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Abstract: In recent years, there has been a growing interest in the relationship between microor-
ganisms in the surrounding environment and cancer cells. While the tumor microenvironment
predominantly comprises cancer cells, stromal cells, and immune cells, emerging research highlights
the significant contributions of microbial cells to tumor development and progression. Although
the impact of the gut microbiome on treatment response in lung cancer is well established, recent
investigations indicate complex roles of lung microbiota in lung cancer. This article focuses on recent
findings on the human lung microbiome and its impacts in cancer development and progression. We
delve into the characteristics of the lung microbiome and its influence on lung cancer development.
Additionally, we explore the characteristics of the intratumoral microbiome, the metabolic interac-
tions between lung tumor cells, and how microorganism-produced metabolites can contribute to
cancer progression. Furthermore, we provide a comprehensive review of the current literature on the
lung microbiome and its implications for the metastatic potential of tumor cells. Additionally, this
review discusses the potential for therapeutic modulation of the microbiome to establish lung cancer
prevention strategies and optimize lung cancer treatment.
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1. Introduction

Lung cancer is widely recognized as a leading cause of cancer-related mortality world-
wide, with an estimated 2.2 million new cancer cases and 1.8 million deaths in 2020 [1].
Although there have been notable advancements in targeted therapies and immunother-
apies for lung cancer in recent years, the disease’s overall survival rates are still low
(<20%) [2,3]. It is forecasted that lung cancer will be the most expensive cancer regarding
diagnoses and treatment in the next 30 years, with a projected cost of USD 3.9 trillion [4].
As a result, it is critical to comprehend the root causes and risk factors associated with
it as part of public health initiatives. While it is well-established that most lung cancer
cases are attributed to smoking, other elements, including exposure to radon gas, asbestos,
air pollution, and chronic infections, have been implicated in its development, further
emphasizing the multifaceted and complex nature of this disease [5,6]. To address this
ongoing critical public health crisis, comprehensive insights into all the underlying causes
of lung cancer are necessary.

In recent years, with the rapid advancement of sequencing technology, there has been
a surge of interest in understanding the lung microbiome (Figure 1). The microbiome is de-
fined as the full complement of microbes such as bacteria, fungi, viruses, protozoa, and their
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related genes and genomes, as well as metabolites, while the microbiota refers to the assem-
blage of microorganisms present in a defined environment [7]. Traditionally, healthy lungs
were believed to be sterile—except for infections—since conventional culture techniques
rarely isolated bacteria from them. However, with the advent of next-generation sequenc-
ing (NGS) technologies, a wide variety of bacterial DNA has been commonly detected in
the lower respiratory tract of healthy individuals [8–10]. The lung microbiome is relatively
low in biomass, with 103 to 105 bacteria per gram of tissue in healthy lungs [11]. The upper
and lower respiratory tracts differ in their microbial composition and biomass [12]. Al-
though the lung microbiota is relatively dynamic due to the immigration and elimination of
microbiomes through aspiration, coughing, or mucociliary clearance [12], studies analyzing
the microbial composition of healthy lungs indicate that the core lung microbiota include
mainly Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria families [13–15]. Further-
more, Prevotella, Veillonella, and Streptococcus, which are usually found in oral microbiota,
have been identified in the lungs of most healthy individuals [8,9,12–14,16].

Cells 2023, 12, x FOR PEER REVIEW 2 of 24 
 

 

In recent years, with the rapid advancement of sequencing technology, there has been 
a surge of interest in understanding the lung microbiome (Figure 1). The microbiome is 
defined as the full complement of microbes such as bacteria, fungi, viruses, protozoa, and 
their related genes and genomes, as well as metabolites, while the microbiota refers to the 
assemblage of microorganisms present in a defined environment [7]. Traditionally, 
healthy lungs were believed to be sterile—except for infections—since conventional cul-
ture techniques rarely isolated bacteria from them. However, with the advent of next-gen-
eration sequencing (NGS) technologies, a wide variety of bacterial DNA has been com-
monly detected in the lower respiratory tract of healthy individuals [8–10]. The lung mi-
crobiome is relatively low in biomass, with 103 to 105 bacteria per gram of tissue in healthy 
lungs [11]. The upper and lower respiratory tracts differ in their microbial composition 
and biomass [12]. Although the lung microbiota is relatively dynamic due to the immigra-
tion and elimination of microbiomes through aspiration, coughing, or mucociliary clear-
ance [12], studies analyzing the microbial composition of healthy lungs indicate that the 
core lung microbiota include mainly Actinobacteria, Bacteroidetes, Firmicutes, and Proteobac-
teria families [13–15]. Furthermore, Prevotella, Veillonella, and Streptococcus, which are usu-
ally found in oral microbiota, have been identified in the lungs of most healthy individuals 
[8,9,12–14,16]. 

 
Figure 1. Trends in publications on the human lung microbiome (2000–2021). This figure illustrates 
the number of papers published on the human lung microbiome from 2000 to 2021. Data source: 
PubMed (accessed on 28 September 2023). Pubmed search terms: blue = human microbiome; pink = 
human lung microbiome. 

The lung microbiota play an important role in maintaining lung homeostasis and 
immune tolerance that protects the host from undesired inflammatory response [17]. Rec-
ognizing its pivotal contribution to maintaining lung homeostasis, the composition of the 
lung microbiota emerges as a valuable indicator for monitoring lung health status [18,19]. 
Recently, there has been evidence of a lung microbiome, and the microbiome’s alterations 
were found to be linked with disease states, such as exacerbations in chronic obstructive 
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The lung microbiota play an important role in maintaining lung homeostasis and
immune tolerance that protects the host from undesired inflammatory response [17]. Rec-
ognizing its pivotal contribution to maintaining lung homeostasis, the composition of the
lung microbiota emerges as a valuable indicator for monitoring lung health status [18,19].
Recently, there has been evidence of a lung microbiome, and the microbiome’s alterations
were found to be linked with disease states, such as exacerbations in chronic obstructive
pulmonary disease (COPD) [20]. Dysbiosis, which is defined as deviation from a normal
microbial composition, is associated with various adverse biological occurrences, occasion-
ally yielding clinical implications. Within the lung context, dysbiosis holds substantial
sway over the onset and advancement of respiratory diseases [12], such as asthma [21,22],
cystic fibrosis [23,24], and acute respiratory distress syndrome [25].

