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Abstract: L-γ-Glutamyl-L-cysteinyl-glycine is commonly referred to as glutathione (GSH); this ubiq-
uitous thiol plays essential roles in animal life. Conjugation and electron donation to enzymes such as
glutathione peroxidase (GPX) are prominent functions of GSH. Cellular glutathione balance is robustly
maintained via regulated synthesis, which is catalyzed via the coordination of γ-glutamyl-cysteine
synthetase (γ-GCS) and glutathione synthetase, as well as by reductive recycling by glutathione
reductase. A prevailing short supply of L-cysteine (Cys) tends to limit glutathione synthesis, which
leads to the production of various other γ-glutamyl peptides due to the unique enzymatic properties
of γ-GCS. Extracellular degradation of glutathione by γ-glutamyltransferase (GGT) is a dominant
source of Cys for some cells. GGT catalyzes the hydrolytic removal of the γ-glutamyl group of
glutathione or transfers it to amino acids or to dipeptides outside cells. Such processes depend on
an abundance of acceptor substrates. However, the physiological roles of extracellularly preserved
γ-glutamyl peptides have long been unclear. The identification of γ-glutamyl peptides, such as
glutathione, as allosteric modulators of calcium-sensing receptors (CaSRs) could provide insights into
the significance of the preservation of γ-glutamyl peptides. It is conceivable that GGT could generate
a new class of intercellular messaging molecules in response to extracellular microenvironments.

Keywords: cysteine; glutamic acid; L-5-oxoproline; γ-glutamylcyclotransferase; calcium-sensing
receptor

1. Introduction

Proteins and peptides are produced via the translation of genetic codes found in mRNA
by ribosomes; some small peptides, however, are produced solely through sequential
enzymatic reactions that depend on substrate specificity, but are independent of the genetic
information encoded in the nucleotide sequences of DNA. These small peptides may
contain non-protein amino acids or promote non-canonical peptide bonds between amino
acids. Glutathione is the most abundant peptide of this category and exhibits pleiotropic
functions [1,2]. Glutathione, in its reduced form (GSH), is produced via the coordinated
action of γ-glutamyl-cysteine synthetase (γ-GCS) and glutathione synthetase (GS) without
referencing genetic information. γ-GCS first ligates the γ-carboxyl group of L-glutamate
(Glu) to the amino group of L-cysteine (Cys), which results in the production of L-γ-
glutamyl-L-cysteine (γ-Glu-Cys) [3]. GS then adds a glycine (Gly) unit to γ-Glu-Cys, which
leads to the formation of the tripeptide γ-Glu-Cys-Gly (i.e., GSH). Due to its broad substrate
specificity, however, γ-GCS could be the producer of many other γ-glutamyl peptides,
which are largely dependent on the availability of free amino acids.

The liver is the central organ that predominantly synthesizes GSH and secretes it
into the bloodstream (Figure 1). It is generally accepted that glutathione, whether in its
intact form, as conjugates, or as an oxidized dimer designated as glutathione disulfide
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(GSSG), is secreted from cells via the multidrug resistance-associated protein (MRP), which
is a protein in the ABCC subclass of the ABC transporter family [4]. In circulation, the
γ-glutamyl group appears to act as a protector against the peptidases that are abundant
in blood plasma [5]. Some cells, however, express γ-glutamyltransferase (GGT) on the
plasma membrane, which is involved in the initiation of glutathione degradation outside
cells and helps recruit constituent amino acids [6]. GGT either hydrolytically removes
the γ-glutamyl moiety of glutathione or produces a variety of γ-glutamyl peptides by
transferring the γ-glutamyl moiety to an amino acid or dipeptide; these processes depend
on the abundance of acceptor molecules [7].
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Figure 1. Glutathione dynamics in vivo. In the liver, glutathione is synthesized from the constituent
amino acids Glu, Cys, and Gly by means of the sequential reactions of γ-GCS and GS under normal
physiological conditions. The resultant glutathione is largely released into the bloodstream from
cells via the multidrug resistance-associated protein (MRP) family. At the renal glomerulus, GSH as
well as other nutrients are filtered mostly into the primary urine. The tubular epithelium is rich in
GGT, which degrades glutathione. The γ-glutamyl moiety is removed by GGT, and the remaining
Cys-Gly is either transported into cells directly via dipeptide transporter PepT2 or further hydrolyzed
to Cys and Gly by dipeptidase, and then, transported via the neutral amino acid transporter NAAT.
The γ-glutamyl moiety of glutathione is converted to free Glu, which is transported via EAAC1.
Incorporated amino acids or dipeptides could contribute to glutathione synthesis. The production of
new γ-glutamyl peptides by GGT is unlikely, however, because the extracellular contents of amino
acids are limited to serving as substrates for the γ-glutamylation reaction.

Although both γ-GCS and GGT are responsible for producing γ-glutamyl peptides,
since their discovery, the roles of the resultant γ-glutamyl peptides in vivo have remained
unclear. The role of γ-glutamyl peptides, such as glutathione, as systemic allosteric modula-
tors of calcium-sensing receptors (CaSRs) expressed on the plasma membrane, has attracted
much attention, particularly in the fields of food chemistry [8,9] and neuroscience [10].
Since the production of γ-glutamyl peptides is elevated under certain pathological condi-
tions, it is conceivable that they transmit signals from damaged cells to surrounding cells
via the modulation of CaSR action. Here, we briefly overview glutathione function and
its metabolism, with a particular focus on GGT. We then discuss the potential roles of the
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γ-glutamyl peptides that are extracellularly produced by GGT, which are compounds that
have received scant attention so far.

2. Overview of Glutathione Function

The pleiotropic functions of glutathione are mostly associated with the sulfhydryl
(SH) group in the Cys residue [1,2]. Glutathione is a major detoxification system for
conjugating xenobiotic compounds [11,12], and also is instrumental in maintaining the
redox state of cells by acting as an endogenous antioxidant [13,14]. Details of the phenotypic
abnormalities and other information regarding human and mutant mice that carry defected
glutathione-metabolizing enzymes are available in the corresponding literature [15–17].

2.1. Glutathione Conjugation in Xenobiotic Metabolism and in the Production of Intrinsic
Bioactive Compounds

The conjugation of xenobiotics with GSH is catalyzed by glutathione S-transferase
(GST), and, along with glucuronidation and sulfation, this process constitutes a major
detoxification system in the liver and kidney [12,18]. The conjugated compounds are then
excreted mainly to urine through the vascular system. Glutathione conjugates experience
removal of the γ-glutamyl moiety via either GGT on the renal brush-border membrane
or through other GGT-expressing cells such as the vasculature, which is followed by the
removal of Gly units via extracellular dipeptidases (Figure 2). Such hydrolytic removal of
amino acid moieties could confer new functions to the conjugates, as exemplified by the
nephrotoxic action of cysteinyl acetaminophen (APAP) [19]. This mechanism also produces
5-S-cysteinyl dopamine in the brain, where it exerts neurotoxic activity [20].

Cells 2023, 12, x FOR PEER REVIEW 3 of 28 
 

 

and its metabolism, with a particular focus on GGT. We then discuss the potential roles of 
the γ-glutamyl peptides that are extracellularly produced by GGT, which are compounds 
that have received scant attention so far. 

2. Overview of Glutathione Function 
The pleiotropic functions of glutathione are mostly associated with the sulfhydryl (SH) 

group in the Cys residue [1,2]. Glutathione is a major detoxification system for conjugating 
xenobiotic compounds [11,12], and also is instrumental in maintaining the redox state of 
cells by acting as an endogenous antioxidant [13,14]. Details of the phenotypic abnormalities 
and other information regarding human and mutant mice that carry defected glutathione-
metabolizing enzymes are available in the corresponding literature [15–17]. 

