors and are involved in the development of cerebral cortex studied
in mice [35] (Figure 1). It also plays a critical role in the development of axial structures
including the floor plate [38]. It regulates the patterning of limbs as well as the formation of
bones [7,16,33]. It is suggested that SHH signaling works with BMP4 to regulate the growth
of epithelial stem cells throughout embryonic development [39,40]. Moreover, the targeted
knockout of Shh gene (ShhKO) in the adrenal cortex leads to adrenocortical hypoplasia,
indicating that SHH is essential for the development of the adrenal gland [41].
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Figure 1. Role of hedgehog signaling in organogenesis. Hedgehog (HH) signaling is highly con-
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matic presentation shows the days in mouse embryonic development (considering the day of mat-
ing plug positive as E0.5). Name of the functions and the dotted lines indicate the duration in em-
bryonic days when SHH, IHH, and DHH control the developmental processes. Both IHH and DHH 
play an important role in the development of gonads, while SHH and IHH contributes to vasculo-
genesis, gastrointestinal development, and the development of prostate gland. 

Figure 1. Role of hedgehog signaling in organogenesis. Hedgehog (HH) signaling is highly conserved
across species and plays a major role in organogenesis during the embryonic life. The schematic
presentation shows the days in mouse embryonic development (considering the day of mating plug
positive as E0.5). Name of the functions and the dotted lines indicate the duration in embryonic
days when SHH, IHH, and DHH control the developmental processes. Both IHH and DHH play an
important role in the development of gonads, while SHH and IHH contributes to vasculogenesis,
gastrointestinal development, and the development of prostate gland.

DHH is primarily involved in the development of the gonads [19,20,28,42] (Figure 1).
In male mice, DHH signaling regulates the development of testes, steroidogenesis, and
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spermatogenesis [43,44]. Dhh gene knockout (DhhKO) male mice are infertile due to the
absence of mature sperms [43,44]. Expression of DHH is detected in the Sertoli cells (SCs) of
testes, and acts on the development and differentiation of peritubular myoid cells (PTMCs)
and fetal Leydig cells (LCs) [45]. Defective development of LCs in DhhKO male mice is
associated with pseudo-hermaphroditism, characterized by incomplete masculinization
of the testes and the male genital tract [42]. DHH is also expressed in Schwann cells, the
glial cells of peripheral nerves, which play an important role in nerve sheath formation [46].
Disruption of DHH signaling leads to peripheral neuropathy associated with mini-fascicle
formation [47].

In contrast to SHH and DHH, IHH plays a predominant role in the development
of bones and cartilages [48]. It is expressed in prehypertrophic and hypertrophic chon-
drocytes of developing endochondral bones and synchronizes chondrogenesis as well as
osteogenesis during endochondral ossification [49]. Ihh gene knockout (IhhKO) mice suffer
from a lack of mineralization of bones and fails to form the osteoblasts in endochondral
bones, which is required for skeletal growth [7,49]. IHH also play an important role in
the formation of synovial as well as temporomandibular joints [50]. While DHH alone
plays a key role in testes, the presence of both DHH and IHH are required for the ovarian
functions [19] (Figure 1).

HH molecules act alone in several target tissues, whereas they exhibit overlapping
roles in others. Therefore, ‘the loss of function’ phenotypes due to the loss of any single
HH differ from the combined loss of multiple HH molecules [8,30,31]. The loss of both
SHH and IHH results in lack of SMO expression in early embryos associated with lethal
defects in cardiac development as well as extraembryonic vasculogenesis [30,31]. On the
other hand, both IHH and DHH are expressed in ovarian granulosa cells (GCs) and play
important roles in steroidogenesis and follicle development [8]. It has been reported that
the loss of both DHH and IHH in GC results in the failure of theca cell (TC) development,
defective steroidogenesis, and infertility in female mice [8].