Recent advances in the field of the gut microbiome have revealed how the gut micro-
biota can modulate antitumor immunity and impact the efficacy of cancer immunotherapies,
particularly immune checkpoint inhibitors (ICIs) [26,27]. In patients with non-small cell
lung cancer (NSCLC), a strong correlation has been demonstrated between gut microbiome
diversity and responses to anti-PD-1 immunotherapy [28]. Furthermore, it has been shown
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that antibiotics are associated with decreased survival and attenuated responses to ICI in
patients with advanced NSCLC [29].

While the involvement of the gut microbiome in treatment response has been well
documented in the development and immunotherapy of lung cancer [30,31], recent studies
suggest that the microbiota in the lungs also play a role in lung cancer development [32–35].
Microorganisms such as bacteria, viruses, and fungi have emerged as pivotal players in
the complex interplay of factors contributing to cancer initiation, promotion, and progres-
sion [36] and lung cancer development [32,33]. Studies have reported that the levels of
Actinomyces, Veillonella, Streptococcus, Megasphaera, and Mycobacterium were more abun-
dant in patients with lung cancer compared with healthy individuals [37–39]. Prevotella
and Veillonella were most strongly associated with NSCLC, and Veillonella significantly
promoted the progression of lung cancer [37]. Oral bacteria such as Streptococcus spp. and
Veillonella spp. were enriched in the lower respiratory tract of patients with lung cancer,
which was associated with upregulation of the ERK and PI3K signaling [16]. The analysis
of the community compositions of patients with lung cancer with or without emphysema
showed a significantly lower abundance of Proteobacteria and a higher prevalence of Firmi-
cutes (Streptococcus) and Bacteroidetes (Prevotella), compared to patients with emphysema
only [40]. The genera Veillonella and Megasphaera exhibited relatively elevated levels in
patients with lung cancer, suggesting their potential as biomarkers in lung cancer [39].

The promising field of microbial interactions within the tumor microenvironment
(TME) presents exciting opportunities to comprehend the novel mechanisms of lung can-
cer progression. Through a comprehensive understanding of the intricate relationships
between microbial and lung tumor cells, we can gain valuable insights into the potential
crosstalk that influences tumor growth, immune responses, and therapeutic options.

Although previous studies have investigated the relationship between lung microbiota
and lung cancer [32,33,41], our article offers novel insights by specifically highlighting
the characteristics of the lung microbiome, the relationship between the lung microbiome
and lung cancer risk, and the modes of interaction between lung microbiota and the host
immune system. Additionally, we explore the metabolic interactions between lung tumor
cells and microbial cells within the TME, as well as the functional effects thereof on lung
cancer progression. We also discuss the possibilities of therapeutic modulation of the
microbiome, aiming at the establishment of lung cancer prevention strategies and the
optimization of lung cancer treatment.

2. Lung Microbiome

Historically, it was thought that healthy lungs were sterile, but culture-independent
sequencing methods have revealed a variety of microbial communities in the lower respira-
tory tract [42]. These communities have been collectively termed as the lung microbiome,
and refer to the collection of microorganisms (including bacteria, archaea, lower and higher
eukaryotes, and viruses), and their genetic material that resides in an individual’s lung at a
given moment in time [43,44]. It is known that the microbiome plays an important role in
human health and disease by modulating the host’s innate and adaptive immune system,
immune responses, and metabolism, and by protecting from invading pathogens [45,46].
A healthy lung microbiome shows a rich, dynamic, transient, and diverse bacterial com-
munity that is present in a low abundance, being characterized mainly by phyla Firmicutes
and Bacteroidetes, and genera such as Prevotella, Veillonella, and Streptococcus [46,47]. Its
composition is determined by the balance of three factors: (1) Microbial immigration into
the airways driven by inhalation of microbes from air leading to microaspiration of the
upper respiratory tract (URT) and oral cavity followed by direct dispersion along the airway
mucosal surface. (2) The elimination of microbes from the airways by mucociliary clearance,
coughing, and host immune defense systems (both innate and adaptive). (3) The relative
reproduction rates of its community members found in the airways, which is determined by
the regional growth conditions, including pH, temperature, oxygen tension, and nutrient
availability, as well as local microbial competition, host epithelial cell interactions, and
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activation of host inflammatory cells [46]. It has been suggested that the URT contributes
to the major source of lung microbiota since there is a close resemblance between upper
and lower respiratory tract (LRT) microbiome composition in healthy individuals [21].

Moreover, bacterial levels are higher in the more proximal pulmonary regions, and
there are also modest regional differences, suggesting differential clearance and potentially
limited local replication [47]. In healthy lungs, the balance between the dispersal of microbes
from the URT and clearance of lung microbial community members via local defense
mechanisms is considered the major determinant of lung characteristics, whereas local
bacterial reproduction most probably plays a minor role [21]. It may also be that lung
microbiome composition in healthy individuals could be best attributed to the neutral
dispersal of microbes from the oropharynx rather than active local bacterial selection in the
lungs [48].

Many factors can influence the lung microbiome and cause microbiota dysbiosis. The
use of some medications, such as antibiotics, steroids, and metformin, has a role in con-
tributing to dysbiosis, which may have an impact on the disease states in the lungs [12,49].
Dysbiosis in the URT through aspirations, and inhalation of aerosols of microbial pathogens,
may play a causative role in disease through upregulation of inflammatory signals, such
as NF-kB, Ras, IL-17, and PI3K, or blunting TNF and IFN γ production in response to
these pathogens in the lower airways [12]. In addition, smoking and exposure to indoor
and outdoor environmental pollutants are other causes of alterations in the lung micro-
biota, which can lead to inflammation and diseases such as asthma, COPD, and lung
cancer [19,45,46,50,51]. It is unclear, however, if microbial dysbiosis itself is the cause of or
a consequence of disease [12].