2.1. Glutathione Conjugation in Xenobiotic Metabolism and in the Production of Intrinsic  
Bioactive Compounds 

The conjugation of xenobiotics with GSH is catalyzed by glutathione S-transferase 
(GST), and, along with glucuronidation and sulfation, this process constitutes a major de-
toxification system in the liver and kidney [12,18]. The conjugated compounds are then 
excreted mainly to urine through the vascular system. Glutathione conjugates experience 
removal of the γ-glutamyl moiety via either GGT on the renal brush-border membrane or 
through other GGT-expressing cells such as the vasculature, which is followed by the re-
moval of Gly units via extracellular dipeptidases (Figure 2). Such hydrolytic removal of 
amino acid moieties could confer new functions to the conjugates, as exemplified by the 
nephrotoxic action of cysteinyl acetaminophen (APAP) [19]. This mechanism also pro-
duces 5-S-cysteinyl dopamine in the brain, where it exerts neurotoxic activity [20]. 

 
Figure 2. Glutathione conjugation of xenobiotic compounds and their metabolic conversion in the 
extracellular space. Xenobiotic compounds (X) experience metabolic detoxification mostly in the 
liver. Glutathione conjugation is one of three popular conjugation reactions that stimulate the secre-
tion of conjugated compounds from the cell via MRP. GGT localized on the cell surface then removes 
the γ-glutamyl moiety, and then, the Gly unit can also be removed by extracellular dipeptidases. As 
a result, only the Cys portion of glutathione remains bound to a xenobiotic compound. 

Glutathione conjugation reactions could also be utilized to build the bioactive com-
pounds observed in the process of synthesizing cysteinyl leukotrienes (CysLT) such as 

Figure 2. Glutathione conjugation of xenobiotic compounds and their metabolic conversion in the
extracellular space. Xenobiotic compounds (X) experience metabolic detoxification mostly in the liver.
Glutathione conjugation is one of three popular conjugation reactions that stimulate the secretion of
conjugated compounds from the cell via MRP. GGT localized on the cell surface then removes the
γ-glutamyl moiety, and then, the Gly unit can also be removed by extracellular dipeptidases. As a
result, only the Cys portion of glutathione remains bound to a xenobiotic compound.

Glutathione conjugation reactions could also be utilized to build the bioactive com-
pounds observed in the process of synthesizing cysteinyl leukotrienes (CysLT) such as
LTC4, LTD4, and LTE4. CysLTs are inflammatory lipid mediators involved in the patho-
physiology of respiratory diseases [21] and are active components of the slow-reacting
substances of anaphylaxis through the contraction of smooth muscle [22]. GST family
members (MGST2 and 3, and GSTM4), as well as LTC4 synthetase, catalyze the conjugation
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of GSH to arachidonate epoxide, which is formed by 5-lipoxygenase [23]. Either GGT1 or
GGT5 hydrolytically removes the γ-glutamyl group of LTC4 in the extracellular milieu,
which results in LTD4. Removal of the Gly unit from LTD4 via dipeptidase finally results
in the production of LTE4. This particular CysLT binds to the G-protein-coupled receptor
subtypes CysLTR-1 and CysLTR-2 that are present in neurons, astrocytes, microglia, and
vascular endothelial cells in the brain [24]. CysLT also binds to GPR17, GPR99, and PPARγ
and could be involved in inflammatory responses.

2.2. The Role of GSH in Maintaining Redox Homeostasis

The essential roles that glutathione plays in maintaining cellular redox homeostasis are
postulated to occur in most types of cells. The reactivity of GSH towards reactive oxygen
species (ROS) is marginal and, in fact, the antioxidant action is largely accomplished
by donating electrons to glutathione peroxidase (GPX) [25]. GPX uses two electrons
from two GSH molecules to achieve the reductive detoxification of peroxides, which are
oxidized into GSSG. While mammals carry eight genes encoding canonical GPX, proteins
such as GST [26] and peroxiredoxin [27] also show GSH-dependent peroxidase activity to
some extent.

Until the discovery of ferroptosis, it was unclear whether a GSH deficiency could be
closely associated with a specific type of cell death, although the association of decreased
GSH levels with oxidative stress-related cell death is implied in many diseases [28]. Ferrop-
tosis is an iron-dependent form of regulated necrosis that was first discovered in cultured
cells, wherein the function of xCT, a transporter of oxidized Cys referred to as cystine,
is inhibited by erastin [29]. Glutathione levels are decreased via xCT inhibition due to
the deprivation of cellular Cys, and enzymes that require GSH are disabled. Among the
GSH-requiring enzymes, GPX4 reduces phospholipid hydroperoxide to corresponding al-
cohol and is one of the most potent enzymatic suppressors of ferroptosis [30,31]. Iron plays
the primary role in the lipid peroxidation reaction, so that iron chelation also effectively
suppresses ferroptosis. Under conditions with disabled GPX4, lipid peroxidation products
accumulate, which leads to membrane rupture [32]. Because ferroptosis is considered to
be involved in a variety of diseases, such as neurodegenerative disease, ischemic disease,
and cancer [33], the primary role of the Cys-GSH-GPX4 axis in combating ferroptosis has
begun to attract much attention. Although this issue is extremely important from the aspect
of glutathione function, an in-depth discussion of ferroptosis is beyond the scope of this
article. Therefore, interested readers should refer to the review articles dedicated to this
issue [33–38].

Glutaredoxin, also called thioltransferase, is encoded by the gene GLRX and protects
the SH groups in the Cys residue in proteins from oxidative modification via a reduction in
the reducing equivalent of GSH [14,39]. Cysteine sulfhydryl (Cys-SH) forms four oxidation
states: cysteine sulfenic acid (Cys-SOH), cysteine sulfinic acid (Cys-SO2H), cysteine sulfonic
acid (Cys-SO3H), and a disulfide. While Cys-SOH and the disulfide can be reversibly
reduced to Cys-SH via the use of either physiological reductants or enzymatic reactions,
Cys-SO2H and Cys-SO3H generally cannot be reduced back to Cys-SH via biological
systems [40]. Under oxidative conditions, glutathione forms a conjugation with Cys-SH
and more preferentially with Cys-SOH in proteins, which is called S-glutathionylation [41].
While Cys-SOH is prone to oxidation to either Cys-SO2H or Cys-SO3H, such oxidation
is avoided by competitive mixed disulfide formation with glutathione. When cells are
recovered from oxidative stress, S-glutathionylated Cys residue can be reduced back to
Cys-SH residue by means of another GSH, which is accelerated via the catalytic action
of GLRX. Thus, S-glutathionylation could prevent the irreversible oxidation of proteins
under oxidative conditions. GLRX is encoded by two genes in mammals: GLRX1 and
GLRX2. While GLRX1 resides mainly in the cytoplasm, GLRX2 is localized either in the
mitochondria or nuclei [42,43].
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3. Maintenance of Intracellular Glutathione

Cellular Cys content is kept low as it is cytotoxic in high concentrations and, hence, Cys
availability occasionally determines the amount of glutathione synthesis. Most cells, even
red blood cells lacking a protein-synthesizing system, produce glutathione from Glu, Cys,
and Gly via the sequential reactions of γ-GCS and GS. Cys is either imported from outside
the cell in the form of free Cys/cystine or it is synthesized through the trans-sulfuration
pathway in conjunction with L-methionine (Met) metabolism in competent cells [44].

3.1. Extracellular and Intracellular Cys Sources

Because Cys availability may limit glutathione synthesis, in order to elucidate glu-
tathione metabolism, it is important to understand the unique mechanisms for maintaining
cellular Cys levels. Animals are heterotrophs and cannot synthesize approximately half of
the amino acids required as building blocks for proteins. In high concentrations, however,
some amino acids can be toxic to certain cells, as observed with Glu toxicity in neurons [45]
and Cys toxicity in many types of cells, including neurons and hepatocytes. Rather than
Glu, it is glutamine (Gln) that is the dominant form in blood. Similarly, to avoid such risk,
it is glutathione that may be circulating rather than Cys. However, to recruit Cys from
glutathione, the γ-glutamyl moiety must first be removed outside the cell, and this removal
is performed by GGT. Extracellular dipeptidase then degrades the Cys-Gly dipeptide and
releases Cys as well as Gly. Neutral amino acid transporters (NAATs), typically the alanine
serine cysteine transporter (ASCT) and the L-type amino acid transporter 2 (LAT2), mediate
the cellular uptake of Cys in ordinary cells [46]. In neurons, neutral amino acid transporter
excitatory amino acid carrier type 1 (EAAC1, also called EAAT3) plays essential roles in
Cys uptake [47].