2.2. Abnormal Hedgehog Signaling and Developmental Disorders

HH signaling plays a vital role in organogenesis during embryonic development, thus
disruption of the HH pathways results in various developmental disorders. In most cases,
the downregulation of HH signaling is implicated in birth defects [9,51] (Figure 2).
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Mutations in the human SHH gene that downregulate its function are the common
causes of sporadic and inherited holoprosencephaly, characterized by incomplete separation
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of the left and right cerebral hemispheres [52,53] (Figure 2). In contrast, an increased
function of SHH signaling has been associated with exencephaly and spina bifida [54].
Moreover, an aberrant SHH signaling cause ciliopathies, a disorder in ciliary functions [55].
Based on the findings in ciliopathy mouse models, it has been suggested that ciliary
dysfunctions in the inner ear due to the loss of SHH signaling can lead to hearing loss [55].
Aberrant HH signaling have been linked to the development of cancers [4,56–58] (Figure 2).
Many types of solid and hematological cancers are found with the hyperactivation of HH
signaling [59]. The SHH signaling is strictly regulated in adult tissues and upregulation of
the SHH signaling has been found to be oncogenic [60,61]. An ectopic expression of the
SHH alone can induce basal cell carcinoma in mice [62] (Figure 2). Recent studies have
focused on the SHH signaling for molecular targeting of cancer therapy [63,64].

DHH plays a crucial role in male germline development in embryos and spermatogen-
esis in adults [20,42]. Mutations in DHH have been found to be associated with gonadal
dysgenesis in males and development of seminoma [65]. In contrast, disruption of IHH sig-
naling has been implicated in defective bone formation as well as abnormal hematopoiesis
or angiogenesis [3,44]. Mutations of IHH gene may result in the defective skeletal devel-
opment such as brachydactyly [66] and acrocapitofemoral dysplasia (short limbs, large
head, and narrow thorax) [67] (Figure 2). Hereditary multiple exostoses are another IHH-
related growth abnormality, which is characterized by a smaller skeleton with multiple
cartilage-capped bony outgrowths as well as benign bone growth (exostoses) in endo-
chondral bones [68]. Recent studies also suggest that loss of IHH signaling may also be
associated with defective steroidogenesis in females [8,23,69].

3. Hedgehog Expression, Processing, and Signaling Pathways

HH signaling functions in a unique two compartment system: a specific cell population
express the HH molecules, and the secreted HH molecules act on target cells that possess
the PTCH receptor, SMO activator, and GLI TFs [70]. The active form of HH molecules is
secreted from the expressing cells after various post-translational modifications (PTMs), as
described in the following sections (Figure 3).
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Figure 3. Posttranslational modifications of hedgehog molecules. Posttranslational modification
in each of the three HH molecule is similar and highly conserved. The initial HH polypeptide is
stepwise cleaved into three domains. After the cleavage of signal sequence (~aa 1–23), the remaining
polypeptide is cleaved into a N-terminal signaling domain (~aa 24–197) and a C-terminal autopro-
cessing domain (~aa 198–424). The Signaling domain undergoes C-terminus cholesterylation and
N-terminal palmitoylation before it is secreted in its mature and active form. The autoprocessing
domain catalyses the intramolecular chlesterol tranfer reaction necessary for choesterylation of the
signaling domain.
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3.1. Posttranslational Modifications of Hedgehog Proteins

