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Abstract: The corneal epithelium is the first anatomical barrier between the environment and the
cornea; it is critical for proper light refraction onto the retina and prevents pathogens (e.g., bacteria,
viruses) from entering the immune-privileged eye. Trauma to the highly innervated corneal epithe-
lium is extremely painful and if not resolved quickly or properly, can lead to infection and ultimately
blindness. The healthy eye produces its own growth factors and is continuously bathed in tear fluid
that contains these proteins and other nutrients to maintain the rapid turnover and homeostasis of the
ocular surface. In this article, we review the roles of growth factors in corneal epithelial homeostasis
and regeneration and some of the limitations to their use therapeutically.
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1. Introduction

The corneal epithelium is the first anatomical barrier between the environment and
the eye. Its structure is critical for proper light refraction onto the retina. The epithelial
layer prevents pathogens (e.g., bacteria, viruses) from entering the immune-privileged eye
and causing inflammation and scattering of light [1]. The corneal epithelium is the most
densely innervated tissue in the body [2], so trauma is exceptionally painful. The healthy
eye is continuously bathed in tear fluid containing proteins that are necessary for the rapid
turnover and maintenance of the ocular surface [3]. Wounds to the epithelium promote the
upregulation of growth factors in the tear fluid [4], exhibiting their importance in corneal
wound healing. If wounds to the epithelium are not resolved quickly or properly, they can
lead to infection, fibrosis, and ultimately blindness. In this article, we review the roles of
growth factors in corneal epithelial homeostasis and regeneration as potential therapies
and discuss some limitations to their use.

2. Corneal Epithelium
2.1. Anatomical Structure

The human cornea is comprised of 3 cellular layers separated by two distinct collage-
nous interfaces (Figure 1). The epithelium lies most anterior in the tissue, separated from
the stroma by Bowman’s Layer. The stroma lies anterior to Descemet’s membrane, which
separates it from the endothelium, the most posterior cellular layer. The endothelium
interfaces with the aqueous humor and allows nutrients to diffuse to other corneal cells. It
also regulates the hydration of the stroma, which is crucial for visual clarity [5].

The epithelium is made of 5–7 layers of epithelial cells [1]. Corneal epithelial cells
arise from limbal stem cells, which migrate to the central cornea and differentiate into
basal cells [6]. As basal cells age, they differentiate and migrate anteriorly to the surface,
where eventually they will reach their squamous form and shed [6]. This is a very rapid
process, with the turnover of the corneal surface occurring every ~10 days [7,8]. This is
advantageous for the restoration of the epithelial surface if it is ever damaged by trauma,
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surgery, disease, or drug side effects. The current model of corneal epithelial homeostasis
is the XYZ hypothesis, where movement of limbal stem cells towards the central cornea (X),
plus basal cell proliferation and differentiation in a vertical direction (Y), equals the loss of
superficial squamous cells from the epithelial surface (Z) [6,9].
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Figure 1. Anatomical structure of the corneal epithelium. The most anterior epithelial layer is made
of 5–7 layers of epithelial cells. Basal epithelial cells arise from limbal stem cells (LSCs) that move
centripetally into the cornea from the limbus. As basal epithelial cells move through their life cycle,
they become smaller, move anteriorly, and are eventually shed as superficial squamous cells. The
epithelium lies above Bowman’s Layer and the subbasal plexus, which are anterior to the stroma.
The stroma is the thickest layer and is mainly populated by keratocytes, which release extracellular
matrix and collagen to maintain the transparency of the cornea. The stroma is separated from the
most posterior layer of the cornea, the endothelium, by Descemet’s membrane. The endothelium is
made up of a single layer of endothelial cells that tightly regulate fluid dynamics from the aqueous
humor. Created with BioRender.com (accessed on 17 November 2023).

2.2. Tear Fluid

Because the cornea must remain transparent, there are no blood vessels to bring
nutrients to the cells that reside there; rather, epithelial cells rely on the tear fluid and
the aqueous humor to bathe and supply oxygen [10,11]. Epithelial cells facilitate up-
take of nutrients via microvilli on its superficial layer, which allow for greater surface
area interaction between the cornea and tear fluid [12]. Along with supplying the nec-
essary molecules to maintain corneal homeostasis, the tear fluid also serves as the first
protective layer of the ocular surface. It forms the barrier between the epithelium and the
external environment.