Under oxidative conditions, Cys is oxidized to cystine, which is the predominant form
in the extracellular fluid of the body and in cultivation media. There are two distinctive
transport systems for cystine: system b0,+ and system xc

−. While b0,+ AT, also referred
to as SLC7A9, is the main component for system b0,+ and is expressed exclusively in the
kidneys, xCT, which is referred to as SLC7A11, plays the main role in system xc

− [48,49].
Cystine taken up by cells is then reduced to Cys by TRX1 and TRX-related protein14 kDa
(TRP14) [50]. Under normal conditions, xCT shows no structural similarity to b0,+ AT
and is constitutively expressed only in certain organs such as the brain and the immune
system. However, the expression of xCT can be induced in many types of cells in response
to stress conditions such as oxidative stress and hyperoxia, which are likely mediated
by transcriptional regulatory factors Nrf2 and ATF4 [51,52]. Cystathionine is also taken
up by xCT [53] and can be utilized to synthesize Cys via the trans-sulfuration pathway
in competent cells. Because cystine is dominant in cell culture media, xCT expression
is commonly induced in most types of cells, whether lined or primary, to meet the Cys
requirement and support their survival [48].

Most non-essential amino acids are synthesized by transferring an amino group from
Glu to the carbon backbone, α-keto acid, of the corresponding amino acid. However, Cys is
the result of transferring a sulfur atom that originates from Met to the main component
of L-serine (Ser), which is why the process for Cys formation is referred to as a trans-
sulfuration reaction [44]. In Met metabolism, the reaction of Met and ATP first produces
S-adenosylmethionine (SAM), which acts as a methyl group donor for various compounds
and is converted to S-adenosyl-homocysteine after the transfer of the methyl group. Adeno-
sine is then released from S-adenosyl-homocysteine to form L-homocysteine. Cystathionine
β-synthase combines L-homocysteine with Ser to form cystathionine. Finally, cystathionine
γ-lyase cleaves cystathionine to Cys and 2-oxobutyric acid. Since the sulfur in Cys-SH
originates from Met, Cys production depends on the content of Met and on the metabolic
activities of the trans-sulfuration pathway. Therefore, it is not only the content of Cys, but
also Met availability, that limits glutathione synthesis in some cases. The trans-sulfuration
pathway coupled with Met metabolism is highly active in hepatocytes and in other cells,
which must meet the demand for Cys.
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3.2. De Novo Glutathione Synthesis

γ-GCS is responsible for the production of γ-Glu-Cys, and then, GS completes glu-
tathione formation via the ligation of a Gly unit. The enzymatic and protein chemical
properties of γ-GCS have been precisely reviewed by Griffith [3], so the subject matter
is only briefly described here. γ-GCS is a heterodimeric enzyme composed of a catalytic
subunit that is encoded by the GCLC gene and a modifier subunit that is encoded by the
GCLM gene [15]. Physiological levels of GSH suppress γ-GCS activity in an allosteric man-
ner. The GCLC protein is responsible for catalysis and is regulated by a specific inhibitor,
buthionine sulfoximine, which decreases glutathione to negligible levels after one day of
treatment in most types of cells during cultivation [54]. This indicates that γ-GCS activity
is the main component for maintaining glutathione levels inside cells.

The generation of γ-Glu-Cys by the γ-GCS-catalyzed ligation reaction proceeds es-
sentially in two partial reaction steps [55]. In the first step, Glu is phosphorylated by ATP
to form a carboxylic phosphoric anhydride, γ-glutamyl phosphate. Then, this activated
γ-carboxyl group is attacked by the amino group of Cys to form γ-Glu-Cys. Cys is the
preferable amino acid substrate that is γ-glutamylated in the γ-GCS reaction (the Michaelis
constant (Km) = 0.1–0.3 mM), but Cys-mimetic 2-aminobutyric acid (2AB) is also a good
substrate [3]. Moreover, other amino acids also take the place of Cys, albeit to a lesser extent,
as described in the following section. This broad specificity to the substrate allows for the
production of a variety of γ-glutamyl peptides inside cells. Mice with a genetic ablation of
GCLC exhibit embryonic lethality [56]. While at least six children with GCLC deficiency
are reported to have shown anemia [57], significant levels of glutathione remained in their
red blood cells, which suggests the preservation of some γ-GCS activity.

GS is a homodimeric enzyme that adds a Gly unit to γ-Glu-Cys and also to γ-Glu-
2-aminobutyrate (2AB), which results in GSH and γ-Glu-2AB-Gly, which is referred to
as ophthalmic acid (OPT), respectively. A genetic deficiency of GSS encoding GS is quite
rare and shows a relatively mild phenotype [58,59]. GSS-deficient patients experience
5-oxoprolinuria, hemolytic anemia, and neurological dysfunction. Whereas glutathione
levels are decreased in the fibroblasts of GSS-deficient patients, Cys and γ-Glu-Cys levels
increase [60]. Hemolytic anemia and neurological dysfunction can be explained as a
decrease in glutathione levels. The excessive production of L-5-oxoproline (5-OP) causes
5-oxoprolinuria, and Cys sometimes accumulates inside the cells of patients with a GSS
deficiency. In the case of the γ-GCS reaction, the generation of 5-OP and the accumulation
of Cys are contradictory phenomena because 5-OP may be produced when γ-glutamyl
phosphate does not meet Cys [55]. Another hypothetical mechanism involves a certain
isozyme of γ-glutamylcyclotransferase, which produces 5-OP from glutathione and could
also actively cleave γ-Glu-Cys to 5-OP and Cys. Currently, however, there is no evidence to
support either mechanism.

3.3. Reductive Recycling of GSSG

The production of GSSG is a result of one of the following: the non-enzymatic oxidation
of GSH, electron donation to the enzymatic reaction of GPX, or thiol transfer from a
glutathione-mixed disulfide via GLRX. Glutathione reductase (GSR) uses NADPH as the
primary electron donor to catalyze the reductive recycling of GSSG to two GSH [61], and a
portion of GSSG is transported out of cells via MRP. GSR is constitutively present in most
cells, but can be induced in an Nrf2-dependent manner under oxidative stress, and it plays
a crucial role in preserving the cellular redox state via the regeneration of GSH [62].

NADPH is the primary electron source for the GSR reaction as well as for many other
reductase reactions, and maintaining its levels is extremely important for redox homeostasis
and its support of many anabolic reactions, such as the reductive conversion of ribonu-
cleotides to deoxyribonucleotides and lipogenesis [63]. NADPH is partially produced by
accepting electrons from NADH through nicotinamide nucleotide transhydrogenase in
the mitochondria of ordinary cells [64], but the capacity is limited. Glucose-6-phosphate
dehydrogenase (G6PD) in the pentose phosphate pathway is the dominant enzyme that
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produces the required amount of NADPH during the conversion of glucose-6-phosphate
to D-glucono-1,5-lactone-6-phosphate [63]. Increased G6PD activity appears to meet the
demand of NADPH for cell proliferation and for combating oxidative stress. GSH is
abundantly synthesized in red blood cells, and the reductive recycling of GSSG by GSR is
particularly important for prolonging their life span. A defect in G6PD is the most preva-
lent form of enzyme deficiency in the world and is closely associated with anemia [65].
A proposed mechanism for developing anemia from a G6PD deficiency involves the pre-
mature removal of red blood cells from the circulation due to a decrease in deformability.
When GPX is disabled due to a defect in glutathione recycling, the redox state of red blood
cells shifts toward an oxidative stage, which impairs deformability. Patients with a G6PD
deficiency are generally asymptomatic in ordinary life, but stimuli that cause oxidative
stress, such as microbial infections and the use of certain medications, could trigger the
development of anemia.

4. GGT, a Key Enzyme in Extracellular Glutathione Metabolism

There is a group of cell-penetrating (permeable) peptides that traverse the phospho-
lipid bilayer barrier without the involvement of a transporter protein [66]. However, due
to its hydrophilic nature, GSH does not follow this process. While S. cerevisiae import
GSH into the cells via Hgt1p in a proton-coupled manner [67,68], no orthologous genes
are known to exist in mammals. Although mitochondrial GSH import is mediated by a
probable transporter protein, SLC25A39 [69], neither GSH nor related γ-glutamyl peptides
appear to enter mammalian cells without modification, e.g., via esterification [70].