2.1. General Methods to Study the Lung Microbiome

Early studies on the microbiome focused on single, known microbes that could be
isolated and cultured. However, in recent years, the application of molecular identification
approaches such as sequencing have been widely used to explore entire microbial com-
munities (including microbes that are non-culturable) [19]. Initial molecular techniques
used for studying the bacterial microbiome in humans were based on 16S rRNA gene
sequencing, which assesses diversity and relative abundance at taxonomic levels [52]. The
method is based on PCR amplification and sequencing of the 16S gene encoding bacterial
ribosomal RNA, which is a small and highly conserved locus in bacterial DNA, containing
nine hypervariable regions (V1–V9) that differ across taxa [47,53,54]. The full-length 16S
rRNA gene sequencing provides great taxonomic definition; however, for the detection of
the lung microbiome and other body sites, it is more common to amplify one or more of
the nine hypervariable regions [55–57]. The detection of fungi can be performed similarly,
through sequencing targeted regions such as the 18S rRNA gene or internal transcribed
spacer (ITS) region [58]. Viruses lack conserved nucleic acid sequences, so in this case,
shotgun metagenomics are employed [19,59], which can capture functional information
about microbial communities (bacterial, fungal, and viral), allowing for investigating for
antimicrobial resistance and virulence genes, and differ from 16S rRNA sequencing, which
allows them to analyze diversity and relative abundance and to identify taxonomic groups.
However, neither 16S rRNA sequencing nor shotgun metagenomics differentiates between
live and dead bacteria [19,47]. Other methods that have been used more recently are meta-
transcriptomics (RNA sequencing) and metabolomics (small-molecule analysis) depending
on living cells, which may better reflect the functional activity of the microbiome [47]. The
most common samples used to analyze the lung microbiome are sputum and bronchoalveo-
lar lavage (BAL) fluid. Sputum is a non-invasive method and represents a mix of the upper
and lower respiratory tract, but can be problematic due to contamination with oral flora
and saliva [60]. On the other hand, BAL, which may contain carryover from bronchoscopy,
particularly from supraglottic material, is less influenced by contamination but requires an
invasive procedure [47,61].
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A bioinformatic analysis is key to the understanding and interpreting of micro-
bial communities. Software such as QIIME2 (Quantitative Insights into Microbial Ecol-
ogy) [62,63], PICRUSt2 (Phylogenetic Investigation of Communities by Reconstruction of
Unobserved States) [64,65], and MaAsLin2 (Microbiome Multivariable Association with
Linear Models) [66] has been used to quantify bacteria in the microbiome and predict their
functional and clinical impacts, along with others [67,68].

QIIME2 is one of the most commonly applied technologies in a microbiome analysis
today [63]. QIIME2 allows users to process raw sequencing data and perform subsequent
analyses that provide information about the makeup of the microbial community within
a sample. The output from a QIIME2 analysis is a feature table that lists either amplicon
sequence variants (ASVs) or operational taxonomic units (OTUs) and the number of obser-
vations of each within each sample [63]. This feature table can be used with various QIIME2
plugins to perform taxonomic and microbial diversity analyses, and assess phylogenetic
relationships and differential abundance of microbial communities. PICRUSt2 can also use
the output of QIIME2 as input. It is a software package that uses an extended ancestral-state
reconstruction algorithm to predict which gene families are present and their abundance
and then combine gene families to estimate the composite metagenome, using previously
published 16S information [64,65]. This allows users to obtain insight into the functional
roles of the microbes present in their dataset, especially when metagenomic sequencing
is not available, or is not practical to do so [64]. Multivariable associations of microbial
features with clinical features can be assessed using the MaAsLin2 package [66].

2.2. The Lung Microbiome and the Host Immune System

Compelling evidence from human studies has demonstrated that the respiratory
tract is not a sterile environment as previously thought [12,69,70]. The lung microbiome
is unique from other microbial communities in the body, such as those in the gut [12],
where the gut microbiome can play a role in regulating the host immune system. For the
lung, studies have suggested that distinct lung microbial signatures are associated with
lower airway immune responses, to prevent uncontrolled and undesirable inflammatory
responses, to preserve lung homeostasis [71,72]. These events are mediated by a continuous
dialog between commensal bacteria and immune cells resident in the lungs, such as alveolar
macrophages (Ams) and dendritic cells (DCs), which can express a range of sensors, called
pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs), NOD-like receptors
(NLRs), C-type lectin receptors (CLRs), and protease-activated receptors (PARs), which
can detect these microorganisms. The same receptors are also involved in the recognition
of pathogens and induce a subsequent immune response [72]. These immune cells in the
lungs bring into play their immune regulatory properties by inducing the generation of
regulatory T cells (Treg) and by the release of prostaglandin E2 (PGE2), tumor growth
factor-beta (TGF-β), and interleukin-10 (IL-10) [72]. In summary, evidence indicates that
lung microbiota, acting on resident immune cells, have a key role in promoting immune
tolerance in the lungs. In a study of patients with severe asthma, Proteobacteria species were
associated with activation of Th17-associated pathways [73].

In another study, the increased presence of supraglottic-predominant taxa in the
lower airway of humans, specifically Prevotella, Rothia, and Veillonella, exhibited a positive
association with elevated levels of various Th17 cytokines, including IL-1α, IL-1β, IL-6,
fractalkine, and IL-17. This correlation was also observed in conjunction with the enhanced
recruitment of both Th17 cells and neutrophils within the lung [70]. On the other hand,
it is unclear if the balance between pro-inflammatory effects and regulatory mechanisms
becomes altered as aspiration events become more frequent. However, data suggested
that persistent exposure to certain microbes can trigger a mechanism that leads not just to
increasing inflammation, but also to immune exhaustion [12]. In individuals where the
lower airway microbiome is dominated by oral commensals, there is a blunting of the
(TLR4) response of alveolar macrophages [73].
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In mice, the appearance of bacterial taxa after birth is necessary for the development of
Tregs [74]. Immediately after birth, newborn mice were susceptible to developing excessive
airway eosinophilia, accompanied by the release of T-helper two (Th2) cytokines and airway
hyper-responsiveness after exposure to house dust mite allergens, although their lungs
had great quantities of CD4+Foxp3+CD25+Helios+Treg cells [74]. During the first 2 weeks
after birth, the bacterial load in the lungs increases, paralleled by a progressive shift of
bacterial phyla from a prevalence of Gammaproteobacteria and Firmicutes toward Bacteroidetes.
The modifications of microbiota composition determine a decreased responsiveness to
an aeroallergen due to the appearance of a Helios–Treg cell subset that exerts potent
immunosuppressive activity cells [74]. The development of this population depends on
the increased expression of programmed death-ligand-1 (PD-L1) on DCs, induced by the
changes of the lung commensal community. A lack of microbial colonization or PD-L1
blockade during the first 2 weeks after birth caused an excessive sensitivity to allergens
that continued until adulthood [74]. Moreover, microbial products, such as short-chain
fatty acids (SCFAs), had significant immunomodulatory properties and blunted IFNγ

and IL-17 responses to pathogen-associated molecular patterns and exposure of the lower
airways to oral commensals, not only triggering an increase in inflammatory cytokines
but also an increase in immune-checkpoint inhibitor markers, such as PD-L1, among T
cells and recruitment of regulatory T cells [12]. These findings demonstrated how the lung
microbiome is important to modulate the innate and adaptive immune system.

