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Abstract: Cells can communicate with each other through extracellular vesicles (EVs), which are
membrane-bound structures that transport proteins, lipids and nucleic acids. These structures have
been found to mediate cellular differentiation and proliferation apoptosis, as well as inflammatory
responses and senescence, among others. The cargo of these vesicles may include immunomodu-
latory molecules, which can then contribute to the pathogenesis of various diseases. By contrast,
EVs secreted by mesenchymal stem cells (MSCs) have shown important immunosuppressive and
regenerative properties. Moreover, EVs can be modified and used as drug carriers to precisely deliver
therapeutic agents. In this review, we aim to summarize the current evidence on the roles of EVs
in the progression and treatment of rheumatoid arthritis (RA) and osteoarthritis (OA), which are
important and prevalent joint diseases with a significant global burden.

Keywords: extracellular vesicles; exosomes; rheumatoid arthritis; osteoarthritis; mesenchymal
stem cells

1. Introduction

Extracellular vesicles (EVs) are membrane-bound structures secreted by donor cells
which can carry proteins, lipids and nucleic acids. Depending on their biogenesis and
size, several types of EVs have been characterized, including exosomes, microvesicles,
apoptotic bodies (ABs) and oncosomes. Exosomes originate from intraluminal vesicles
after the fusion of multivesicular endosomes (MVEs) with the plasma membrane, while
microvesicles are formed from the plasma membrane and contain cytoplasmic content.
ABs are released by dying cells, and oncosomes are the products of neoplastic cells [1].
These structures can transport active cargo into surrounding or distant cells, which would
alter their functions. Recent studies have uncovered that EVs take part in multiple pro-
cesses, such as cellular communication, immunomodulation or even tumor progression [2].
Immunomodulatory properties of EVs are of particular interest, as they can regulate the
progression of inflammatory or neoplastic diseases. For instance, EVs can regulate the
polarization of macrophages and thus contribute to the progression of atherosclerosis or
lung cancer [3,4]. Importantly, EV-based nanoparticles can be used for treatment purposes
to deliver the required treatment agent directly to disease-related cells [5]. In this review,
we will try to present the current evidence regarding the role of EVs in the pathogenesis
and treatment of rheumatoid arthritis (RA) and osteoarthritis (OA).

2. Extracellular Vesicles in the Pathogenesis of Rheumatoid Arthritis
2.1. Extracellular Vesicles and Rheumatoid Arthritis

Rheumatoid arthritis is one of the most frequent inflammatory diseases, and causes
structural and functional joint impairment. Nevertheless, the disease is also characterized
by extraarticular manifestations, such as vasculitis, pulmonary involvement or rheumatoid
nodules. Synovial inflammation, bone erosion and cartilage damage are key elements of RA
pathogenesis. Multiple cells are involved in the progression of RA, including fibroblast-like
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synoviocytes (FLSs), macrophages, osteoclasts, neutrophils and T cells, among others [6].
These cells communicate through cytokines, and interactions between them impact cellular
phenotypes and create a pro-inflammatory environment. Importantly, recent studies
highlighted the vital role of EVs in these interactions. As previously mentioned, EVs can
contain proteins, lipids or nucleic acids. The latter often indicate non-coding RNA (ncRNA),
such as micro-RNA (miRNA), long non-coding RNA (lncRNA) or circular RNA (circRNA).
Briefly, these molecules regulate gene expression. For instance, miRNAs can suppress
translation while lncRNA and circRNA can act as competing endogenous RNA (ceRNA) or
sponges that sequestrate miRNAs.

To begin with, RA patients have elevated levels of EVs compared to healthy controls [7].
Furthermore, altered cargo of EVs in rheumatoid patients has been detected, which may
be useful in the diagnosis process [8]. Plasma EVs may contain a rheumatoid factor (RF),
an autoantibody which is used in the diagnosis of RA. The presence of these structures
could become a novel biomarker of disease severity. Arntz et al. demonstrated that patients
with IgM-RF-positive plasma EVs had significantly higher DAS28, ESR, and VAS scores,
as well as elevated C-reactive protein (CRP) concentrations, compared to seropositive
patients without the expression of RF on EVs [9]. Furthermore, strong correlations between
the level of RF and the number of B- and T-cell-derived microvesicles were observed [10].
Importantly, Stojanovic and colleagues showed significant correlations between plasma EVs
and CRP levels, together with coagulation parameters in female RA patients. The authors
observed significantly more EVs expressing a tissue factor (TF) in the RA cohort than
in healthy controls [11]. A previous study demonstrated a strong immunohistochemical
expression of TF in the rheumatoid synovium and suggested that it could play a role in
RA progression [12]. EVs’ express markers represented their parent cells, as well as EV-
specific markers. The membrane of the vesicles contains tetraspanins, which are proteins
involved in important cellular processes, such as cell adhesion, membrane fusion and
protein trafficking, among others. It has been suggested that EVs could be identified
using these markers. For instance, membranes of the exosomes contain CD9, CD37, CD63
and CD81 [13]. Indeed, the expression of single CD9 and CD81 on the surface of small
EVs isolated from blood plasma was elevated in RA patients [14]. An early study by
Nakagawa et al. demonstrated that the introduction of CD81 siRNA to the joints of
collagen-induced arthritis (CIA) rats reduces clinical symptoms and joint damage [15].
The intra-articular administration of an RNA vector expressing anti-CD81 antibodies also
showed benefits in CIA-rats [16]. Interestingly, the monitoring of tetraspanins could become
useful in evaluating the response to treatment. Rydland et al. showed that responders to
methotrexate demonstrate higher CD81 expression that non-responders [14].