Glutathione is actively degraded on the surface of some types of cells under physiolog-
ical and pathophysiological situations (Figure 3). Extracellular GSH and GSSG experience
removal of the γ-glutamyl moiety by GGT, which is a plasma membrane-anchored glycopro-
tein, and are further hydrolyzed into amino acids by dipeptidase [7]. A similar degradation
process is also involved in the metabolism of glutathione S-conjugate with an aromatic
compound, which is finally metabolized to mercapturic acid via the N-acetylation of the
cysteine S-conjugate, and is then excreted from the body through the urine. The human
GGT gene family, which includes GGT-related genes along with pseudogenes, has been
classified by Heisterkamp et al. [71] in collaboration with the HUGO Gene Nomenclature
Committee (HGNC). We adopted the proposed nomenclature in this article.

4.1. γ-Glutamyltransferase

The reaction of glutathione with amino acids to yield peptides containing glutamic
acid was first described by Hanes et al. in 1950 [72], and this led to the observation that an
enzyme from the kidney catalyzes removal of the γ-glutamyl group from glutathione and
the formation of a new γ-glutamyl bond with various acceptor amino acids, and thereby
produces several types of γ-glutamyl amino acids. Thus, the enzyme was referred to as
γ-glutamyl transpeptidase (γ-GTP) [73] and thereafter as γ-glutamyltransferase (GGT). The
hydrolytic reaction was also found to be catalyzed by the same enzyme, which transfers a
γ-glutamyl group to a water molecule. Mammalian GGT also exhibits glutaminase activity,
by which glutamine is hydrolyzed to glutamic acid and ammonia, as indicated by the
identification of GGT as maleate-stimulated glutaminase [74,75].

Mammalian GGT is a heterodimeric type-II transmembrane glycoprotein that is trans-
lated as a single precursor and post-translationally processed into a dimeric form by
autocatalytic limited proteolysis [76]. The enzyme protein is anchored to a cell surface,
and can be released into various body fluids via cleavage of the membrane-anchor domain
and/or other non-hydrolytic processes [77–80].
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Figure 3. Comparing the catalytic reactions of GGT and CHAC. GGT in the extracellular space
removes the γ-glutamyl moiety of glutathione, which results in either a Glu and Cys-Gly dipep-
tide by means of hydrolytic activity or a new γ-glutamyl peptide by means of transferase activity.
The γ-glutamyl moiety of GSH is converted to L-5-oxo- proline (5-OP) by means of the aminoacyl-
transferase activity of CHAC. In an ATP-dependent manner, 5-OP is then hydrolyzed to Glu by
5-oxoprolinase (OPLAH).

GGT has been a traditional biomarker of hepatobiliary diseases, and recently has also
been considered a potential biomarker for various other diseases [81]. Measurements of the
blood levels of enzyme activity are of particular clinical importance in the diagnoses of liver
diseases such as alcoholic damage and carcinogenesis. Many studies have accumulated
evidence that this enzyme is induced by the administration of rugs and xenobiotics, includ-
ing ethanol, and during carcinogenesis in various tissues. Elevation of the enzyme activity
in the blood seems to be caused either by the increased expression of enzyme protein in
lesions or by enhanced liberation from cells—and possibly by both of these factors. In clini-
cal chemistry testing, various “GGT iso(en)zymes” have been observed in electrophoretic
separation and have been investigated to improve diagnostic accuracy [79]. The appearance
of different forms of GGT in clinical chemistry testing appears to be attributed to variation
in the N-terminal structure, which is due to non-specific limited proteolysis as well as to an
association with exosomes [80] and/or simply to the structures of glycans [82].

4.2. Substrate Specificities and Enzyme Assay of GGT

GGT uses a broad range of γ-glutamyl compounds as donor substrates as well as
glutathione [83]. Various γ-glutamyl derivatives of amino acids and other natural and
synthetic compounds serve as γ-glutamyl donor substrates. In most popular and general
assays for GGT, γ-glutamyl derivatives of 4-nitroaniline are often used as the donor to allow
for spectrophotometric measurements of enzyme activity [84]. With respect to acceptors,
the substrate specificity of the enzyme is somewhat broad. The enzyme efficiently transfers
the γ-glutamyl moiety to some amino acids and dipeptides, whereas glycylglycine is a
relatively good acceptor substrate, and it most often serves as the acceptor. Because L-γ-
glutamyl-p-nitroanilide is disadvantageous for practical use in clinical chemistry testing
due to its slight solubility, L-γ-glutamyl-3-carboxy-4-nitroanilide, an alternatively modified
substrate, is instead generally favored for easier handling in clinical examinations [85].
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4.3. Enzyme Reactions of GGT: Transpeptidation, Hydrolysis, and Autotranspeptidation of
γ-Glutamyl Compounds

In addition to the transpeptidation reaction, GGT also catalyzes the hydrolysis of the
γ-glutamyl bonding of γ-glutamyl substrates. Furthermore, when glutamine is used as
the substrate, the enzyme hydrolyzes the side chain amide group, yielding glutamic acid
and ammonia. All these reactions certainly appear to involve an acyl enzyme intermediate,
which is the γ-glutamyl enzyme. The intermediate is subsequently attacked by amino
groups of the acceptors or by water, and, thus, produces either new γ-glutamyl compounds
or glutamic acid, respectively. The transfer reaction of the γ-glutamyl moiety could be
considered GGT-mediated re-distribution and propagation of the γ-glutamyl group among
various biological molecules in organisms.

When γ-glutamyl-p-nitroanilide is used as the substrate for hydrolysis, the formation
step of the acyl enzyme is faster than the step for the water-conducted breakdown of
the intermediate, as shown by the faster reaction rate for the transpeptidation reaction
compared with that of hydrolysis [86]. The nucleophilic attack of an amino group toward
the enzyme intermediate is more efficient than that of water. However, since the simul-
taneous hydrolysis is not necessarily marginal compared with that of transpeptidation,
researchers have long questioned whether the biochemical significance of the enzyme is
attributed to transpeptidation or to the hydrolysis of γ-glutamyl compounds that include
glutathione [87].

In addition to the usual transpeptidation and hydrolysis of the γ-glutamyl group,
GGT also catalyzes autotranspeptidation, which is an unusual type of transpeptidation [88].
When the enzyme is allowed to react with a γ-glutamyl donor in the absence of an acceptor
substrate, the γ-glutamyl group is transferred to another molecule of the γ-glutamyl
donor, which results in the formation of a γ-glutamyl-γ-glutamyl compound and/or a
γ-glutamyl-γ-glutamyl-γ-glutamyl compound [89]. Autotranspeptidation occurs only
when using the L-stereoisomer of the γ-glutamyl group rather than the D-isomer, which
is consistent with evidence that the D-isomers of amino acids do not serve as an acceptor
for the reaction [90]. When the D-γ-glutamyl donor is used as a substrate, the enzyme
exhibits only hydrolysis and not autotranspeptidation [86]. When the hydrolytic activity is
assessed using a L-γ-glutamyl donor without any acceptor substrate, it should be noted
that the appropriate concentration of the donor must be chosen. The concentration of the
donor should be sufficiently low for the transpeptidation activity to be negligible. In the
absence of an acceptor, a double reciprocal plot for the donor substrate shows a “substrate
activation” profile rather than a straight curve, as indicated by the downward curvature
with a decreasing 1/[substrate] [86,91]. The autotranspeptidation becomes noticeable as the
substrate concentration increases, because the apparent Km value for the single substrate
as an acceptor is much higher than its value as a donor.