Researchers have also found a link between the lung microbiome and brain autoim-
munity [75]. Shifting the microbiota toward lipopolysaccharide (LPS)-enriched phyla by
local treatment with neomycin induced a type-I-interferon-primed state in brain-resident
microglial cells. Their responsiveness toward autoimmune-dominated stimulation by type
II interferons was impaired, which led to decreased proinflammatory response, immune
cell recruitment, and clinical signs. Suppressing LPS-producing lung phyla with polymyxin
B led to disease aggravation, whereas the addition of LPS-enriched phyla or LPS reca-
pitulated the neomycin effect. These findings suggested that dysregulation in the lung
microbiome significantly influenced the susceptibility of rats to developing autoimmune
diseases of the central nervous system [75]. In addition, it has been found that an intimate
relationship exists between the lung microbiome and multiple sclerosis. LPS can cross
the blood–brain barrier (BBB) into the brain through blood circulation and influence the
development of multiple sclerosis by regulating the microglia in the brain [19]. These
findings indicate a close relationship between the lungs and the brain and some authors
have already started to refer to it as the lung–brain axis [19].

The association of lung microbiota with the pathogenesis of lung cancer has been
reported [19,32,33,51]. A proposed mechanism is that bacteria cause chronic inflammation-
promoting factors that stimulate airway epithelial cell proliferation, which induces cell
transformation, initiating tumor formation [51]. A study suggested that symbiotic flora of
the lungs causes inflammation associated with lung adenocarcinoma by activating γδ T
cells that reside in the lungs [51]. These bacteria stimulate myD88-dependent IL-1B and
IL-23 production in bone marrow cells, induce proliferation and activation of Vg6+Vd1+γδ

T cells, and mediate inflammation by inducing the production of effector molecules such
as IL-17, which may lead to tumor cell proliferation in lung cancer [51]. The incidence of
lung adenocarcinoma was also significantly reduced by the elimination of the symbiotic
bacteria [51]. The importance of commensal bacteria in supporting the host immune
response against cancer has also been demonstrated, revealing a defective induction of
lung immunity after antibiotic treatment [76]. Patients with NSCLC have been shown to
present significantly higher frequencies of T helper type 1 (Th1) and Th17 cells reacting
to Streptococcus salivarius and Streptococcus agalactiae compared with healthy controls [77].
Moreover, lung inflammation mediated by Th17 cells has been identified as an important
factor in the initiation and metastasis of lung cancer [77,78]. However, this finding should be
interpreted with caution since it has been shown that Th17-mediated neutrophil responses
either promote carcinogenesis or, in contrast, can protect from cancer development and
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contribute to treatment efficacy [79,80]. The lung microbiome has been shown to have an
impact on the host immune system from birth, helping to modulate innate and adaptive
systems, and having crosstalk and influencing not just brain autoimmunity, but also the
development of other diseases such as lung cancer.

3. The Relationship between the Lung Microbiome and Lung Cancer Risk

Recently, perturbations in the lung microbiome in the context of lung cancer have been
described and may contribute to carcinogenesis. Three mechanisms by which dysbiosis
may contribute to the development of lung cancer are (1) the development of chronic
inflammation, (2) the dysregulation of the immune equilibrium in the lung, and (3) the
activation of oncogenes [81] (Figure 2). In general, the alpha diversity (richness) of the lung
microbiome is decreased in lung cancer compared to healthy controls [82–84]. Others have
reported that although beta diversity (the diversity of the microbiota between different
samples) does not drastically differ between lung cancer and controls, dysbiosis of specific
microbe species may be a contributor to lung cancer [82,85]. A recent meta-analysis
found a significant decrease in the bacterial Actinobacteria phylum, Corynebacteriaceae and
Halomonadaceae families, and Corynebacterium, Lachnoanaerobaculum, and Halomonas genera
in lung cancer tissue compared to adjacent normal tissue [86]. Phylum TM7 and the
genera c:TM7-3, Capnocytophaga, Sediminibacterium, Gemmiger, Blautia, and Oscillospira were
reported to be increased in BAL samples from lung cancer cases compared to controls
with benign pulmonary diseases, and this was used to generate a signature to predict
lung cancer [87]. Another study found that Bradyrhizobium japonicum was present only
in BAL from patients with lung cancer but not controls and that Acidovorax sp. JS42
and Acidovorax ebreus were present in lung cancer and controls with benign pulmonary
diseases but not in healthy controls [82]. Additionally, decreased relapse-free survival
in lung cancer has been linked to an increase in classes Bacteroidia and Clostridia and
orders Bacteroidales and Clostridiales in tissue, and increased relapse-free survival has been
linked to an increase in classes Alphaproteobacteria and Betaproteobacteria, and orders
Burkholderiales and Neisseriales. A recent study using shotgun metagenomic sequencing
on BAL samples demonstrated that the rare microbes Bacteroides pyogenes, Lactobacillus
rossiae, and Burkholderia mallie were enriched in NSCLC compared to healthy controls [85].
The same study reported age-, sex-, and smoking-specific differences in populations of
specific microbes as well as differing microbial populations depending on sampling site,
indicating a need to account for these factors when analyzing microbiome differences
between cancer and non-cancer.