The HH ligands are translated as ~46 kDa precursor peptides and undergo several
post-translational modifications (PTMs) before they are secreted in an active form [71].
Such PTMs are highly conserved and apply to all mammalian HH isoforms [71]. The
PTMs of the HH proteins determine the way HH molecules are presented on the target
cell surface [71,72]. HH polypeptides are transferred to the endoplasmic reticulum (ER)
and Golgi apparatus for autoprocessing [71,72] (Figure 3). The autoprocessing starts
with the removal of the signal peptides from HHs, followed by an internal cleavage that
generates a ~19-kDa N-terminal and another ~25-kDa C-terminal fragment [73] (Figure 3).
The N-terminal fragments are modified by the addition of a cholesterol group at the
C-terminus, and serves as the active HH ligands [73]. Cholesterol transferases and the
HH acyltransferase, which are in the endoplasmic reticulum (ER), further modify the
N-terminal part of HH proteins [73–80] (Figure 3). Remarkably, the only signaling proteins
known to be covalently changed by cholesterol moiety are the HHs [73]. A palmitic acid
moiety is added to the N-terminus of HH signaling domain by acetyltransferase known as
SKI [73]. After the cholesterylation and palmitoylation, the signaling domain is secreted as
an active HH molecule. On the other hand, the C-terminal HH fragments are involved in
the autoprocessing of HH molecules and undergo rapid degradation [73,77] (Figure 3).

3.2. Signal Transductions Mediated by Hedgehog Proteins

One of the distinctive characteristics in vertebrate HH signaling is the relationship
between primary cilia and HH signaling [81]. The primary cilium, a specialized organelle
protruding from the cell surface, have been critical to the distribution and function of
mammalian HH signaling [81,82] (Figure 4).
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Figure 4. Canonical hedgehog signaling pathway. (A) The active form of HH molecules are secreted
from the HH expressing cells. (B) In the absence of HH ligand, PTCH inhibits SMO. This is associated
with GSK-3β, CK1, and PKA-mediated phosphorylation of GLI, which forms a truncated form of GLI
repressor. The repressor GLI translocates to the nucleus in order to inhibit the transcription. (C) Active
form of HH ligand binds to PTCH receptor on the responding cells and the HH ligand-dependent
interaction with PTCH and SMO results in release of SMO activator. SMO controls the processing of
GLI factors, activate GLI, and initiate the cascade of downstream signaling pathways. Activated GLI
translocates to the nucleus and initiates the transcription of HH target genes.
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The major target molecules of HH proteins are PTCH1, PTCH2, SMO, GLI1, GLI2,
and GLI3. The initial step is mediated by two transmembrane receptors: one is either
PTCH1 or PTCH2, and the other is SMO [83] (Figure 4C). In a canonical pathway, HH
ligands bind to PTCH1, which leads to the release of SMO from the PTCH1-mediated
inhibition [83]. Free SMO activates the GLI TFs that induce targeted gene regulation [83,84]
(Figure 4C). While GLI1 primarily acts as an activator, GLI2 and GLI3 can act either as an
activator or as a repressor. In absence of the HH-mediated activation of SMO, GLI2 and
GLI3 are phosphorylated by PKA, GSK-3β, and CK1, which leads to the cleavage of these
GLI proteins to generate their repressor forms, GLI2R and GLI3R [44] (Figure 4B).

HH signaling can be impacted by several interacting molecules [85]. KIF7 and SUFU
can influence the stability and transcription activity of the GLIs [86–88]. KIF7 can exert
either a positive or a negative regulatory effect on GLI functions, while SUFU acts as an
inhibitor of GLIs [89]. In addition, SUMO has been found to modify SMO and GLI family
members to stabilize and activate the target proteins. CDON and BOC bind to HH proteins
and play a positive role in HH signaling [90,91]. In addition, cell surface protein GAS1 has
been shown to positively regulate and HHIP has been shown to negatively regulate the
HH signaling [92,93].

In contrast to the canonical HH signaling, the non-canonical HH signaling can be
mediated by two distinct mechanisms. The type I non-canonical HH signaling path-
way is SMO-independent but GLI dependent [5,94] (Figure 5A,B). Whereas, the type II
HH signaling is SMO-dependent but independent of the GLI-mediated transcriptional
signaling [5,94,95] (Figure 5C).
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Figure 5. Non-canonical hedgehog signaling pathways. (A) In the absence of HH ligand, PTCH
forms a complex with CYCLIN B1, DRAL, TUCAN-1, and CASPASE 9 that activates CASPASE 3,
which induces apoptosis. In the absence of HH ligand, CYCLIN B1 remain inactive in the proteome
complex and do not induce cell proliferation. (B) In presence of HH ligand, PTCH breaks the
interaction with CYCLIN B1, DRAL, and CASPASE 9 and CASPASE 3, which activate the cell
proliferation. CASPASE 3 is not be activated, which results in cell survival. (C) HH-activated SMO
causes the dissociation of Gi, which activate PI3 kinase, which results in the regulation of cytoskeleton
and calcium signaling. NCS: non cannonical signaling of HH.