In healthy eyes, the tear fluid consists of three phases. The most anterior phase is the
lipid phase, or meibum, which originates in the meibomian glands located in the upper
and lower eyelids. The meibum consists of different lipids and mucins that function to
ensure an even spread of tear film over the surface of the eye and prevent evaporation
of the aqueous layer [13]. The middle aqueous phase is created in and secreted from the
lacrimal glands, which reside in the anterior lateral orbit above each eye. The aqueous layer
contains mucins, electrolytes, antioxidants, and protein-tlike growth factors that contribute
to the homeostasis of the ocular surface [12]. Lastly, the innermost mucin layer is secreted
by the goblet cells of the conjunctiva [1,4,14–16].
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2.3. Corneal Nerves

Between the epithelial cell layers is an intricate network of neurons that make the
cornea the most densely innervated tissue in the body, with 7000 nociceptors per mm2 [2].
Corneal nerves vary in function, but the majority are sensory nerves that respond to touch,
changes in temperature, and pain [17]. There are other types of nerves present in the
epithelium as well, like peripheral nerves that branch from the superior cervical ganglion
and supply sympathetic innervation [18–20]. Evidence of parasympathetic innervation
in humans from the ciliary ganglion is limited, though it has been found in some animal
models [2,19].

Most corneal epithelial nerves branch from the trigeminal nerve and enter the cornea
radially at the stromal level. Intraepithelial corneal nerve endings (ICNs) branch upwards
from the subbasal plexus, which resides beneath the epithelium but above the stroma
(Figure 1) [2]. Many synapse through the lacrimal nucleus in the pons and connect to the
facial nerve [21], which in turn activates the meibomian and lacrimal glands to promote
production and secretion of tears [22,23]. Other outcomes of ICN activation include blinking
to remove foreign objects, watering of the eye, and wound healing [2]. The increase in the
production of growth factors after stimulation contributes greatly to the healing response
of the cornea.

The ICNs are intimately connected with the corneal epithelial cells and are critical
for their health. Because the cornea is transparent for proper light passage, ICNs shed
their myelin sheaths and use the basal epithelial cells as their Schwann cell surrogates [24]
(though new techniques have discovered evidence of non-myelinating Schwann cells
present in the cornea [25–27]). Further, when primary corneal epithelial cells and trigeminal
neurons are co-cultured, neurite outgrowth is increased [28]. Both cell types release factors
that act on the other to help maintain homeostasis of the corneal surface. Nerve health
directly impacts the health of the ocular surface.

3. Growth Factors and Their Receptors

The maintenance of a healthy cornea is driven by growth factor receptor signaling.
These soluble proteins bind to their cognate receptor to induce biochemical changes inside
the cell to alter its biology. For growth factors to exert their activity, their cognate receptor
must be expressed on their target cells at a sufficient density to activate intracellular
effectors. Although growth factors have biological roles in embryogenesis, organogenesis,
and angiogenesis (and more), in mature and healthy ocular tissues they primarily contribute
to maintaining homeostasis [29–31].

3.1. Receptor Expression

Many families of growth factors and their receptors are expressed in the corneal
epithelium, including the platelet-derived growth factor receptor family (PDGFR), vascular
endothelial growth receptor factor family (VEGFR), epidermal growth receptor factor family
(EGFR), fibroblast growth factor receptor family (FGFR), insulin-like growth factor receptor
family (IGFR), and hepatocyte growth factor receptor family (HGFR, or c-Met) (Table 1).
When stimulated in the corneal epithelium, these receptors promote cell proliferation,
migration, and differentiation to aid in corneal re-epithelialization.

3.2. Growth Factor Expression

The growth factors that stimulate these receptors can originate from the tear fluid,
the corneal nerves, and the epithelial cells themselves. They can also be synthesized in
fibroblast-like cells (i.e., keratocytes), which secrete them to act in a paracrine manner on
the epithelial cells nearby (Figure 2). Many growth factors are expressed in basal tears, but
their levels are dynamic based on the stresses to the eye.

In mice, the wounding of the cornea increases growth factor presence in the aqueous
phase of tear fluid. This delivers a higher concentration to the epithelium, promoting
cellular proliferation, migration, and differentiation to promote re-epithelialization [32–34].
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For example, human tear hepatocyte growth factor (HGF) mRNA levels increase ~1400%
from the pre- to post- photorefractive or phototherapeutic keratectomy state [32]. The
release of growth and neurotrophic factors in the tear fluid in vivo are, in part, controlled
by the corneal nerves [35,36]. Nerves release neurotrophic factors/neuromodulators [i.e.,
substance P, calcitonin gene-related peptide (CGRP), acetylcholine, and vasoactive intestinal
peptide (VIP)] that maintain the ocular surface [36]. Substance P and CGRP specifically
have been shown to aid in corneal epithelial homeostasis and turnover [36].