3.1. Smoking

Epidemiologically, it is well known that smoking is a risk factor for the development
of lung cancer. Smoking has been shown to alter the lung microbiome in mice [88], and
children exposed to second-hand tobacco smoke had decreased alpha diversity and relative
increases in Serratia spp., Moraxella spp., Haemophilus spp., and Staphylococcus aureus [89].
In adults, smoking is also known to alter the microbiome of the lungs, in particular,
by enabling colonization by pathogenic bacteria and thus conferring an increased risk of
infections [90]. The immunosuppressive effect of tobacco smoke likely impairs antimicrobial
defenses by a variety of mechanisms, creating a permissive environment for colonization
by these bacteria [91–94]. One study has shown that the cigarettes themselves contain
bacteria including Acinetobacter, Bacillus, Burkholderia, Clostridium, Klebsiella, Pseudomonas
aeruginosa, and Serratia, and this could expose smokers to a wide array of potentially
pathogenic microbes [95]. Another has shown that exposure to burning coal for household
heating leads to increased Granulicatella, Abiotrophia, and Streptococcus in the sputum,
expanding the consideration of smoke exposure past tobacco alone [96]. Patients with
NSCLC with a smoking history were shown to have increased Pseudoalteromonas sp. CF149,
Roseburia hominis, and fungus Penicillium expansum and decreased Pseudomonas mosselii and
Pseudomonas putida in BAL samples compared to patients with NSCLC without a smoking
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history [85]. In contrast, another study found that for lung adenocarcinoma (LUAD)
tissue samples, the microbiota abundance and diversity were not significantly different
between smokers and non-smokers [97]. These conflicting results may be explained by the
difference in lung cancer subtypes, sample type, and/or sequencing method, indicating
the need for further standardization of techniques for interrogating and interpreting the
lung microbiome.
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Figure 2. Characteristics of the lung microbiome. The lung microbiome can be altered by several
factors, where a healthy microbiome has been observed to comprise a higher number of bacterial
species but lower density of those species, and microbial dysbiosis has shown the opposite. Dys-
biosis can induce several perturbed health conditions, one being an increased risk of developing
lung cancer.

3.2. Chronic Tuberculosis (TB) Infection

Another risk factor for the development of lung cancer that has also been linked to
smoking includes chronic tuberculosis (TB) infection. A general overview is that TB causes
chronic inflammation of the lung tissue, which can lead to fibrosis and lung cancer [98].
A TB diagnosis comes with an increased risk of lung cancer, which is the highest in the
first 5 years after the diagnosis but persists for over 20 years, and was reported in a meta-
analysis to be independent of smoking status [99]. There is also a reciprocal relationship
between lung cancer and TB in which carcinogenesis and the treatment itself may cause the
reactivation of a latent TB infection [100]. The microbiome of the TB lung was investigated
using a meta-analysis and was reported to be enriched at the genus level in Veillonella, Rothia,
and Leuconostoc, which were unique to TB cases and not present in healthy controls [101].
This study drew from multiple previous studies, which used sputum for TB cases and
various respiratory secretions for the healthy controls. Furthermore, the microbiome in
TB has been shown to differ from that of lung cancer or healthy controls [102]. Another
study compared the microbiome between TB, lung cancer, and pneumonia (caused by
Streptococcus pneumoniae or Haemophilus influenzae) using BAL and found that bacterial
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alpha diversity was increased in lung cancer compared to TB and pneumonia [103]. The
pulmonary microbiome of the TB and lung cancer groups was fairly similar, with only
Mycobacterium and Selenomonas (enriched in TB) and the other two genera, Sphingobium and
Marseilla (enriched in lung cancer), differing. In comparison, TB and lung cancer were both
fairly different from the pneumonia controls. One microbiome-related theory behind the
mechanism of the lung-cancer–TB relationship is that dysbiosis of the lung microbiome that
could be caused by TB infection may lead to the secretion of pro-inflammatory factors that
cause chronic inflammation, thus leading to the activation of oncogenes and promotion of
tumorigenesis [33,51,103]. Though several studies have also identified Mycobacterium or M.
tuberculosis in the sputum of patients with lung cancer compared to controls [85,104,105],
supporting the correlation between TB and lung cancer, it is difficult to tease the relationship
apart in the presence of confounding factors such as comorbid COPD or other chronic
inflammatory lung disorders.

3.3. Chronic Obstructive Pulmonary Disease (COPD)

COPD is a well-known risk factor for the development of lung cancer, and is also
a smoking-related disease [106], further highlighting the interplay between lung cancer,
smoking, and chronic inflammation. The lung microbiome is also known to be altered in
COPD, and an impaired lung microbiome is thought to contribute to the development
of COPD [107]. The development of COPD is associated with increased diversity of the
microbiome, in particular, of Firmicutes in more severe COPD [107,108]. Another study
examining the BAL of patients with lung cancer showed an increased ratio of Firmicutes to
Bacteroidetes in patients with lung cancer who were smokers versus patients with lung
cancer who were non-smokers, supporting the reciprocal relationship between smoking,
COPD, and lung cancer [39]. Another phylum, Proteobacteria, which has been linked to
COPD exacerbations and severity [20,109], has also been reported to be enriched in lung
cancer [110,111]. Dysbiosis of these two phylums may underpin certain aspects of the
mechanistic linkage between COPD and lung cancer.

In summary, the dysbiosis of the lung microbiome has been linked to smoking, TB, and
COPD and is seen in lung cancer as well. Smoking is one common linkage between lung
cancer, TB, and COPD but so is inflammation and alterations of the immune equilibrium,
which may cause dysregulation of the lung microbiome or vice versa. One example is the
mechanism by which γδT17 immune cells are modulated by commensal microbes in the
lung—disruption of this mechanism by dysbiosis contributes to defective tumor immune
surveillance [76]. Another example is the upregulation of specific immune responses (Th1
and Th17) in NSCLC in response to Streptococcus salivarius and Streptococcus agalactiae
compared to healthy controls [77]. The lung microbiome can also influence response to
immunotherapy. In NSCLC, the immunotherapy responders (high-PD-L1 group) had
increased Veillonella dispar compared to the low-PD-L1 group, which was enriched in
Haemophilus influenzae and Neisseria perflava [112]. The influence of the lung microbiome on
the immune system, development of cancer, and treatment of cancer by immunotherapy is
an incredibly relevant topic that has been recently and thoroughly reviewed [33].

4. COVID-19 and Lung Cancer

Coronavirus Disease 2019, or COVID-19, caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), is a highly contagious infectious disease that has had a devas-
tating global impact, resulting in over 6 million deaths worldwide [113]. The symptoms
of COVID-19 range from fever, cough, and headache to sore throat, diarrhea, fatigue, and
loss of taste or smell [114]. One of the severe manifestations of COVID-19 is acute respira-
tory distress syndrome (ARDS), triggering inflammatory events in the lungs of affected
individuals [115].