4. Expression and Regulation of HH System in the Gonads

While DHH regulates the development and functions of male gonads, the development
and functions of female gonads are dependent on both DHH and IHH. DHH is expressed
in the SCs of developing testes starting from a mid-embryonic stage, whereas DHH and
IHH are expressed in the GCs of activated follicles. While SC-derived DHH acts on LCs
and spermatocytes, GC-derived DHH and IHH act on TCs.

4.1. Expression and Localization of Hedgehog System

Both SCs and the male germ cells are enclosed in the seminiferous tubules by a
basement membrane formed by the peritubular myoid cells (PTMCs). SRY induces the
expression of SOX9 that differentiates the SCs [96,97]. Differentiated SCs of fetal testes
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express DHH starting from embryonic day (E)11.5 [23,98] (Figure 6A). HH target molecules
are expressed on the LCs, and PTMCs (Figure 6B). HH receptor PTCH2 is highly expressed
in spermatocytes and helps to mediate the DHH activity in germ cell development [99].
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Figure 6. Expression and localization of HH signaling molecules in the gonads. (A) Role of the DHH
signaling in fetal testis’ morphogenesis and differentiation. Schematic presentation of embryonic
day 10.5 (E10.5) to E11.5 fetal mouse testis depicting SRY-induced SOX9 expression. SRY and SOX9-
induced factors mediate proliferation and differentiation of Sertoli cells (SCs), which express DHH.
(B) DHH secreted from the SCs acts on the PTCH and SMO expressed in Leydig cells (LCs) and induce
activation of GLI transcription factors. DHH signaling induce steroidogenesis in differentiated LCs.
(C) In the ovary, the granulosa cells express IHH/DHH, which act on PTCH-positive TC precursor
cells. HH binding to PTCH1 releases SMO, which activate the GLI2 TFs and differentiate the TCs.

GCs in dormant primordial follicles (PdFs) do not express the HH molecules; both
DHH and IHH are induced in the GCs of activated follicles starting from the primary
follicle stage (PrF) stage [19,100] (Figure 6C). However, the downstream targets of HH
signaling, including PTCHs, SMO, and GLIs, are located in the TCs, which suggest that
GC-derived HHs act on the TCs [19,100] (Figure 6C).

4.2. Regulation of Hedgehog Expression

During the development of the gonads, WT1, GATA4, GATA6, SOX9, and SRY are
involved in regulating the transcription of Dhh in SCs [97,101]. Among these transcriptional
regulators, SRY and SOX9 plays the major role in inducing DHH expression development
of testes [97,101]. Patients and mouse models carrying inactivating mutations in Sox9 gene
exhibit the sex reversal of the XY chromosome background [102,103]. SRY not only regulates
the proliferation, differentiation, and functions of SCs, it also induces the expression of
Sox9, which continues the differentiation of the testis [97].
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The expression of DHH and IHH remain undetectable in ovarian PdFs and is in-
duced in the GCs of activated follicles. The expression of both HHs remain higher
in the GCs of early-stage follicles but downregulated in more developed preovulatory
follicles [19,74]. Studies have demonstrated that after the induction of LHCGR signaling,
DHH and IHH mRNA levels are decreased to the basal levels and remains low until the
ovulation occurs [19,74]. During the preovulatory period, the expression of PTCH1 and
GLI1 mRNAs is also reduced significantly in the TC-interstitial compartment [19,74]. An-
other important aspect of ovarian HH regulation is the role of a bidirectional signaling
between GCs and oocytes [73]. Although the components of HH pathways are located in
the somatic cells (GCs and TCs) of ovarian follicles, the expression of HH molecules are
regulated by the oocyte-derived factor such as GDF9 [73]. It has been reported that the
expressions of DHH, IHH, and GLI1 are significantly decreased in the ovaries of Gdf9KO
mice that lack oocytes [73]. When GDF9 is added to oocyte-depleted Gdf9KO ovaries, the
expression of DHH, IHH, and GLI1 increases, indicating that GDF9 plays a crucial role in
the expression of HH ligands in GCs [77]. In a recent study, we observed that the expression
of Ihh and Hhip in neonatal rat ovaries is dependent on the estrogen receptor β (ERβ) [21].