Endogenous growth factors can be synthesized in a pro-form and associate with
the cell membrane until they are processed by matrix metalloproteinases (MMPs) or a
disintegrin and metalloproteases (ADAMs) [37,38]. The released soluble form is then able
to bind and activate its cognate receptor. In in vitro corneal epithelial cell scratch wounds,
MMP activity is increased, allowing for greater HB-EGF (heparin-binding EGF) processing
and cleavage, resulting in the activation of the EGFR [39–42].
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Figure 2. Growth factor expression in the corneal epithelium. A sample of some of the main mediators
of corneal epithelial homeostasis. Many growth factors, like EGF, HB-EGF, NGF, and TGF-β are
synthesized in the epithelium and act in an autocrine manner, where they bind to epithelial cells, or a
paracrine manner, where they bind to nearby cells, like keratocytes or corneal nerves. Alternatively,
proteins like HGF and KGF are expressed in keratocytes and diffuse anteriorly to the corneal nerves
and epithelium. Some proteins synthesized in the cornea also act on the adjacent limbal stem cells
to promote their proliferation. Corneal nerves release neurotrophic factors like substance P and
brain derived neurotrophic factor (BDNF) that act in autocrine or paracrine manners [36]. Many of
these growth factors can be synthesized in multiple layers of the cornea. Finally, growth factors can
reach the corneal epithelium via the lacrimal gland and the tear fluid or through the aqueous humor
(regulated by the endothelium). A more comprehensive list of growth factors is in Table 1. Created
with BioRender.com (accessed on 17 November 2023).

3.3. Receptor Mechanism of Action

Growth factor receptors have comparable mechanisms of action across the different
families. Most growth factor receptors are embedded in the cell membrane in a monomeric
form (others, like the insulin receptor, are already present in a dimerized form [43]).

BioRender.com
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Table 1. Growth factor receptor biology and negative regulators in the corneal epithelium.

Receptor Factor Effects on Corneal Wound Healing Regulation by CBL

c-Met Hepatocyte Growth Factor
(HGF)

• Enhances re-epithelialization rates [44]
• Promotes epithelial cell migration and proliferation [45,46]
• Suppresses inflammatory signaling mediators [44,47]
• Promotes synaptogenesis [48], sufficient for peripheral nerve

outgrowth [49–51]
• Involved in angiogenesis [52–55]

• c-Cbl [45,56,57]
• Cbl-b [45,57]

EGFR Epidermal Growth Factor
(EGF)

• Enhances re-epithelialization rates [58,59]
• Promotes epithelial cell migration and proliferation [60–64]

• c-Cbl [58,65,66]
• Cbl-b [66]
• Cbl-c [67]

Heparin binding-EGF
(HB-EGF)

• Enhances re-epithelization rates [68,69]

Betacellulin (BTC) • Enhances re-epithelialization rates [68]
• Promotes limbal stem cell proliferation [70]

Transforming Growth
Factor-α (TGF-α)

• Enhances re-epithelialization rates [68]
• Promotes EGFR recycling, enhancing wound healing [71]

KGFR Keratinocyte Growth
Factor (KGF)

• Enhances re-epithelialization rates [31,72,73]
• Promotes limbal stem cell proliferation [74] • c-Cbl [75]

FGFR Fibroblast Growth Factor
(FGF)

• Enhances re-epithelialization rates [76]
• Promotes differentiation of keratocytes to fibroblasts [77,78]
• Promotes stromal fibroblast proliferation [79]
• Can induce corneal neovascularization [80]

• c-Cbl [81]

IGF-1R; IGF-2R
Insulin Growth Factor

(IGF)
Insulin

• Promotes epithelial cell migration and proliferation [82]
• Promotes limbal stem cell differentiation [83]
• Synergistic effects with substance P to enhance wound closure [84]
• Regulates keratocyte organization network [82]
• Insulin enhances healing in CE cells by transactivation of EGFR

[85,86]

• c-Cbl [87]

• Cbl-b [88]

PDGF-αR &
PDGF-βR

Platelet Derived Growth
Factor (PDGF)

• Promotes migration of keratocytes [31]
• Enhances epithelial cell migration in presence of fibronectin [31,89]
• Enhances endothelial cell proliferation [31]

• c-Cbl [90]
• Cbl-b [90]

VEGFR 2 Vascular Endothelial
Growth Factor (VEGF)

• Enhances re-epithelialization [91]
• In combination with IL-17, necessary for efficient corneal nerve

regeneration [92]
• Can induce corneal neovascularization [80]

• c-Cbl [93]

TrkA Nerve Growth Factor
(NGF)