Several studies have explored the microbiome’s role in COVID-19 and its potential
impact on cancer, revealing significant findings. Early studies indicate significant changes
in the gut microbiome in patients with COVID-19, potentially linking to colorectal cancer
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pathogenesis [116]. Additionally, it has been demonstrated that patients with COVID-19
develop dysbiotic microbiota, potentially heightening the risk for severe COVID-19 and
colorectal cancer [117]. In pancreatic cancer (PC), the alteration of gut microbiota caused
by COVID-19 infection showed an impact on PC progression via immune regulation [118].
Recently, it was demonstrated that patients with cancer and COVID-19 have a higher
chance of severe symptoms, suggesting an association between the naso-oropharyngeal
microbiome, breast cancer, and COVID-19 severity [119]. In patients with lung cancer, the
relationship between COVID-19 and lung cancer has also been explored. It has been shown
that COVID-19 may alter the tumor microenvironment, promoting cancer cell proliferation
and dormant cancer cell reawakening in patients with lung cancer [120]. These cells,
reawakened upon infection with SARS-CoV-2, can populate the premetastatic niche in the
lungs and other organs, leading to tumor dissemination [120]. These findings emphasize
the potential interplay between COVID-19 and lung cancer, necessitating further research
for a full comprehension of the implications of COVID-19 on lung cancer and to optimize
care for affected individuals.

5. Lung Microbiome Profiling as a Method for Early Detection of Lung Cancer

In the past few years, significant efforts have been made to identify indicators of
who will develop lung cancer [121–124], since not all of those deemed ‘high-risk’ such
as smokers or those exposed to occupational hazards will develop the disease, and low-
dose computed tomography (LDCT) screening of individuals without symptoms is cost-
prohibitive. Emerging research suggests that the lung microbiome may play a significant
role in lung cancer development [9,16,32,39,104,125,126]. Although there is no agreement
on the exact taxonomic classifiers associated with human lung cancer, it is evident that the
microbiome plays functional roles in the biological processes involved in cancer biogenesis.

A diverse range of microbial taxa within the lung microbiome have emerged as poten-
tial biomarkers for lung cancer. For instance, in patients with lung cancer, the lower airways
exhibited an enrichment of oral taxa, including Streptococcus and Veillonella, correlating
with the upregulation of ERK and PI3K signaling pathways [16]. Moreover, metagenomic
sequencing of the sputum microbiome identified Granulicatella adiacens, along with six
other bacterial species (Enterococcus sp. 130, Streptococcus intermedius, Escherichia coli, Strep-
tococcus viridans, Acinetobacter junii, and Streptococcus sp. 6), as a potential non-invasive and
innovative biomarker for both lung cancer and its progression [104].

Another study, focusing on the characterization of the microbiome in BAL fluid of
patients with lung cancer, highlighted discernible distinctions in bacterial communities
between patients with lung cancer and those with benign mass-like lesions. Notably,
Veillonella and Megasphaera exhibited a relatively higher abundance in the former group,
suggesting their potential as biomarkers for predicting lung cancer [39]. These studies also
underscored the feasibility of analyzing microbial communities from non-invasive samples
like sputum and BAL fluid, enabling minimally invasive and repeatable testing.

In a recent groundbreaking study involving 400 patients, encompassing individu-
als with pre-existing lung cancer, those who later developed the disease, and those who
remained cancer-free even after a 10-year follow up, a microbial-based classifier was devel-
oped and validated through a linear discriminant analysis. This classifier demonstrated
exceptional prowess in predicting lung cancer in patients prior to the clinical diagnosis.
This study accentuates the potential of leveraging lung microbiome profiling for the early
detection of lung cancer [124].

6. Lung Microbiome and Metastasis

The dysbiosis of microbiota has a direct or indirect impact on lung cancer cells, po-
tentially promoting metastasis [127]. One proposed mechanism involves the modulation
of the immune response by the lung microbiome. By interacting with the host immune
system, the microbiome would influence its ability to recognize and eliminate cancer cells.
Disruptions in the composition or dysbiosis of the lung microbiome may lead to an im-
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paired immune response, enabling cancer cells to evade detection and enhancing their
metastatic potential [128]. Additionally, certain microbial species or their byproducts can
directly influence cancer cell behavior. For example, some bacteria produce metabolites
that induce DNA damage, activate signaling pathways associated with tumor progression,
or promote angiogenesis, which facilitates tumor growth and metastasis [127] (Figure 3).
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Figure 3. Lung microbiome dysbiosis and influence on lung cancer progression. Microbial dysbiosis
in the lungs can alter several vital functions within lung tissue, and can affect cancer cells directly.
Some bacteria produce metabolites that can modify vital genes and pathways, causing DNA damage,
activating signaling pathways linked to tumor growth, or stimulate angiogenesis. Bacteria can also
communicate with immune cells, which can thereby promote cancer metastasis.

Although the field of the lung microbiome and cancer is still in its infancy, prior
studies have suggested a connection between the lung microbiome and distant metastasis
in lung cancer. For instance, it was demonstrated that Gram-negative bacteria increase
NSCLC metastasis via TLR4 activation and mitogen-activated protein kinase phosphoryla-
tion [129]. Also, it was found that LRT infection with Streptococcus pneumonia enhances
the formation of murine H59 NSCLC liver metastases in C57BL/6 mice through host TLR2
activation [130]. Huang et al. found that the α diversity and β diversity of distant metastatic
lung cancer and early or local advanced-stage lung cancer were similar [131]. In patients
with adenocarcinoma, the authors discovered that the phylum Firmicutes and genus Strep-
tococcus were significantly increased in lung adenocarcinoma without distant metastasis
(AD_M0), compared to lung adenocarcinoma with distant metastasis (AD_M1) [131]. It
was also demonstrated that the genus Streptococcus could predict distant metastasis of ade-
nocarcinoma. In patients with squamous cell carcinoma, genera Veillonella and Rothia were
significantly increased in lung squamous cell carcinoma with distant metastasis (SCC_M1),
compared to lung squamous cell carcinoma without distant metastasis (SCC_M0). Thus,
genera Veillonella and Rothia could serve as biomarkers in predicting distant metastasis
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of squamous cell carcinoma [131]. Yu et al., by profiling the lung microbiota of 165 non-
malignant lung tissue samples from patients with cancer, found that the genus Thermus
(Thermi) is more abundant in tissue from patients at an advanced stage (IIIB, IV), while
Legionella is higher in patients who develop metastases [111].

While these studies provide intriguing evidence, it is important to note that the exact
mechanisms linking the lung microbiome and the metastatic potential of lung cancer
cells are not yet fully understood. Further research is needed to elucidate the specific
microbial species, interactions, and pathways involved. Furthermore, understanding how
microbiome-influenced metastasis affects specific organs, such as the brain and bones, may
provide important insights into how lung microbiome dysbiosis affects cancer progression
in specific organs.