5. Hedgehog Signaling in Gonadal Development

Sexually dimorphic features are prominent between the male and female gonadal
systems [23]. HH signaling plays a decisive role during the development of the gonads,
reproductive tracts, and external genitalia [23]. Differential HH functions are important for
the sexually dimorphic gonadal development and function [23] (Figure 7). However, the
morphogenetic events, including the development of gonad-specific cell types, structure
of the reproductive tract, and external genitalia, may need further involvement of the
endocrine and paracrine signaling pathways [20,28,98,104].
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Figure 7. Before sex differentiation, the embryos possess primitive female and male reproductive
tracts, known as Müllerian ducts (pink) and Wolffian ducts (blue). Expression of SRY and SOX9
in XY embryos induce the proliferation and differentiation of the Sertoli cells (SCs) in embryonic
testes to produce AMH and DHH. DHH signaling recruit the fetal Leydig cells (FLCs) and induce
differentiation to synthesize androgens. AMH and androgens retains the Wolffian ducts to form the
male reproductive organs. On the other hand, absence, or very low levels or AMH and androgens in
the XX embryos facilitate the growth of the Müllerian ducts to form female reproductive organs.
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5.1. Dimorphic Development of Male and Female Reproductive Sytem

The sexually dimorphic structures of the male and female reproductive system de-
velop in three distinct steps. In the first step, sex determination occurs when X or Y
chromosome-carrying sperm fertilizes an X chromosome-carrying oocyte, the XX gametes
develop to females, and the XY gamete develop to males [105]. Following the chromosomal
determination, formation of primary or gonadal sex begins and the testis and the ovaries
are specified [105] (Figure 7). The sex-determining region of chromosome Y (SRY) is re-
sponsible for the morphogenesis of testis [106,107]. In the absence of the SRY expression,
XY embryos develop ovaries instead of testes [106,107] (Figure 7).

The final step of sex differentiation occurs with the development of the reproductive
tracts and external genitalia. The testes express the anti-Müllerian hormone (AMH) and
androgens, which induces Müllerian duct regression and Wolffian duct differentiation into
the epididymis, vas deferens, and seminal vesicles in male embryos [106,107] (Figure 7).
As the ovaries express very low levels of AMH and androgens, the Wolffian duct regresses
while the Müllerian duct persists and becomes the oviduct, uterus, cervix, and upper section
of the vagina [108]. While androgens stimulate the development of male external genitalia,
the deficiency of androgens in females leads to the development of female genitalia [108]
(Figure 7). The role HH signaling in the dimorphic development of male and female gonads
and other reproductive organs are discussed in the following sections.