• Enhances re-epithelialization rates [94,95]
• Promotes epithelial cell migration and proliferation [94]
• Improves nerve density [96]

• c-Cbl [97]
• Cbl-b [98]

TrkB
Brain derived

neurotrophic factor
(BDNF)

• Stimulates proliferation of keratocytes, but not epithelial cells [99] • c-Cbl [100,101]

TGF-βR Transforming Growth
Factor-β (TGF-β1,2,3)

• Isoforms 1 and 2:
• Inhibits corneal epithelial cell proliferation, stimulates keratocytes

[102,103]
• Antagonize EGF, HGF, and KGF-induced corneal epithelial cell

proliferation [104,105]
• Promotes scar formation in stroma [77,106,107]
• Isoform 3:
• Enhances corneal wound healing, does not have fibrotic effects [108]

• c-Cbl [109]
• Cbl-b [109,110]

RET/GFR-α

Glial cell line-
derived

neurotrophic
factor (GDNF)

• Enhances re-epithelialization rates [111,112]
• Promotes neurite outgrowth and maintains density of nerves [111]
• Suppresses inflammatory cytokine signaling, aids in limbal stem cell

survival [113]

• c-Cbl [114]
• Cbl-c [115]

Upon ligand binding, they undergo a conformational change and dimerize, and the in-
tracellular kinase domains are brought close enough together to auto/trans-phosphorylate
each other. Some receptors have ligand-stimulated tyrosine kinase activity [receptor ty-
rosine kinases (RTKs), i.e., c-Met and EGFR] and others have ligand-stimulated serine-
threonine kinase activity [i.e., transforming growth factor-β (TGF-β) receptor]. Receptor
phosphorylation is the unifying feature that allows for the docking and activation of down-
stream effectors [i.e., mitogen activated protein kinase (MAPK), phosphoinositide 3-kinase
(PI3-K), signal transducer and activator of transcription 3 (STAT3), etc.]. Effectors trans-
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late the binding of extracellular ligands into intracellular biochemical signaling. The cell
response is determined by how long individual effectors are active [116]. The contributions
from each effector is governed by the spatial and temporal regulation of the receptor [116].

Alternative Signaling Mechanisms

Growth factor receptors interact with many cell surface molecules including mucins,
plexins, integrins, other receptor tyrosine kinases (RTKs), and transient receptor potential
(TRP) channels. Of these, TRP channels are particularly important regulators of the corneal
epithelium, partly due to their expression in intraepithelial corneal nerve endings. In
addition, TRP channels are present on the epithelial surface [117]. While they have their
own roles in corneal homeostasis, the activation of these channels can lead to the stimulation
of growth factor receptors: the treatment of human corneal epithelial cells (HCECs) with
capsaicin, a potent agonist of the TRP vanilloid 1 (TRPV1) channel, induces the shedding
of HB-EGF and activation of the EGFR [118,119]. There is evidence in other cell types
(liver cancer cell lines, human prostate cancer lines, renal tubular cell lines) in which
treatment with HGF increases the expression and activity of TRPC6, which contributes
to cell proliferation [120]. Further, TRPV1′s Ca2+ influx channel activity is necessary for
HGF-induced migration in HepG2 cells [121], so TRPV1 activation may be required in
corneal epithelial cell motility as well.

3.4. Growth Factor Alterations in Disease States

The importance of growth factors can be seen by their varying levels in pathological
conditions. Tear dysfunction—pathologies of tear fluid composition and make-up—is a
leading cause of corneal epithelial disease and irritation [122]. The 2017 Dry Eye Workshop
II (DEWS II) within the Tear Film and Ocular Surface society (TFOS) defined different types
of Dry Eye Disease (DED). Within each of these subcategories (i.e., Sjögrens syndrome,
aqueous deficient dry eye, meibomian gland dysfunction) the EGF concentration in the
tears differs [123,124]. It remains to be determined whether changes in EGF levels are a
cause or an effect of DED. DED also presents with upregulated MMPs [125,126], reflecting
the eye’s need for more growth factor. The MMP inhibitor GM 6001 prevents wound-
dependent EGFR activation, presenting as a delay in healing time, consistent with a block
in the processing of HB-EGF [127].

Many disorders, including neurotrophic keratitis (NK), DED, and diabetes present
with decreased corneal innervation. Less sensitivity to external stimuli and/or decreased
connectivity with the lacrimal gland manifests as lowered tear production and secretion.
This in turn decreases growth factor delivery to the cornea and manifests as delayed
corneal wound healing [36,128–130]. Neuromodulators like substance P, CGRP, and NGF
are downregulated in DED [131]. However, research is still necessary to determine if
the lack of growth factor is causing the pathology or if the disease is causing the lack of
growth factor.