2.2. Autoimmunity

The pathogenesis of RA is associated with the formation of autoantibodies, such as
RF, anti-citrullinated protein antibodies (ACPA), and anti-carbamylated protein antibodies.
RF targets the Fc region of immunoglobulin G (IgG), while ACPA recognizes proteins that
undergo post-translational citrullination. Collagen, vimentin and fibrinogen are some of
the antigens undergoing this modification [17]. Studies have shown that the presence of
ACPA is correlated with severe disease, and that these antibodies can contribute to the
progression of the disease by promoting inflammatory responses [18].

EVs have been suggested to take part in the pathogenesis of autoimmune diseases.
They are opsonized by CRP, which could drive the production of anti-CRP autoantibodies
present in systemic lupus erythematosus (SLE) [19]. Moreover, EVs isolated from the islet
beta cells have also been found to contain diabetic autoantigens [20]. Synovial exosomes
derived from patients with articular diseases (OA, RA and reactive arthritis) have been
found to contain citrullinated proteins [21]. Recently, a study by Ucci et al. suggested that
extracellular microvesicles present citrullinated antigens on the surface of vesicles. The
higher expression of citrullinated antigens has been detected in RA-microvesicles com-
pared with those of healthy donors. In addition, the presence of citrullinated antigens was
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positively correlated with disease activity [22]. Importantly, EVs carry the peptide-major
histocompatibility complex (MHC) and present antigens to T cells [23]. Furthermore, they
can take part in the formation of immune complexes (ICs). ICs with citrullinated peptides
induce inflammatory responses by stimulating the production of the tumor necrosis factor
(TNF) by macrophages [24]. TNF plays a major role in the pathogenesis of RA, as this
cytokine is involved in inflammatory responses and bone resorption [25]. Cloutier and
collaborators found that rheumatoid synovial fluid contains ICs associated with microparti-
cles (MPs). The latter structures were observed to contain citrullinated epitopes and can
display vimentin and fibrinogen. The authors found that MP-ICs can promote the secretion
of leukotriens by neutrophils [26]. Furthermore, such structures were found to induce
pro-inflammatory responses in monocytes in an in vitro study. Villar-Vesga and colleagues
demonstrated that the protein expression of interleukin (IL)-1β, IL-6 and TNF-αwas greater
in stimulated monocytes derived from healthy individuals, which could be related to the
state of tolerance of rheumatoid cells [27]. However, another study by Burbano et al. de-
tected elevations of pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α) in supernatants of
mononuclear phagocytes in the presence of EVs, and EV-ICs form seropositive patients [28].
Furthermore, a study investigating MPs with ICs from patients with RA and SLE showed
that these structures can promote the expression of adhesion molecules by endothelial
cells [29]. Thus, RA-EVs might be the source of autoantigens, driving the autoimmunity. In
addition, ICs that form with the EVs can promote inflammation in immune cells, which
can also contribute to the chronic inflammatory conditions.

2.3. Inflammation

Chronic inflammation is a major hallmark of RA. The pathological environment of
the affected joint involves multiple cells, which interact with each other to stimulate the
secretion of pro-inflammatory cytokines, chemokines and proteases. EVs can propagate
the inflammation, as these structures may contain or express inflammatory molecules. For
instance, EVs can carry TNF-α on their membrane and stimulate the nuclear factor kappa
B (NF-κB) pathway, which is involved in the progression of inflammatory diseases [30].
In RA, MPs were found to express TNF-α on their surface. MPs derived from endothelial
cells demonstrated a greater abundance of TNF-α in RA than those derived from healthy
controls. Importantly, positive correlations between the percentage of MP-associated TNF
and clinical rheumatoid parameters have been observed. A treatment with etanercept
(TNF inhibitor), but not with classical disease-modifying anti-rheumatic drugs (DMARDs),
reduced the surface expression of TNF [31]. Furthermore, the membrane-bound form of
TNF-α was found on the vesicles derived from RA-FLSs. These cells play a major role
in the progression of RA. RA-FLSs have a tumor-like appearance due to similarities with
malignant cells, such as a high expression of oncogenes and abnormal growth, as well
as elevated telomerase activity or secretion of chemokines to attract immune cells and
promote inflammation or angiogenesis [32]. An early study by Zhang et al. demonstrated
that RA-FLS-derived exosomes with TNF-α-stimulated NF-κB and thus, promoted the
secretion of the matrix metalloproteinase 1 (MMP1) in RA and OA synovial fibroblasts [33].
Therefore, RA-FLS-derived exosomes may stimulate inflammatory responses in other FLSs
and induce tissue degeneration.