5.2. Hedgehog Signaling in Male Gonadal Development

DHH plays a key role in the development of male gonads [20,109]. Development
of the PTMCs and FLCs are dependent on the SC-derived DHH [42,110,111] (Figure 8).
SC-derived DHH acts on the PTCH receptors expressed on LCs to induce the differentiation
synthesis of androgens. During the development of male gonads, SHH is expressed in
the Wolffian duct epithelium, and PTCH1 and GLI1 are expressed in the mesonephric
mesenchyme, which may also contribute to the process [23] (Figure 8).
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Figure 8. DHH regulation of male gonadal development. The fetal testis is composed of testis cords
that contain the developing germ cells and Sertoli cells (SCs), as well as vascular networks. These
structures are surrounded by an interstitial tissues compartment containing Leydig cells (LCs). DHH
secreted by the SCs signals through PTCH1 and GLI1 in the LCs to regulate their development and
overall organization of the testis cord. DHH signaling also induces the expression of SF1 in LCs,
which upregulates the expression of steroidogenic enzymes. On the other hand, SHH is expressed
in the Wolffian duct epithelium, and the cells in mesonephric mesenchyme express PTCH1, SMO,
and GLI1. Thus, the two HH signaling pathways may take part into the epithelial–mesenchymal
communication during the male reproductive tract development.

In the absence of DHH, the development of PTMCs and FLCs is defective in DhhKO

mice, which leads to the disorganized structure of the corda testes [28,42,109]. Irregularly
shaped SCs, abnormal PTMCs, discontinued basal lamina, and germ cells positioned
outside the cords are the histological features of DhhKO mouse testes [42,109]. DHH
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also regulates the proliferation and differentiation of adult LCs (ALCs) [112]. DhhKO

mouse testes possess the undifferentiated LCs, resulting in testosterone deficiency [28,42].
However, DhhKO XY mice may develop a variety of testicular phenotypes depending
on the genetic background; ultimately, they become infertile due to the lack of mature
sperms [20,42,109].

5.3. Hedgehog Signaling in Female Gonadal Development

Interactions between the oocytes, GCs, and TCs are essential for the development and
maturation of ovarian follicles [19]. HH signaling pathways represent a good example of
interactions among the GCs, TCs, and oocytes [19] (Figure 9). TCs develop surrounding
the secondary follicles (ScFs), containing two or more layers of GCs [113]. The precursors
of TCs arise from two sources [69]. The androgen-producing TCs in the basal lamina are
generated from the mesonephros, whereas the remaining TCs surrounding those develop
from the ovarian mesenchyme [42] (Figure 9).
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Figure 9. The role of hedgehog signaling in ovarian folliculogenesis. DHH and IHH are expressed in
granulosa cells (GCs) of activated ovarian follicles. The major role of HH signaling in ovary involves
development and differentiation of theca cells (TCs). Loss of both DHH and IHH in GCs leads to
lack of TC development of both mesonephros or mesenchyme origin, associated with ineffective
steroidogenesis, and infertility due to failure of ovulation.

During follicle development, the mesenchymal compartment appears to be a pre-
dominant target of HH ligands [69]. Activated GCs express DHH and IHH, which are
essential for the proliferation and differentiation of TC precursor cells [69]. HH signaling
may also play an important role in protecting the ovarian follicle reserve. A recent study
has demonstrated that the inhibition of HH signaling with an inhibitor (GANT61) reduced
the mouse ovarian PdF count [114]. However, further studies are required to confirm these
findings and to clarify the underlying mechanisms.

6. Hedgehog Mediated Regulation of Gonadal Functions
6.1. Hedgehog Regulation of Testicular functions

DHH regulates spermatogenesis and the maturation of sperms [115]. DHH released
from the SCs acts on PTCH1 expressed in PTMCs and FLCs, as well as endothelial cells in
fetal testicular interstitium, and activates GLI TFs [20,28,42,104]. DHH mutant rats suffer
from defective development of FLCs as well as inadequate production of androgens [45]
(Figure 10). As expected, exposure to HH inhibitors slow down the formation of FLCs
in fetal gonad explants [28]. Cyclopamine-mediated inhibition of DHH signaling was
found to downregulate the expression of PTCH1 associated with the disruption of LC
differentiation [28] (Figure 10).
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Figure 10. Hedgehog regulation of testicular functions. Sertoli cells (SCs) express DHH and the
downstream HH signaling molecules are expressed in the Leydig cells (LCs). DHH secreted from the
SCs act of LCs to induce proliferation and differentiation. In response to DHH signaling, LCs initiate
steroidogenesis and secrete testosterone.