There is ample literature discussing the changes in growth factors [132] in other
corneal disorders like keratoconus [133], diabetes [133,134], bullous keratopathy [133],
ocular rosacea [135], inflammatory surface diseases [136], and pseudomonas aeruginosa
keratitis [137,138]. There are also genetic dimorphisms that impact corneal health. Many
corneal dystrophies are manifested through single nucleotide polymorphisms (SNPs) in
growth factor genes like TGF-β [139] and HGF [140] (though this has only been seen in
certain demographics and not others [141,142]).

4. Growth Factor-Mediated Corneal Epithelial Restoration
4.1. The Role of Growth Factors for Corneal Epithelial Homeostasis and Restoration

The first evidence of growth factors playing a role in ocular biology came with the
discovery of epidermal growth factor (EGF) in 1962 by Stanley Cohen [143]. His seminal
discovery showed that addition of EGF accelerated the eyelid opening in newborn mice.
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Thirty years later, work by Zieske et al. demonstrated that introduction of EGF to debrided
mouse corneas accelerated the rate of wound healing [144].

Other early studies demonstrated that FGF1 mRNA is upregulated 6-48h following
corneal epithelial burning with a steady return to basal over 6 days [145]. This transient
increase in ligand coupled with the presence of receptors on the cell surface point to-
wards the use of exogenous growth factors as a natural way to enhance restoration of the
epithelial surface.

4.2. Opportunities for the Use of Growth Factors

Due to the rapid turnover of the corneal epithelium, superficial scratches heal within
24–72 h in healthy individuals [146]. However, individuals who have diseases like dia-
betes [147–149] or are taking RTK inhibitors as anti-cancer therapy [150–152] often present
with recurrent corneal erosions, leading to discomfort and potential loss of vision. Addi-
tionally, those who undergo corneal transplants or LASIK surgeries stand to benefit from
pharmacologic agents that could help accelerate the healing process, alleviate pain associ-
ated with damaged corneal epithelium, aid in nerve regeneration, and prevent possible
infection. Such agents also have the potential to help individuals undergoing limbal stem
cell transplants by accelerating the restoration of the epithelial layer. Finally, compounds
that accelerate the EGFR-mediated responses that promote corneal epithelial homeosta-
sis will further our understanding of corneal epithelial biology as well as help in the
development of the epithelial layers of artificial, bioengineered corneas.

4.2.1. Current FDA-Approved Growth Factor Therapies: Amniotic Membrane

Currently, there are limited options available to accelerate corneal epithelial wound
healing. Amniotic membrane (AM) has a long history in tissue restoration including
in regeneration of skin [153–155], in the dental clinic [156], as well as in ocular surface
healing [157]. AM also has potent anti-inflammatory effects [158,159] and is used to prevent
infection following surgery or burns [160,161]. AM is derived from placental tissue and
consists of a single layer of epithelial cells, a basement membrane, an avascular matrix of
connective tissue, and many pro-regenerative biomolecules, including EGF, HGF, FGF, and
multiple cytokines [162,163].

The first use of AM on the ocular surface Is credited to de Rötth in 1940 [164], and since
then, it has been used extensively in research and in the clinic. However, AM is limited in
comfortability for the patient, how it is preserved, the variability of sources that it comes
from, the types of corneal wounds that it can aid, and it does not address the underlying
pathology [165–168]. However, it is still used in the clinic and is efficacious for healing
some wounds [169], though the effects of the growth factors contained in AM have not
been well-tested. Another promising option that has yet to be FDA-approved is the use of
hydro- or collagenous gels that slowly release growth factors over time [170,171], much
like AM. Further research is necessary to optimize these products for broader clinical use.