7. Intratumoral Microbiome

The tumor microenvironment is a complex ecosystem where tumor cells coexist with
various immune cells like macrophages, polymorphonuclear cells, mast cells, natural killer
cells, dendritic cells (DCs), T and B lymphocytes, and non-immune cells such as endothe-
lial cells and stromal cells. These cells establish subtle interactions with each other that
can either promote or inhibit tumor growth and invasion [132,133]. Recently, the tumor
microbiome, another important component of the TME, has attracted significant atten-
tion [134–137]. The intratumor microbiome is a major constituent of the TME, wielding a
substantial influence on various aspects of cancer dynamics, including the tumorigenesis,
disease progression, drug resistance, and prognosis [138–140]. Nejman et al. surveyed
1010 tumors for bacteria across melanoma, lung, ovarian, glioblastoma, pancreas, bone,
and breast cancers [141]. The study revealed significant differences in composition, di-
versity, and metabolic functions encoded by intratumor bacteria between cancer types.
Histologic imaging revealed heterogeneous microbial spatial distributions and their fre-
quent intracellular localization in cancer and immune cells [141]. The tumor microbiome
refers to the community of bacteria, viruses, fungi, and other microorganisms within the
TME [134]. Although it is a relatively new field of study, it holds significant potential for
enhancing the understanding of cancer development, progression, and treatment [137,142].
Studies have shown the pivotal role of the intratumor microbiome in influencing lo-
cal inflammation [143], immune responses [136], and cellular metabolism [144] within
the TME.

7.1. Metabolic Interactions between Tumor Cells and Microbiome

Both cancer and immune cells heavily rely on specific nutrients and metabolites, such
as glutamine, glucose, arginine, and asparagine [145,146]. Microbial cells within the TME
exhibit a remarkable capability to produce a diverse range of metabolites. These metabolites
encompass bioactive molecules such as short-chain fatty acids (SCFAs), amino acids, and
vitamins [147,148]. These compounds, often derived from microbial fermentation of dietary
substrates, have the potential to modulate cellular processes in the local environment [149].
It has been demonstrated that high concentrations of fecal or plasma SCFAs like acetate,
propionate, or butyrate (major metabolites of microbial starch degradation) were observed
to stratify progression-free survival in patients with cancer treated with anti-PD-1-type
immune checkpoint inhibitors [150]. Short-chain fatty acids exhibit immunomodulatory
functions in the host, affecting CD4+ T cells and antigen-presenting cells [150]. Of particular
interest are the potential consequences of these microbial metabolites on adjacent tumor
cells. In lung cancer, it is becoming increasingly evident that these metabolites may act as
essential nutrients, providing energy sources for tumor cell growth and proliferation [144].
Furthermore, bacteria enriched in lung carcinomas may potentially possess an ability to
metabolize cigarette-associated metabolites [141]. Further, it has been shown that bacteria
are present within tumor cells, suggesting that bacteria could indeed be influencing cancer
cell signaling from inside the cell by local nutrient provisioning [141]. In fact, accumulating
evidence supports the notion that a metabolic dependence exists between the tumor cells
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and the cells in the stroma [151,152]. Although it has been discussed how the metabolism
of nearby, non-cancerous cells affects cancer cell metabolism and growth in the TME [153],
the relationship between microbial cells and tumor cells is still unclear. On one hand,
microbial cells could thrive on nutrients derived from the TME, generating metabolites that
could enhance the survival of neighboring tumor cells. Likewise, tumor cells could release
waste products that microbial cells utilize as substrates. This contributes to the intricate
interdependence between these entities [135,153–155]. The complexity increases when we
consider the metabolic communication between tumor cells and immune or stromal cells
in the TME, and the organ-specific metabolite composition [153].

These metabolic interactions within the TME extend their influence on immune cells,
influencing their metabolic profiles, activation, and effector functions [156–158]. Micro-
bial metabolites are emerging as potential regulators of immune responses against tu-
mors [136,150]. Moreover, manipulating microbial communities in the TME could reshape
the metabolic landscape, providing new therapy opportunities for lung cancer.

7.2. Metabolites Produced by Microorganisms Can Promote Cancer Development

Metabolites are biological molecules generated as a result of cellular metabolism. These
molecules can function as signaling molecules or modulate cellular activities in response to
changes in metabolic processes [159]. Increasing evidence shows that metabolites produced
by a range of human-associated microorganisms within several types of cancer can influence
its progression and resistance depending on the cancer niche [154,160,161].

Some examples of these metabolites include methylglyoxal (MGO) and SCFAs like
butyrate and lactate, which can influence chromatin architecture, either promoting or sup-
pressing cancer. Secondary bile acids (sBAs) from gut microbiota metabolism, especially
deoxycholic acid (DCA) and lithocholic acid (LCA), can stimulate colorectal cancer progres-
sion. Microbial polyamines are associated with prostate cancer inhibition and more specifi-
cally polyamine cadaverine can inhibit the epithelial–mesenchymal transition [161–163].

Although the link between metabolites produced by microbes and lung cancer de-
velopment is poorly understood, there are associations between microbiome-induced
inflammatory processes and lung cancer. For instance, microcystin produced by cyanobac-
teria, commonly enriched in lung adenocarcinoma, can lead to increased expression of
procyclic acidic repetitive protein 1 (PARP1), inducing inflammation [164]. Furthermore,
emerging studies point to a gut–lung axis, where neoplastic transformation and lung cancer
progression may also be linked to gut dysbiosis [165]. Recently, Vega et al. demonstrated
that the local tumor microbiome is potentially a source of methionine that can directly
impact tumor progression [144]. Further investigations are required to elucidate these
complex relationships and their implications for lung cancer prevention and treatment.

8. Microbiome in Lung Cancer Treatment

Lung cancer is a molecularly heterogeneous disease, which influences not only tumor
progression but also the composition of the TME and, therefore, its microbiome [2]. As
with other cancers, patients with lung cancer likely have a unique microbial signature, and
more than 15 specific tumor-associated microorganisms have been associated with lung
cancer. However, the precise influence of these microorganisms on disease progression and
resistance is still an area requiring further investigation [166,167].

