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The efficacy of chemotherapy with cytotoxicants and that of targeted therapies with
more sophisticated agents is limited due to the plasticity of malignant cells, which leads to
the inevitable development of resistance. Immune checkpoint inhibitors (ICIs) that target
inhibitory cytotoxic T lymphocyte associated protein 4 (CTLA4) or T cell exhaustion signals
such as programmed cell death-1 (PDCD1, better known as PD-1) and programmed cell
death-1 ligand 1 (CD-274, better known as PD-L1) occupy a central stage in the first-line
adjuvant and neoadjuvant treatment of advanced neoplasms [1,2]. ICIs are now broadly
used through the oncological spectrum.

Nevertheless, certain cytotoxic agents have the ability to induce durable disease control
exceeding the clinical treatment phase in many cancer patients. Retrospectively, it appears
that those agents that were empirically selected by clinicians for decades, due to their
effectiveness, are particularly capable of triggering specific stress and death pathways
in cancer cells, rendering them recognizable to the immune system [3,4]. In preclinical
mouse models, treatment of tumors with drugs inducing immunogenic cell death (ICD) is
only efficient if functional dendritic cells (DCs) and T lymphocytes are available [5–7]. In
patients, the induction of ICD correlates with the recruitment of antigen-presenting cells
(APCs) and cytotoxic T lymphocytes (CTLs) into the tumor bed, and tumor infiltration
by DCs and CTLs is indeed a biomarker of favorable prognosis [8–10]. ICD inducers
include conventional chemotherapeutic agents such as anthracyclines, oxaliplatin, and
taxanes, as well as more disease-specific targeted agents from the group of tyrosine kinase
inhibitors (TKIs) [11,12]. Moreover, ionizing irradiation [13,14], photodynamic therapy
(PDT) [15,16], and oncolytic viruses [17,18] have been shown to induce ICD. In preclinical
experimentation and in clinical routine, it appears that combinations of ICD inducers with
immune checkpoint inhibitors (ICIs) are particularly efficient in mediating their therapeutic
potential [19,20].

ICD facilitates the onset of anticancer immune responses via an increase in both the
antigenicity as well as the adjuvanticity of malignant cells. Mechanistically, this involves
the onset of coordinated premortem stress responses that can affect the antigenic makeup of
cancer cells via genetic or epigenetic alterations of the transcriptome. Moreover, ICD-related
cellular stress facilitates the emission of normally confined ‘danger associated molecular
patterns’ (DAMPs) that act on the pattern recognition receptors (PRRs) expressed on
professional antigen DCs [21–24]. Thus, immature DCs which express the ATP receptor
P2Y2 are chemotactically attracted to the tumor bed by ATP secreted from cancer cells
undergoing ICD [15,25]. The final approximation of DCs towards dying cancer cells
is facilitated by tumor-emitted annexin A1 (ANXA1), which acts on the formyl peptide
receptor-1 (FPR1) present on DCs [24]. Antigen transfer from tumor cells to DCs is mediated
by an ‘eat-me’ signal, namely surface-exposed calreticulin, that appears on the plasma
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membrane of malignant cells and then acts on its receptor CD91, which is present on
DCs [13]. The maturation of DCs is ignited via the ligation of Toll-like receptor 4 (TLR4)
by the high mobility group box 1 (HMGB1) emanating from the nuclear compartment
of dying cancer cells. DC maturation further drives the production of type-1 interferons,
which in turn amplifies the synthesis of the C-X-C motif chemokine ligand 10 (CXCL10),
thus stimulating T cell priming. In sum, the induction of ICD in malignant cells leads to a
coordinated alteration of the cell surface and the local secretome, thereby facilitating the
attraction, differentiation, and maturation of DCs so that they present tumor-associated
antigens to T cells and, hence, initiate adaptive anticancer immunity [22–24]. Of note is that
malignant cells and pathogenic viruses can subvert ICD-associated DAMP emission, thus
blunting the immune response. Moreover, inherited or acquired defects in the perception of
ICD by the host immune system can undermine immunosurveillance and provoke failure
of cancer treatments.

The concept of ICD has transcended the realm of preclinical experimentation and is
now used for drug discovery (to identify novel ICD inducers) for the design of clinical
trials (to identify suitable drug combinations, particularly with ICIs). The present Special
Issue, “Immunogenic Cell Stress and Death”, discusses different strategies for inducing
anticancer immunity by facilitating the molecular crosstalk between cancer cells, DCs,
and T lymphocytes. The role of ICD is reviewed in the context of colorectal, gastric,
pancreatic, and hepatocellular cancer as well as multiple myeloma. Moreover, it is revealed
that combination treatment with cetuximab plus cisplatin for the treatment of head and
neck cancer induced traits of ICD. Interestingly, high doses of the non-immunogenic cell
death inducer cisplatin blunted antitumor immunity in this context. Additional aspects
of immunogenic cell stress and death cover the role of ICD-associated chemokines and
chemokine receptors in the activation of CD8 T-cells and clinical applications thereof.
Furthermore, light is shed on the role of tumor-associated macrophages (TAMs) in the
response to dying cancer cells. Finally, three-dimensional organ-on-chip technology is
introduced for modeling the tumor microenvironment (TME). At the mechanistic level,
evidence is presented that targeting the unfolded protein response (UPR) can increase the
efficacy of anticancer therapy.

In this Special Issue, ICD induction is discussed in different disease-relevant thera-
peutic approaches, novel immune signals are described, and the roles of specific immune
cell subtypes are elucidated. Advanced in vitro systems help us understand the apical
targets of ICD, the organellar genesis of ICD signals, and the complex cellular interplay
in the tumor microenvironment. Altogether, an ever more sophisticated pipeline of pre-
clinical ICD-relevant exploration will prepare the basis for the clinical implementation of
ICD-based anticancer therapies.
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