4.4. Protein Structure, Autoprocessing, and the Active-Site Chemistry of GGT

The crystal structures of human GGT have been solved both in various forms com-
plexed with several inhibitors and other ligands, as well as in a ligand-free form [92–95].
These analyses indicate that GGT contains an α-β-β-α core structure, as found in the N-
terminal nucleophile (Ntn) hydrolase superfamily. Three sides of the small subunit of the
human GGT are surrounded by the large subunit, the structure of which appears as a hand
wrapped around a ball. A longitudinal crevice exists on the exposed surface of the small
subunit and forms a substrate channel (Figure 4).
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Figure 4. Molecular structure and dimeric association of the subunits of GGT. The large and small
subunits are shown as a gray sphere model and a green ribbon model, respectively. The serine–borate
complex as a transition state analog is indicated as a ball-and-stick model in the center of the molecule.
The structure based on PDB ID: 4ZC6 was drawn using UCSF Chimera.

Ntn hydrolases are translated as inactive precursors and are then activated by autopro-
teolytic processing into a mature form. In human GGT, autocatalytic activation involves an
N-O acyl shift at threonine (Thr)-381, which produces an ester bond between the side chain
OH group of the Thr and an α-carbonyl group of the residue 380, which is the last residue of
the N-terminal portion that consequently becomes the large subunit. Hydrolysis of the ester
bond results in formation of the heterodimeric active form of GGT. The OH group of the
Thr-381, which is the most N-terminal residue of the small subunit after processing, serves
as a catalytic nucleophile in the active center to form an acyl enzyme intermediate, which
is the so-called γ-glutamyl enzyme, during the catalytic process of the enzyme reaction.

The nucleophilic attack of the hydroxyl group of Thr-381 against the 5-carbonyl carbon
of the γ-glutamyl moiety is facilitated by the α-amino group of the same residue, which
acts as a general acid–base catalyst generally found in the Ntn-hydrolase superfamily
(Figure 5A). The crystal structures of inhibitor-complexed forms also indicate that Gly-473
to Thr-475 forms an oxyanion hole, which interacts with the oxyanion of the tetrahedral
intermediate in the transition state. Peptide bond nitrogen atoms of Gly-473 and Gly-
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474 appear to form hydrogen bonds with the negatively charged oxygen atom, thereby
stabilizing the transition state (Figure 5B).
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Figure 5. Catalytic mechanism of GGT. (A) Nucleophilic attack by the OH group of Thr-381 on the
carbonyl group of the γ-glutamyl moiety of a substrate. The attack is assisted through the general
base catalysis by the amino group of the same residue. (B) The transition state structure. The oxyanion
of the tetrahedral intermediate may be stabilized by the hydrogen bonds with Gly-473 and Gly-474.

A γ-glutamyl group of the substrates is recognized by several residues of the active
site in human GGT (Figure 6). The α-amino group of the γ-glutamyl moiety interacts with
the carboxyl groups of Glu-420 and aspartate (Asp)-423 and with the amide carbonyl group
of asparagine (Asn)-401 via electrostatic and hydrogen bonding. On the other hand, the
α-carboxyl group interacts with the guanidino group of arginine (Arg)-107 and with the
hydroxy group of Ser-451. The carboxy group of the substrate also forms hydrogen bonds
with the peptide nitrogen of Ser-452 and possibly its side chain hydroxy group. These
interactions allow the enzyme to specifically recognize the γ-glutamyl group. Because GGT
tolerates the D-stereoisomer of the γ-glutamyl group as the donor, ionic bonds may be
more significant than hydrogen bonds due to their nondirectional characteristic.
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Figure 6. Active-site residues involved in substrate binding and catalysis. Thr-381 serves as a catalytic
nucleophile. The other residues play roles in the binding of the γ-glutamyl group of a donor substrate,
as described in the text. The serine–borate complex mimics the tetrahedral intermediate of the γ-
glutamyl group. The OH group of the serine as a ligand and the catalytic OH group of Thr-381 are
bridged by the borate anion. The structure based on PDB ID: 4ZC6 was drawn using UCSF Chimera.

4.5. Gene Family of γ-Glutamyltransferase

Although GGT had long been considered a unique enzyme with γ-glutamyl bond-
cleaving activity, particularly with respect to glutathione metabolism, another closely
related but clearly different enzyme, referred to as the “GGT-related enzyme (GGT-rel)”, is
known to catalyze the hydrolysis of glutathione [96]. Further studies have identified several
genes with nucleotide or amino acid sequences that are similar to the most “traditional” γ-
glutamyl transferase, the gene symbol of which has been systematically designated as GGT1.
Thus, these related genes constitute a gene family, which includes at least 13 members that
have been concisely summarized by Heisterkamp et al. [71]. Of the 13 genes, at least
6 appear to be active in terms of expression. Nevertheless, the protein products of only
two genes, GGT1 and GGT5, the latter of which is the approved gene symbol for GGT-rel,
were found to function as enzymes. GGT5 is capable of hydrolyzing glutathione but not γ-
glutamyl-p-nitroanilide, which is an ordinary substrate for enzyme-activity assay. It seems
most likely that one of the most important roles of GGT5 is the conversion of leukotriene
C4 into D4 by hydrolyzing the γ-glutamyl bond, and therefore, the enzyme is also known
as γ-glutamyl leukotrienase [97]. In fact, GGT5 is primarily expressed in the spleen, and
GGT5-deficient mice indicate a defect in the LTD4 formation and the attenuation of acute
inflammatory responses [98,99]. By contrast, GGT1-null mice show a substantial conversion
of LTC4 to LTD4, which excludes GGT1 from the responsible genes [97,100]. The enzymatic
properties of GGT5, as well as those of GGT 7, have not been well characterized in terms of
the formation of γ-glutamyl peptides.

Thirteen genes are systematically designated as GGT1 through GGT8 for the genes that
comprise full-length whole proteins with both large and small subunits, and as GGTLC1
through GGTLC5 light-chain-only genes, wherein only the small subunit (light chain) is
encoded [71]. Of the full-length protein genes, GGT3, GGT4, and GGT8 are not functional
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and are considered to be pseudogenes, thus being more exactly noted as GGT3P, GGT4P,
and GGT8P, respectively. As described above, although GGT1 and GGT5 products have
been well characterized in terms of enzymology, biochemistry, and structural biology,
other full-length genes have not yet been investigated in sufficient detail. With respect to
the light-chain-only genes, although GGTLC1 through GGTLC3 are functional genes, the
roles of their protein products are unknown. Enzymatic activities such as the abilities of
hydrolysis and the transpeptidation of γ-glutamyl compounds involve amino acid residues
located in the large subunit, and therefore, it is very unlikely that these proteins exhibit
the same or similar activities compared to those of γ-glutamyltransferase. On the other
hand, GGTLC4 and GGTLC5 are pseudogenes, and should be noted as GGTLC4P and
GGTLC5P, respectively.

4.6. Structure, Expression, and Deficiency of the GGT1 Gene

In the GGT1 gene, the coding region spans more than 16 kb and comprises 12 exons
and 11 introns. Exons 1 through 7 encode the large subunit, while exon 8 encodes the
carboxy portion of the large subunit and the amino terminal portion of the small sub-
unit. Exons 9 through 12 encode the residual large portion of the small subunit [101].
Such gene organization is similar to that of mouse GGT genes [102]. Multiple promot-
ers allow for tissue-specific and/or inducible expression and even for the production of
various transcripts.

GGT deficiency is a rare disease, and probably fewer than 10 cases have been re-
ported [103]. The disease is characterized by glutathionuria, which is due to the increased
excretion of glutathione in the urine, low GGT activity in the serum, and higher levels of
plasma glutathione. Some patients show mental retardation and neurological symptoms. In
recent cases [103], whole-genome sequencing showed an approximately 17 kb-homozygous
deletion in the GGT1 gene, which includes the first coding exon and several non-coding
exons. Heterozygous parents and siblings of these patients are healthy with no symptoms,
which clearly indicates an autosomal recessive disorder. Although GGT expression is
highest in the kidneys and intestines but lower in the brain, the central nervous system
discrepantly appears to be the most affected by the deficiency.

5. Enzymatic Reactions Involved in Intracellular Glutathione Metabolism

The glutathione-degrading system is not very active inside cells, but the inhibition of
glutathione synthesis by treatment with a γ-GCS inhibitor reduces the content to quite low
levels. This is thought to be due mainly to the excretion of GSH, glutathione conjugates,
and GSSG by MRP. The degradation of glutathione, however, may be accelerated under
conditions such as starvation [104] and endoplasmic reticulum (ER) stress [105].