4.2.2. Current FDA-Approved Growth Factor Therapies: Recombinant Growth Factors

Corneal epithelial wounding insults both the epithelial cells and the corneal nerves.
There is ample evidence that corneal nerves can regenerate after injury [111,128,172,173].
Part of this ability is due to epithelial cells and keratocytes releasing growth factors that
act on corneal nerves including EGF, NGF, BDNF, and GDNF [99]. Topical treatment with
growth factors like NGF and vascular endothelial growth factor (VEGF) can aid in corneal
nerve regeneration and corneal healing [91,173]. Treatment to mouse corneal wounds
with a dopamine receptor (D1 and D2) agonist increased the levels of NGF present in
the cornea and promoted both nerve regeneration and re-epithelialization [174]. Further,
combination therapy of IGF-1 and a substance P derivative, FGLM amide (phenylalanine-
glycine-leucine-methionine amide), can aid in the healing of persistent corneal epithelial
defects in patients with NK [84,175].
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The first FDA-approved topical biologic medication in ophthalmology is Cenegermin/
Oxervate®, a recombinant human NGF protein, specifically for NK [173,176,177], which
is fitting as NGF was the first discovered growth factor in 1952 by Rita Levi-Montalcini
and Stanley Cohen [178]. Cenegermin resolves roughly 72% of NK cases [179], but its use
in other types of ocular perturbations (i.e., ulcerations, keratitis, surface wounds) is not
well studied. Further, the use of this drug can present as a challenge to some patients, as
it can be costly, difficult to prepare for self-administration, and has an intensive dosing
regimen [180,181]. Additionally, there are often issues with patient compliance, as eye
drops can cause pain, burning, and blurry vision after use [180].

There are other FDA-approved growth factor-based treatments including Regranex,
which is a recombinant PDGF-BB ointment approved for healing diabetic ulcers. However,
it is currently not recommended to use on any other types of wounds due to lack of clinical
data and testing [182]. There are also some topical recombinant EGF formulations approved
in countries outside of the USA for dermal applications [183–185] which may be useful for
ocular surface wounds.

5. Emerging Opportunities

Given the available therapies, why would we need to continue the search? Many of
these formulations are made up for a particular subset of patients—like Cenegermin which
mainly aids in NK. But, as stated previously, it only aids in about 72% of patients. Further
therapies are required to help in preventing corneal blindness due to imbalances in corneal
epithelial homeostasis.

5.1. EGF: The Catalyst of Corneal Homeostasis Studies

A number of other growth factors have been considered to promote corneal re-
epithelialization. Chief among these is topical EGF. Numerous corneal epithelial debride-
ment models show that EGFR activity is both necessary (EGFR inhibitors prevent restora-
tion) and sufficient (treatment with EGF accelerates restoration) for re-epithelialization [58,186].
However, in the clinic, the efficacy of topical EGF on corneal epithelial damage is depen-
dent on the type of the wound. It has shown promise with traumatic ulcers [187,188],
surface abrasions/lesions [59], and chemotherapy-induced erosions [151,189]; however, it
has limited therapeutic benefit to patients with HSV-derived ulcers, bullous keratopathies,
or penetrating keratoplasty [59,190,191].

It has been suggested that the sustained release of EGF is required for optimal EGFR
signaling in the corneal epithelium [192]. This is likely due to “receptor desensitiza-
tion” [193,194] which describes the peak in receptor activity (phosphorylation) following
ligand stimulation that attenuates with time. This phenomenon of desensitization has
been clearly described both in vitro and in vivo [195–197]. Molecular mechanisms include
the dephosphorylation of the receptor by phosphatases, internalization of the receptor
from the plasma membrane, and post-translational modifications (i.e., ubiquitin) that tar-
get the receptor for degradation. Receptor desensitization is a common feature of many
receptors that are involved in corneal re-epithelialization and listed in Table 1 [198]. Un-
der normal physiologic conditions, cellular mechanisms like receptor desensitization are
critical for maintaining tissue homeostasis and preventing corneal hyperplasia [56,199].
However, under wounded conditions, these mechanisms of receptor inactivation slow the
restoration process.

5.2. CBL-Mediated Desensitization of RTKs

Many RTKs are negatively regulated by the universal process of receptor ubiqui-
tylation. Ubiquitylation limits receptor signaling, thus it is possible that their contribu-
tion to corneal epithelial homeostasis and wound healing is not fully recognized due
to desensitization.

Antagonizing receptor ubiquitylation has emerged as a viable method for preventing
receptor desensitization, thus sustaining receptor signaling. Ubiquitylation is involved
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in the endocytic trafficking of activated receptors. Ubiquitylated receptors bind to the
endosomal sorting complexes required for transport (ESCRT) machinery on the limiting
membrane of the late endosome and internalize into the intraluminal vesicles (ILV) of the
late endosome. These late endosomes fuse with the lysosome and transfer the ILVs and its
receptor cargo for degradation (Figure 3) [200].

The ubiquitylation proteasome system (UPS) selectively regulates the balance of
proteins in the cell. Proteins are conjugated with the 76-amino acid protein ubiquitin
(Ub) via a series of enzymatic reactions involving the E1, E2, and E3 Ub ligase machinery
that targets proteins for proteasomal or lysosomal degradation [201]. There are two E1
activating enzymes that transfer Ub to one of 38 E2-conjugating enzymes. There are several
hundred E3 ligases that mediate the final step of Ub transfer to its specific target. E3 ligases
are good pharmacologic targets because only liganded receptors are phosphorylated and
have the requisite phosphotyrosine for ubiquitin transfer [45].