It has been demonstrated that DHH signaling initiates the development and mat-
uration of FLCs in mice by upregulating the expression of SF1 [116,117]. In turn, SF1
increases the expression of the steroidogenic enzymes CYP11A1 and HSD3B1 [116,117].
DhhKO XY gonads lose the expression of both PTCH1 and CYP11A1 [20,28,118]. In mouse
embryonic testes, DHH signaling induces the formation of FLCs from the SF1-positive
FLC progenitors [119]. Expression of GLI1 has also been detected in the SCs, implying that
DHH signaling may also regulate SCs in an autocrine manner [120]. However, it was found
that the inhibition of HH signaling does not impair the differentiation of SCs [118].

6.2. Hedgehog Regulation of Ovarian Functions

Ovary-specific either DhhKO or IhhKO female mice were found to be fertile and demon-
strated the presence of corpora lutea in their ovaries [8]. However, the combined DhhKO

and IhhKO resulted in defective TC development, follicular arrest at preantral phases, and
failure of ovulation [8]. TC differentiation was found to be dependent on GC-derived DHH
and IHH (Figure 11). Nevertheless, the nature of the overlapping roles of DHH and IHH in
ovarian TC cell differentiation remain unclear [8].
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Figure 11. Hedgehog regulation of ovarian steroidogenesis. Granulosa cells (GCs) in activated
ovarian follicles express DHH and IHH. The HH molecules secreted from the GCs bind the PTCH
receptors expressed on theca cell (TC) precursors to induce their differentiation. Development and
differentiation of TCs are essential for steroidogenesis and follicle maturation beyond early antral
stage. While GDF9 expressed by oocytes act on GCs to induce DHH and IHH expression, the HH
molecules are essential for TC functions. Thus, HH signaling establishes a signaling link among the
germ cells and somatic cells of ovarian follicles.
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GC-derived DHH and IHH activate GLI TFs, which translocate to the nucleus of
activated TC precursor cells. Activated GLIs induce the expression of target genes that
mediate the proliferation and differentiation of the TC percussor cells to mature TCs [69]
(Figure 11). Mice lacking the expression of both DHH and IHH in GCs (DhhKO; IhhKO)
fail to develop the TC cells, and suffer from impaired steroidogenesis and infertility due
to failure of ovulation [8]. However, such a phenotype is not observed in either DhhKO

or IhhKO mice [8]. In the absence of HH signaling, neither α-SMA, HSD3β or CYP17A1
was detected in ovarian follicles indicating that development of both mesenchyme or
mesonephros derived TCs is dependent on the GC-derived DHH and IHH [8]. Remark-
ably, IhhKO female mice, but not the DhhKO mice, showed progressively lower levels of
dehydroepiandrosterone, testosterone, and progesterone [8]. It was also associated with an
altered expression of steroidogenic enzymes, which indicates that IHH plays a crucial role
in regulating ovarian steroidogenesis [8].

7. Undecided Issues in Hedgehog Functions in the Gonads

It remains unknown whether the phenotypic consequences on spermatogenesis in
DhhKO mice are the direct effects of DHH deficiency or an indirect effect of androgen defi-
ciency due to abnormal development and functions of LCs. It is also suggested that DHH
signaling has distinct roles on the development of LCs, and PTMCs that are independent of
androgens. While the male gonadal functions are regulated by DHH alone, steroidogenesis
and folliculogenesis in the female gonad are regulated by both DHH and IHH signaling.
We observed that while the expression of IHH in GCs is regulated by ERβ, the expression
of DHH is independent of the ERβ signaling. We suspect that IHH and DHH may execute
a differential regulatory role in ovarian steroidogenesis and/or folliculogenesis. Further
studies are required to distinguish between the roles of IHH and DHH in the ovarian
follicle development and ovarian functions.
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