5.1. GSH-Specific γ-Glutamylcyclotransferase Activity Inside Cells

Glutathione degradation inside cells is initiated by isozymes of γ-glutamylcyclotransferase
(Figure 3). Initial studies have shown that γ-glutamylcyclotransferase liberates the γ-
glutamyl moiety from γ-glutamyl amino acids, excluding GSH, as 5-OP [1]. While such
activity has been recognized for a long time, the protein that exhibits glutathione-specific
γ-glutamylcyclotransferase activity was only recently identified. The first identified en-
zyme was cation transport regulator protein 1 (CHAC1), which was originally reported
as a proapoptotic component [105]. The CHAC family proteins consist of CHAC1 and
CHAC2, and their genes are located on human chromosomes 15 and 2, respectively. CHAC
specifically acts on GSH with a Km of 0.1–2 mM, which is the appropriate value for
the degradation of GSH inside cells [106,107]. However, CHAC 1 shows activity that is
approximately 20 times higher than that of CHAC 2.

Studies on CHAC 1 and CHAC 2 have shown that the two isoenzymes both promote
the intracellular degradation of GSH, but they appear to act in different contexts. ChaC1
is upregulated under stress conditions such as ER stress and amino acid starvation [105],
whereas ChaC2 is constitutively expressed and may act in a housekeeping fashion [5].
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An ATF4-CHOP cascade is involved in the induction of ChaC1 under ER stress condi-
tions, which results in the accelerated degradation of intracellular glutathione and may
be responsible for cell death. ChaC1 is also induced by xCT inhibition and therefore is
considered a potential marker for ferroptosis [108]. Since the GPX4-catalyzed reduction of
lipid peroxides is disabled by glutathione deprivation, elevated ChaC1 may play a role in
ferroptosis by degrading glutathione [109]. While the participation of both ATF3 and ATF4
has been proposed in the induction of ChaC1 [110], the cooperation of both FOXO1 and
AFT4 reportedly also plays a role in the induction [111]. The administration of paracetamol,
another name for acetaminophen (APAP), induces ChaC1, and the eIF2α-ATF4 pathway
that is activated under ER stress appears to be involved in this induction [112]. In any
case, ATF4 appears to have a primary role in the induction of the ChaC1 gene. ChaC1,
which is referred to as Botch in the report [113], is induced and promotes neurogenesis
by antagonizing Notch signaling in mouse models. The enzymatic reaction that has been
proposed for ChaC1/Botch by Chi et al. [113] is the formation of 5-OP by deglycinase.
This enzymatic reaction appears to be unlikely, however, because ChaC1/Botch exhibits
γ-glutamylcyclotransferase activity but not deglycinase activity [5]. DJ-1 is the protein
that protects against the development of Parkinson’s disease (PD), and its mutation causes
early-onset PD in an autosomal recessive manner [114]. Because ChaC1 is upregulated
in DJ-1 knockout mice, DJ-1 is considered to maintain glutathione by suppressing ChaC1
expression, which thereby prevents PD development [115]. Mice with a knock-in of inactive
mutant ChaC1 tend to sustain glutathione levels in their muscles during starvation, but
otherwise show no significant changes [116]. Since mutant ChaC1-knock-in mice have
been examined only in limited situations, it remains ambiguous whether a deficiency of
CHAC 1 activity affects phenotypic properties under pathological conditions such as ER
stress, oxidative stress, and ferroptosis.

Unlike CHAC 1, CHAC 2 is enriched in undifferentiated human embryonic stem
cells [117]. The downregulation of ChaC2 tends to decrease the levels of glutathione
and blocks the self-renewal of these cells. Simultaneous knock-downs of ChaC1 and
ChaC2, however, restore the self-renewability of the cells, which indicates that glutathione
homeostasis is maintained by the balance between ChaC2 and ChaC1. ChaC2 levels are
associated with some malignant diseases. For instance, ChaC2 expression is frequently
downregulated in gastric and colorectal cancers, which suggests it is a tumor-suppressor
gene [118]. However, the elevated expression of ChaC2 in breast cancer [119] and in
hepatocellular carcinoma [120] is associated with a poor prognosis for these malignant
diseases. While these observations are discrepant at a glance, a similar situation is some-
times observed in other antioxidant systems associated with tumors [121]. A possible
explanation for such observations may be that antioxidant systems are originally protective
against tumorigenicity through a reduction in mutagenic ROS. Once tumor cells develop
and acquire a high antioxidant ability, however, they become resistant to radiation and
chemotherapy. Since investigations of CHAC isozymes have only recently begun, further
studies are required to reveal how they express differential functions in terms of glutathione
metabolism in vivo.

5.2. Conversion of 5-OP to Glu by 5-Oxoprolinase

The 5-OP that is the result of CHAC-catalyzed glutathione cleavage is converted to
Glu by 5-oxoprolinase (OPLAH) in an ATP-dependent manner [122]. Since the first report
on the genetic deficiency of OPLAH [123], more mutations of the gene have been reported
in patients who commonly develop 5-oxoprolinuria [124]. The ablation of OPLAH in
mouse models has led to an accumulation of 5-OP, which results in oxidative stress, fibrosis,
and the continued elevation of pressure due to heart failure [125]. The elevation of 5-OP
is sometimes seen in patients taking APAP, which implies an association of anion gap
metabolic acidosis with 5-oxoprolinuria, but no solid evidence has made a connection to
OPLAH [126]. Further studies of mice engineered for CHAC and OPLAH that are involved
in 5-OP metabolism may provide answers to this issue.
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5.3. Hydrolysis of Cys-Gly Dipeptide

Glutathione is a dominant reductant in most cells and is also considered to be a
vehicle for transporting Cys in a safe form to cells in vivo. GGT-catalyzed removal of the
γ-glutamyl moiety from glutathione releases a Cys-Gly dipeptide, which undergoes either
direct uptake by peptide transporter PEPT2 in some cells or further degradation into free
amino acids, Cys and Gly, via extracellular dipeptidases [127,128]. Several dipeptidases
appear to perform this reaction in the extracellular space, and carnosine dipeptidase (CNDP)
2 has been identified as a protein that preferentially reacts on the Cys-Gly dipeptide in
yeast [129]. While CNDP1 specifically degrades anti-inflammatory dipeptide carnosine
(β-alanyl-L-histidine) in blood plasma, CNDP2 is a cytosolic isoform and is more specific
to Cys-Gly dipeptide in animals [130]. We found that the CNDP2 level was elevated
in primary macrophages isolated from xCT-knockout mice [131]. Although the genetic
ablation of CNDP2 does not cause a vast change in Cys-Gly dipeptidase activity, APAP
overdose induces renal damage more severely than that encountered in wild-type mice.
Therefore, CNDP2 along with GGT may facilitate the recruitment of Cys from extracellular
GSH when demand increases during emergencies.

The risk of nephropathy increases in cases of type 2 diabetes that carry common
variants of CNDP1 and CNDP2 genes [132]. Tumor suppressor action by CNDP2 has also
been observed in hepatocellular carcinoma [133] and in gastric cancer [134]. Although the
mechanism was not clarified in these studies, the resultant increase in GSH could enhance
antioxidant capacity, thereby suppressing nephropathy development and tumorigenic
mutagenesis. In contrast, the upregulation of CNDP2 has been reported in several tumors
such as hepatocellular carcinoma [133]. CNDP2 may also stimulate the growth of colon
cancer [135] and ovarian cancer cells [136] by recruiting Cys for the synthesis of GSH.
Because ubenimex, also called bestatin, is an inhibitor of CNDP2, the anti-tumorigenic
action of this drug could be partially attributed to the inhibition of CNDP2 [137]. It is
also noteworthy that CNDP2 has a novel function in that it catalyzes N-lactoyl amino
acid formation [138]. Exercise increases N-lactosyl phenylalanine in a CNDP2-dependent
fashion, which may help control food intake and regulate systemic energy balance [139].
Thus, it is possible that elevated N-lactosyl amino acids produced by CNDP2 also have
additional functions in tumorigenesis.