Protein ubiquitylation is counter-regulated by deubiquitylating enzymes (DUBs).
Several studies highlight the role of E3 ligases in growth factor receptor desensitization.
Two of the primary E3 ligases that regulate many RTKs in the corneal epithelium are
c-Cbl and Cbl-b. These E3 ligases have roles in other facets of membrane trafficking
(i.e., autophagy), which are independent of its E3 ligase activity and have only been
observed in cancer cells [202]. The major role of c-Cbl and Cbl-b is downregulation of cell
surface receptors.
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tyrosines serve as catalytic or docking sites (See Figure 4). Concomitantly, receptor dimers translocate
to clathrin rich membrane domains which invaginate to form a clathrin-coated pit containing the
ligand-receptor complex [203]. Dynamin pinches off the membrane and generates a clathrin-coated
vesicle [204–206]. Clathrin proteins are shed and recycled. The resulting naked vesicle is delivered to
and fuses with the early endosome. The early endosome sorts the cargo for its ultimate cellular fate.
Receptors can be recycled back to the plasma membrane for additional rounds of activation. Alter-
natively, receptors can be retained in the early endosome which matures into a late endosome [200].
E3 ubiquitin ligases (i.e., c-Cbl, Cbl-b) bind and transfer ubiquitin to the receptor. Receptor ubiq-
uitylation is a critical modification for endocytosis and allows the receptor to be recognized by the
ESCRT complexes. Ubiquitylated receptors bind to ESCRT proteins and become sequestered into
intralumenal vesicles (ILV) within the mature late endosome. The late endosome fuses with the
lysosome and the cargo is transferred for degradation. Created with BioRender.com (accessed on 17
November 2023).

Evidence to support ubiquitylation as a target comes from studies with the EGFR. The
knockdown and/or knockout of c-Cbl decreased EGFR ubiquitylation and increased the
rate of corneal epithelial in vitro wound healing [58,65]. Indirect pharmacologic inhibition
of ubiquitylation via PP1 (Src inhibitor) resulted in faster in vitro and in vivo corneal re-
epithelialization [58]. As indicated in Table 1, multiple receptors are regulated by CBL
proteins. Antagonizing CBL activity may be a more universal approach to sustain receptor
signaling in the corneal epithelium.

An additional example is the c-Met receptor. For instance, activation of c-Met by HGF
promotes corneal epithelial restoration [44,45], but treatment with HGF at supraphysiologic
concentrations can limit the therapeutic benefit of the growth factor [207]. Corneal epithelial
cells deficient in c-Cbl and Cbl-b demonstrated slowed HGF-driven c-Met trafficking, which
resulted in enhanced receptor and effector signaling. The greater magnitude and duration
of c-Met phosphorylation in these knockout cells potentiated in vitro wound healing rates
2-fold [45].

5.3. HGF: The Multi-Faceted Growth Factor

Although re-epithelialization is the critical first step in corneal wound healing, other
aspects such as chronic inflammation and nerve regeneration need to be considered. Ad-
ditional roles for growth factors receptors include mitogenic [44], anti-fibrotic [47], anti-
angiogenic [54], and neurotrophic [208] effects. While most growth factors and their
receptors can aid in re-epithelialization, the unique features of the HGF:c-Met signaling
axis fulfills many roles within the healing process.

5.3.1. Inhibition of Fibrosis

Inflammation, in the early stages of healing, is beneficial. Damaged epithelial cells
continuously release growth factors like TGF-β and PDGF into the stroma [34,61,209].
When TGF-β and other cytokines are present in high concentrations in the stroma, they
differentiate keratocytes into corneal fibroblasts and then to mature myofibroblasts [77,210–215].
Mature myofibroblasts are opaque and in chronic wound healing scenarios, they persis-
tently release high levels of disordered extracellular matrix. This clouds the stromal layer
of the cornea and impairs vision [77,216,217]. The stromal response to injury will not fully
terminate unless the epithelial basement membrane reforms, so the healing of the epithelial
layer is crucial for full ocular restoration.