Recent studies suggest the microbiome may be a promising target for lung cancer
treatment [32,41,168,169]. Manipulating the microbiome may be a potential strategy to
enhance lung cancer treatment effectiveness, such as improving the efficacy and patient
response to immunotherapies, while simultaneously mitigating therapy-related side effects
like dysbiosis. Furthermore, it can be implemented as biomarkers for personalized medicine
and disease prevention [166,168–170].

One recent study investigated the gut microbiota and established a distinct gut mi-
crobial profile for the potential prognosis of early-stage lung cancer [166]. By knowing the
patient’s microbial profile, an approach is to target microbiome-derived metabolites that
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can impact lung cancer development or host immune cells’ anti-cancer activity by TME
modulation. In a non-cancer example, NOD mice were fed acetylated or butyrylated starch,
which appeared to lower levels of autoimmune T cells and increase the number of Treg
cells, overall reducing the incidence of diabetes in these mice [171]. This highlights the
potential for these bacterial metabolites to influence the immune response and be applied
in a therapeutic manner. Indeed, microbial SCFAs have been shown to play an important
role in anti-tumor immunity and perhaps could also be exploited for use in cancer thera-
pies [172]. These techniques can potentially undergo testing in experimental tumor models,
aiming to achieve therapeutic outcomes and optimal distribution of SCFAs [156,172].

In cancer immunotherapy, particularly NSCLC, Programmed Death 1 (PD-1) inhibitors
are frequently used [32]. Derosa et al. demonstrate that the relative abundance of the gut
bacterium Akkermansia muciniphila can predict the clinical response of patients with NSCLC
to the PD-1 blockade. Furthermore, mice that received fecal microbial transplants (FMTs)
negative for A. muciniphila demonstrated tumor resistance to the PD-1 blockade [173].
This phenotype was rescued with oral supplementation of the immunogenic strain of
A. muciniphila, Akkp226118 [173]. Similarly, oral supplementation of A. muciniphila after
FMT with nonresponder feces restored the efficacy of the PD-1 blockade by recruiting
CCR9+CXCR3+CD4+ T lymphocytes into tumor sites [174].

In NSCLC chemotherapy, gemcitabine is a drug commonly used. The gammapro-
teobacteria E. coli has been shown to reduce gemcitabine efficacy in in vitro assays and
possess a cytidine deaminase (CDA), such as Mycoplasma bacteria, which can break down
gemcitabine. Furthermore, there is a strong association between mycoplasma infection and
carcinogenesis, and almost all surgically removed lung cancer samples present mycoplasma
infection [32]. Understanding and mitigating these microbial influences help tailor more
efficient treatment strategies. However, although these are compelling pieces of evidence
paving the way in lung cancer treatment using the microbiome and its products as an allied
tool, many questions remain unanswered about this complex relationship and deserve
further investigation.

9. Limitations and Future Directions

The field of research on the lung cancer microbiome has made significant advances
in recent years; however, it still faces various challenges that require attention in future
studies. While the role of the gut microbiota in the development of digestive system can-
cers [175–180], and cancer treatment response, has been widely studied [160,181,182], the
identification of microbes within solid tumors is a relatively new concept, with limited
studies in this area. Putting more effort into these studies can help with better under-
standing their role in cancer occurrence and progression, with potential therapeutic and
diagnostic applications, making it a promising novel strategy to inhibit tumor develop-
ment and enhance therapeutic efficacy. New observations implicate their involvement in
tumor development and the role of tumor metabolism. Given that the TME, including
the microbiome, is a complex pathological ecosystem [183], cooperative and competitive
relationships among microbes and tumor cells may influence tumorigenesis and cancer
progression [184,185]. For example, bacteria may influence cancer cell signaling from
within by locally providing nutrients [141]. Simultaneously, while supplying metabolites to
cancer cells, they compete for nutrients in the nutrient-poor tumor microenvironment [135].
Understanding these interactions could offer insights into novel therapeutic strategies for
cancer treatment and microbiome-based interventions.

There are concerns about the accuracy, prevalence, and consistency of the intratumor
microbiome during cancer treatment that need addressing before clinical applications [134].
Moreover, studying the lung microbiome and intratumor microbiome and their effects
on tumorigenesis, disease progression, and treatment outcomes is challenging due to the
low-biomass microbial populations in the lungs [134]. Additional studies will help reduce
false positives and clarify the biological relevance of these tumor microbiome interactions.
Furthermore, the analysis of the microbiome is affected by various experimental conditions
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and computational challenges [186]. While next-generation sequencing techniques have
greatly improved the understanding of the roles of microorganisms, they are suscepti-
ble to issues such as sequencing errors, genomic repeats, and computationally intensive
downstream analyses. The introduction of new sequencing technologies and protocols has
added complexity, influencing the outcomes of analyses [186]. To address the challenges
associated with a microbiome data analysis, researchers have developed various workflows
and protocols for sequencing 16S rRNA, shotgun, and long-read metagenomics. These
frameworks aim to streamline and standardize the computational analysis of microbiome
data by addressing key aspects such as experimental design, sample processing, sequencing,
assembly, binning, annotation, and visualization [186].

Finally, clinical trials, such as “Microbiota and the Lung Cancer (MICA)”, (NCT03068663),
have been initiated to investigate the role of the microbiota in lung cancer. These trials aim
to explore the clinical applications of microorganisms in lung cancer treatment, decipher the
interplay between lung cancer and the lung/gut microbiota, and evaluate the microbiota
as a potential therapeutic target for lung cancer [187]. These clinical trials, focused on the
relationship between the lung microbiota and lung cancer, play a crucial role in advancing
the understanding of the microbiome’s involvement in lung cancer initiation, progression,
and treatment outcomes. They hold the potential to offer valuable insights into the clinical
applications of microorganisms in lung cancer treatment and the development of microbiota-
based interventions for improved therapeutic outcomes.

10. Conclusions

In conclusion, it is clear that the microbiome has a crucial role in biological processes
related to the development and progression of lung cancer. Metagenomic sequencing can
be utilized to identify the microbial population that resides in the airway, providing a
promising method to detect changes in the lung microbiome as potential indicators of
cancer development, especially among high-risk groups like current and former smokers.
Although research on the potential of the lung microbiome as a source of biomarkers
for lung cancer is still in its early phases, research findings indicate that the microbiome
holds promise for this purpose. Further investigations are required to gain a deeper
understanding of the role of the lung microbiome in the development of lung cancer and
to identify specific microbial biomarkers as clinically applicable tools to improve early
diagnoses and treatment.
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