6. Physiological Significance of γ-Glutamyl Peptide Production

A variety of γ-glutamyl peptides are produced by γ-GCS- and GGT-involved reactions,
but with the exception of glutathione, their functions in vivo remain largely unknown. An
intriguing question is whether γ-glutamyl peptides produced by these different enzymes
could have differential roles. Recent studies have provided clues to understanding them.

6.1. γ-GCS/GS Are Intracellular Producers of γ-Glutamyl Peptides

γ-GCS and GS are generally understood to work together for the purpose of glu-
tathione synthesis, but uncoupling could occur between these enzymes. Indeed, γ-Glu-Cys
is present in a fairly large amount, even in healthy mice, notably in the kidneys [140].
Regarding γ-Glu-Cys production, the proteolytic removal of Gly from glutathione by pepti-
dase is an unlikely mechanism because prior removal of the γ-glutamyl group is required
before removing the Gly unit [5]. It is also unlikely that GGT produces γ-Glu-Cys in
significant levels due to the transfer activity for the γ-glutamyl group, because extracellular
Cys concentrations are limited to serving as the substrates of γ-glutamyl reactions among
free amino acids under physiological conditions. Thus, it is conceivable that γ-Glu-Cys
is dominantly produced by the reaction of γ-GCS, per se, in some cells. Judging from
the fact that γ-GCS and GS proteins do not associate and that their gene expression is
controlled differently [141], it is reasonable to consider that in certain situations, γ-GCS acts
dominantly compared with GS and produces γ-glutamyl peptides other than glutathione.

The synthesis of these γ-glutamyl peptides by γ-GCS and GS appears more likely to
occur when cells are under pathological conditions that feature a Cys deficiency (Figure 7).
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Upon extreme consumption of glutathione, as typically observed in cases of APAP overdose,
cellular Cys is consumed due to excretion as the APAP conjugates to urine [19]. As a result
of Cys insufficiency, γ-GCS may promote the ligation of Glu to other amino acids via
γ-glutamyl bonding, which results in the production of a variety of γ-glutamyl peptides.
Hepatic damage with oxidative stress or excessive glutathione conjugation limits Cys,
which could lead to the aberrant production of γ-glutamyl peptides, as reported in hepatic
injury [142]. The 2AB that is formed when 2-oxobutyric acid accepts an amino group is
abundant in the liver and is a good substrate for the γ-GCS reaction instead of Cys. Under
a Cys deficiency, such as an APAP overdose, OPT is predominantly generated through a
sequential reaction of γ-GCS and GS [143]. The elevated production of OPT is typically
observed in APAP-overdosed mice [144], in patients with hepatic injury [142], and in fasted
mice [145]. While the presence of physiological levels of GSH inhibits γ-GCS activity via an
allosteric mechanism, OPT has no inhibitory effect [3], which, together with a low level of
Km of 2AB for γ-GCS, leads to the abundant production of OPT among γ-glutamyl peptides
under a Cys deficiency. Thus, γ-glutamyl peptides, notably OPT, could be considered as
markers for liver damage in which a Cys deficiency becomes more pronounced through
the glutathione conjugation reaction and oxidative stress.
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Figure 7. γ-Glutamyl peptides may be produced through the glutathione-synthesizing pathway. Cells
that express both γ-GCS and GS synthesize glutathione in the presence of a sufficient amount of Cys.
Under Cys deficiency, other amino acids (Aa) may be used instead of Cys by γ-GCS, which produces
a variety of γ-glutamyl peptides. When GS activity is low, γ-glutamyl amino acids (γ-Glu-Cys and
γ-Glu-Aa) are produced. Tau is produced from Cys through sequential oxidation reactions. Since Tau
does not carry a carboxyl group, γ-Glu-Tau is the final product even in the presence of GS.

6.2. Benefits of the Production of γ-Glutamyl Peptide by the γ-GCS-Involved Reaction Inside Cells

While beneficial actions of γ-Glu-Cys have been demonstrated in many studies [146–148],
these are largely attributable to the reactivity of the Cys moiety. Typically, γ-Glu-Cys can
also support GPX activity by directly donating electrons [149]. Cys is released from γ-Glu-
Cys, and then, recruited to synthesize glutathione. However, other γ-glutamyl peptides do
not have redox activity, so their production may have different underlying benefits. A list
of the possible mechanisms follows, which could help elucidate this issue.

One hypothetical explanation for producing these γ-glutamyl peptides could be as-
sociated with the unique enzymatic properties of γ-GCS that cause a futile cycle in cases
of Cys deficiencies. γ-Glutamyl phosphate is the intermediary compound produced from
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Glu and ATP by the action of γ-GCS; this compound is autocyclized to form 5-OP when
there is an insufficient amount of Cys as a substrate, as discussed above in the development
of 5-oxoprolinuria. The resultant 5-OP is converted back to Glu by OPLAH, which is
a reaction that also requires ATP. Since these collective reactions merely consume ATP
without producing substantial products, they are considered to form a futile cycle, which
may consequently impair cells and cause APAP hepatotoxicity [150,151]. Consistent with
this mechanism, the development of anion gap metabolic acidosis is likely associated with
5-oxoprolinuria, which is a symptom sometimes observed in patients taking APAP [152].
On the other hand, due to the broad substrate specificity in the γ-GCS reaction, instead of
Cys, any amino acid could serve as the substrate for γ-glutamylation with varying efficiency.
As a result, the auto-cyclization of γ-glutamyl phosphate is prevented by the presence
of such an amino acid, which prevents progression of the futile cycle and consequential
metabolic acidosis. This preventive mechanism is particularly effective when amino acids
with high affinity to γ-GCS are present, and, hence, 2AB is considered to play such a role.
OPT is detectable frequently in non-survivors of APAP-induced liver failure. Mean OPT
levels are not associated with survival [153], however, which suggests that the production
of OPT may not sufficiently suppress a futile cycle. To end this debate, careful consideration
based on appropriate experiments performed on animal models is required.

A benefit has also been proposed in terms of the inhibition of ferroptosis by forming a
γ-glutamyl peptide; in other words, the γ-glutamyl peptide-producing reaction is exploited
to reduce cellular Glu content, which attenuates the production of ROS so as to suppress
the lipid peroxidation that is responsible for cell death [154]. Cys starvation commonly
causes ferroptosis in many types of cells through glutathione deprivation, whereas cells
that abundantly produce γ-glutamyl peptides are resistant to nutritional deficiency. It is
well established that a Cys deficiency decreases glutathione production, which precludes
the GPX4-mediated reductive detoxification of lipid peroxides [30]. Also, the formation of
γ-glutamyl peptides by γ-GCS consumes cellular Glu, which is converted to 2-ketoglutarate
and becomes an intermediary compound to the tricarboxylic acid (TCA) cycle. As a result
of the formation of γ-glutamyl peptides, the carbohydrate catabolism in the TCA cycle
is attenuated. While the production of ATP is decreased by this, and the production of
oxygen radicals that cause lipid peroxidation is also simultaneously decreased. Conse-
quently, ferroptosis that is executed by lipid peroxidation is suppressed. This mechanism
is supported by observations wherein inhibition of the electron transfer chain suppresses
the ferroptosis caused by Cys deprivation [155,156]. A brief explanation is that a decline in
the lipid peroxidation reaction due to attenuated Glu catabolism is a likely mechanism for
the inhibition of ferroptosis in cells with a high capacity to produce γ-glutamyl peptides.
Because each type of cell depends on a different type of metabolism, it is likely that the
functions of γ-glutamyl peptides may also differ from cell to cell.

6.3. Extracellular Signaling Mediated by γ-Glutamyl Peptides Produced by GGT

Another question that also remains unanswered is that of why the γ-glutamyl group
in glutathione is metabolized differently by extracellular GGT and intracellular CHAC. A
variety of γ-glutamyl peptides have been identified in blood plasma and in some organs,
including the liver and brain, and their numbers are elevated under pathological conditions
or during malnutrition [140,142]. The stabilization of peptides by attaching the γ-glutamyl
moiety is one of the purposes of the N-terminal modification, but the potential physiological
action of regenerated γ-glutamyl peptides by GGT has long been debated.