The balance between anti-inflammatory (i.e., HGF and EGF) and pro-inflammatory
(TGF-β) signaling mediators determine the extent of tissue damage. TGF-β levels rise
as injuries become chronic, leading to fibrosis [218,219]. HGF can inhibit TGF-β produc-
tion by upregulating Smad7 [47,220,221], which in turn prevents myofibroblasts from
maturing [77,222,223]. Activation of the EGFR can promote nuclear factor κβ (NF-κβ) ac-
tivity, which inhibits TGF-β signaling [224]. Further, HGF can suppress pro-inflammatory
cytokines IL-1, IL-6, and IL-18 that are released from macrophages [225]. Lastly, combina-
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tion gene therapy with HGF and bone morphogenic protein 7 (BMP7) decreased corneal
fibrosis following in vivo rabbit corneal alkali burn [226,227].
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Figure 4. Example of the c-Met receptor’s activation pathways. Receptor activation begins with two
HGF molecules binding to two c-Met monomers, promoting the dimerization and stabilization of
the complex [228]. Dimerization of the transmembrane monomers allows for the kinase domains
on each receptor to activate via auto-transphosphorylation. Once the catalytic domains are active
(Y1234/Y1235), they mediate the phosphorylation of tyrosine residues in both the juxtamembrane
(Y1003) and docking domains (Y1349/Y1356). The phosphorylated docking domain allows for
scaffold (i.e., GAB1, Grb2) and effector proteins (i.e., STAT3, PI3K) to bind. Effector proteins can
be phosphorylated directly by the receptor, or by binding onto scaffold proteins to be brought in
range of the c-Met catalytic domain. Different outcomes are driven by which effector proteins are
activated. A few pathways are clearer than others, namely the Ras/Raf/Mek/ERK1/2 pathway and
its involvement in proliferation and cell motility [229]. It is also well established that PI3-K works
through Akt to prevent apoptosis in corneal epithelial cells [230]. Other pathways, including the
CRK-JNK for transformation [231,232] and STAT3 for invasion [233,234], have various results, so
the outcome of signaling through these pathways may be determined by cell type. One gap in the
research is what pathways are activated and how c-Met plays a role in nerve regeneration, preventing
fibrosis, and angiogenesis. Following the phosphorylation of Y1003 in the juxtamembrane domain,
E3 ubiquitin ligases like c-Cbl or Cbl-b can bind and transfer ubiquitin molecules to the receptor,
ultimately ending with receptor degradation (see Figure 4). Created with BioRender.com (accessed
on 17 November 2023).

5.3.2. Corneal Neovascularization

Another clinical complication in corneal wound healing is neo-vascularization. The
absence of blood and lymphatic vessels in the cornea keeps it transparent and allows light
to pass through and refract on the retina. Under normal conditions, the protein Notch1
suppresses VEGF expression in the cornea. When Notch1 activity decreases or when
VEGFR is hyperactivated, neovascularization branches from the blood vessels of the limbal
vascular plexus [235]. The downregulation of TGF-β in an in vivo burn model decreases
not only infiltrating inflammatory cells and disordered ECM, but also the formation of new
vessels [236].
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HGF has been implicated as a regulator of angiogenesis, but there is no unifying model.
In some tissues, HGF is a potent angiogenic factor, particularly in the retina [237–239]. For
the anterior eye, some studies indicate that the inhibition of HGF via siRNA prevents VEGF-
dependent corneal neovascularization, but this was accompanied by decreased epithelial
proliferation and increased incidence of apoptosis [240]. Conversely, implantation of pellets
into the mouse cornea that contain an HGF derivative, H-RN, also prevented VEGF-driven
angiogenesis [52,55]. Together, these findings suggest a role for HGF in regulating corneal
neovascularization, but further investigation is needed.

5.3.3. Neuro-Regeneration

Restoring the corneal epithelium provides a critical barrier to foreign agents and limits
the chances of infection. However, without neuronal restoration, the eye lacks the necessary
sensitivity it needs to avoid recurrent erosions and surface shedding.

c-Met has roles in in vivo [49], ex vivo [241], and in vitro [51,242] neuronal growth
models. In aging mice, decreases in c-Met activation parallel the loss of nerve regener-
ation [50]. c-Met has also been implicated in the formation of new synapses [48]. How-
ever, there is no literature surrounding c-Met and HGF involvement in intraepithelial
corneal nerve communication and wound healing, which is a gap in the field that needs to
be addressed.

6. Conclusions

Damage to the corneal epithelium is a component of almost all corneal injuries. In
addition to intense pain, perturbation to the epithelial layer makes the eye susceptible to
infection and potentially loss of vision. Growth factor receptors have a central role in corneal
epithelial homeostasis and regeneration, however, due to our incomplete understanding
of their signaling, they have not yet reached their full potential as a therapy. Critical
next steps include identifying the most efficacious mediators of corneal regeneration and,
perhaps most importantly, identifying limitations to their use. Uncovering the fundamental
mechanisms of how these proteins work will serve as a foundation for developing new
therapies to treat the millions of individuals affected each year by corneal perturbations.
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