Taurine (Tau) exerts pleiotropic activity in the central nervous system and in other
organs [157]. Among the γ-glutamyl peptides, γ-glutamyl taurine (γ-Glu-Tau) has been
studied to some extent compared to other γ-glutamyl peptides [158]. A recent study
positively correlated accelerated aging with Tau deficiency in animals, including worms,
mice, and monkeys [159], although the details of the mechanism remain unclear. Since Tau
has no carboxyl group, most of it can exist in the free form, but exceptionally, it constitutes
the second amino acid in dipeptides, as seen in γ-Glu-Tau, which is a representative γ-
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glutamyl peptide that is reportedly produced in the brain by GGT [160]. Our results,
which are based on metabolite analyses of the tissues and plasma of mice as well as
on cultivated cells, indicate that γ-GCS may also be responsible for the production of
γ-Glu-Tau. This conclusion seems clear despite the high Km of Tau found in the γ-GCS
reaction [140]. The proposed roles of γ-Glu-Tau include interactions with excitatory amino
acidergic neurotransmission [161] and anti-epileptic activity [162]. How γ-Glu-Tau exerts
such functions largely remains ambiguous, however, partly because the target receptor
molecules remain unidentified [158].

It is conceivable that GGT hydrolytically produces Glu from glutathione when there is
not enough amino acid present, and when sufficient amino acids are present, GGT transfers
the γ-glutamyl moiety to the amino acid to generate γ-glutamyl peptides (Figure 8). In
the brain, extracellular Glu content is maintained at extremely low levels because Glu may
exert excitotoxicity in some neurons expressing NMDA-type glutamate receptors [163].
Therefore, the transfer of the γ-glutamyl moiety to other amino acids rather than the release
of Glu could be advantageous as it can prevent the excitatory cytotoxicity of extracellular
Glu—notably in injured brain tissue. Although this mechanism remains hypothetical,
studies on xCT-knockout mice, which are unable to export cellular Glu in exchange for
extracellular cystine, suggest a reduction in excitotoxicity [45,164] and indirectly support
this hypothetical mechanism.
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Figure 8. Extracellular γ-glutamyl peptides may exert extracellular signaling through allosteric
modulation of CaSR. Two types of actions of GGT are shown: the hydrolysis of glutathione and
production of γ-glutamyl peptides. CaSR is a G-protein-coupled receptor for extracellular calcium
ions (Ca2+). A variety of ligands, including GSH, GSSG, Cys-linked glutathione (CsSG), and γ-
glutamyl peptide (γ-Glu-peptide), allosterically bind CaSR. Activated CaSR may stimulate the
conversion of phosphatidylinositol in the plasma membrane to inositol 1,4,5-trisphosphate (IP3) and
diacylglycerol (DG). The receptor for IP3 (IP3R) is the Ca2+ channel located in the ER membrane.
Released Ca2+ from the ER lumen together with DG activate protein kinase C (PKC). Ca2+ may bind
calmodulin, and then, activate calmodulin-dependent protein kinase (CaM-K). On the other hand,
the stimulation of phosphoinositide 3-kinase (PI3K) by CaSR results in phosphatidylinositol-3,4,5-
trisphosphate (PIP3), which activates protein kinase B (Akt). These second messengers collectively
stimulate the expressions of genes, which results in a variety of cellular responses, including cell
growth, differentiation, and anti-inflammation.



Cells 2023, 12, 2831 19 of 27

The discovery that glutathione binds to the G-protein-coupled calcium-sensing re-
ceptor (CaSR) [165] may provide a clue to understanding the extracellular production of
γ-glutamyl peptides by GGT. Other γ-glutamyl peptides, which include GSSG and a mixed
disulfide of Cys and GSH (CySSG), can also bind this unique receptor and modulate its
function [166]. CaSR is systemically expressed in the brain and intestine, and appears to
maintain extracellular calcium ion levels within a physiological range (1.1–1.3 mM) by
regulating the secretion of parathyroid hormones [167]. CaSR possesses binding sites for
multiple ligands, which include orthosteric agonist, extracellular Ca2+, and many allosteric
compounds, such as amino acids and peptides that include γ-glutamyl peptides [10,166].
These properties of CaSR have particularly attracted research in the field of food chemistry
because GSH and γ-Glu-Val-Gly act as “kokumi” taste substances that enhance sweetness,
saltiness, and “umami” tastes without producing a taste of their own [168]. The gastro-
intestinal tract expresses CaSR that mediates the actions of these γ-glutamyl peptides and
leads to dietary hormone release in response to nutrients within the intestinal lumen [8,9].

Moreover, CaSR is reportedly involved in neuronal growth, migration, differentia-
tion, and neurotransmission [167,169]. CaSR may also play a critical role in the central
neuronal system under pathological conditions such as ischemia, Alzheimer’s disease,
and in neuroblastoma [170]. Soluble Aβ reportedly binds CaSR and leads to cell death
by aggravating neuronal inflammation [171,172]. Given these functions of CaSR, GSH
and other γ-glutamyl peptides that are produced by means of GGT may modulate CaSR
function, which helps protect against pathogenic stress.

Recent studies imply pharmacological benefits for γ-Glu-Cys in inflammation [173–176],
stroke [177], ALS [178], and ischemia/reperfusion injury [179]. The increased production
of GSH appears to rationalize the pharmacological action of γ-Glu-Cys [146–148]. In
this scenario, GGT would remove the γ-glutamyl moiety and release Cys for de novo
glutathione synthesis. However, since GGT expression has been observed only in a limited
number of cells, there may be an alternative explanation for γ-Glu-Cys action. Upon the
binding of γ-Glu-Cys to the CaSR pocket, allosteric activation could occur in intracellular
signaling, because it leads to the suppression of inflammation in colitis mouse models [173].
Thus, CaSR could at least partially account for the beneficial action of γ-Glu-Cys, although
this hypothetical mechanism must be verified in experiments that employ model animals
such as mice with a genetic ablation of CaSR.

If CaSR binds extracellular γ-glutamyl peptides and modulates cellular activity in
tissues, it would be interesting to determine the messages that are conveyed via γ-glutamyl
peptides. In order to address this issue, research must consider the circumstances under
which γ-glutamyl peptides are produced. γ-GCS produces γ-glutamyl peptides when
the supply of cellular Cys is insufficient, such as in cases of excessive consumption of
glutathione for conjugation or under the excessive production of peroxides due to oxidative
stress [180]. Therefore, the cells in such a situation could produce γ-glutamyl peptides
in order to transmit signals to surrounding cells to properly prepare for, or respond to,
such an adverse situation. On the other hand, GGT tends to produce γ-glutamyl peptides
when extracellular amino acids, as well as glutathione, are abundant. GGT1 on a brush-
border membrane may not experience such a situation under healthy conditions because
primary urine contains low levels of amino acids. GGT is known to be induced under
pathological conditions, such as liver damage due to excessive alcohol intake or during
tumor development. In cases of cell injury, damaged hepatocytes release damage-associated
molecular patterns (DAMPs), which include amino acids and proteins [181]. Accordingly,
GGT may be able to produce more γ-glutamyl peptides by utilizing the components of
DAMPs in such situations rather than in a healthy state. As a result, CaSR-expressing
cells could respond to pathological situations and prepare defense systems by inducing
protective genes. This hypothetical mechanism also must be confirmed by experiments.
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7. Perspectives

Glutathione is a pivotal molecule that protects cells from the cytotoxic effects of
xenobiotic compounds via conjugation reactions and oxidative insults through the reductive
detoxification of peroxides by donating electrons to the redox system. The degradation
of glutathione by GGT recruits amino acids, notably Cys, to cells, but also produces
γ-glutamyl peptides extracellularly under certain circumstances. γ-Glutamyl peptides
are also produced intracellularly by γ-GCS-mediated reactions. These reactions appear
to proceed under pathological conditions and act as a cellular defense. Although the
significance of extracellularly produced γ-glutamyl peptides by GGT have long been
obscured, the discovery that γ-glutamyl peptides modulate CaSR function has unveiled
their potential roles in extracellular signaling. At present, the signaling role of γ-glutamyl
peptides is known to be primarily manifested in the gastrointestinal tract and in the
nervous system, but the systemic expression of CaSR may extend this phenomenon to other
physiological functions, such as those in the cardiovascular and immune systems.
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