Additionally, despite the ability to directly promote inflammation by transporting TNF-
α, synovial cells react to inflammatory stimuli and thus, secrete vesicles with particular
cargo that can further regulate inflammation. For instance, the treatment of RA-FLS with
TNF-α promotes the secretion of exosomes with miR-155-5p, miR-1307-3p, miR-323a-5p and
miR-146a-5p [34]. MiR-155 has been previously associated with the pathogenesis of RA.
Studies have found that miR-155 promotes inflammatory responses in macrophages and
suppresses the anti-inflammatory polarization. Moreover, it plays a role in the antibody
production in RA [35]. In the study by Takamura et al., the authors predicted that miR-
323a-5p targets CD6, a T cell signaling attenuator. Consequently, RA-FLS-derived exosomes
containing miR-323a-5p could enhance T cell responses [34,36]. Moreover, MPs derived from
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synovial fluid can promote inflammatory responses in FLSs. These structures promote the
release of IL-6 and IL-8, major mediators of inflammation and chemotaxis, respectively [37].
Exosomes secreted by RA-FLS also promote macrophage migration [38]. In the study by
Nakamachi et al., the authors demonstrated that the stimulation of macrophage migration
could be mediated by pentraxin 3 (PTX3). Silencing PTX3 resulted in statistically significant
reduction in the number of migrated cells [38]. PTX3 is an inflammatory marker elevated
in the serum of RA patients compared to healthy controls [39,40]. Plasma PTX3 expression
has been positively correlated with the concentration of MMP-3, CRP, and radiographic joint
damage. Therefore, these studies suggest that PTX3 contributes to the progression of RA [41].

Moreover, EVs secreted by synovial fibroblasts regulate T cell differentiation. For
instance, exosomes containing miR-424 promote the differentiation of Th17 cells [42]. The
presence of these cells, together with Th17-related cytokines, have been correlated with
disease activity. Importantly, Th17 cells can promote inflammation by activating FLSs and
macrophages [43]. Th17 cells are an important source of IL-17, a cytokine implicated in RA
progression. It has been demonstrated that IL-17 induces mitochondrial dysfunction in
RA-FLSs and inhibits apoptosis. Therefore, Th17 cells and IL-17 could contribute to the
tumor-like features of rheumatoid FLSs [44]. Overall, cells use EVs to promote inflammation
through various methods. These structures can express inflammatory molecules that
directly induce inflammatory responses. Furthermore, activated cells secrete vesicles to
induce cellular migration or differentiation.

2.4. Bone Degeneration

The chronic inflammation of RA is associated with an imbalance between bone for-
mation and loss. This impairment is caused by the stimulation of osteoclasts through the
binding of the receptor activator of NF-κB ligand (RANKL) to its receptor RANK, which
is expressed on the precursor of osteoclasts [45]. EVs seem to be broadly used to regulate
the differentiation of cells involved in the bone homeostasis. Interestingly, Uenaka et al.
suggested that even osteoblasts can secrete vesicles that promote RANKL expression and
osteoclastogenesis [46].

In RA, EVs seem to take part in the bone degradation by the modification of osteo-
clast/osteoblast balance. Exosomes isolated from RA-FLS co-cultured with osteoblasts
suppress their differentiation [47]. An in vitro experiment showed that FLS stimulated with
TNF secrete exosomal miR-221-3p, which can suppress osteoblast differentiation through
the targeting of Dickkopf2 (Dkk2) [48]. Dkk2 has been previously found to mediate os-
teoblast differentiation. Despite being a Wnt-signaling antagonist, the regulatory role in
osteoblast differentiation could be Wnt-independent [49]. Nonetheless, the role of Dkk2
in osteogenesis might be more complex, as Zhou et al. demonstrated that the knockdown
of Dkk2 enhances osteoblast proliferation [50]. MiR-221-3p is upregulated in RA-FLS
compared to healthy controls. Its expression is positively correlated with the urokinase-
type plasminogen activator receptor (uPAR), a molecule which has been associated with
RA-related inflammation and joint damage [51,52]. Moreover, miR-221-3p takes part in the
regulation of macrophage polarization and promotes the secretion of pro-inflammatory
molecules from M2 macrophages through the JAK3/STAT3 pathway [53]. In addition,
ncRNA in EVs can determine the differentiation of osteoclasts. For instance, an elevated
expression of miR-574-5p is detected in RA-FLS-derived small EVs from ACPA-positive
patients. Mir-574-5p stimulates toll-like receptor (TLR) 7/8 and promotes osteoclast matu-
ration [54]. In addition, EVs derived from the previously mentioned Th17 cells can also
contribute to the RA progression. Cigarette smoke-enriched medium or aryl hydrocarbon
receptor (AhR) agonist promote the expression of miR-132 in Th17-derived EVs, which
then promotes osteoclastogenesis by targeting cyclooxygenase-2 (COX-2) [55]. Despite
regulating osteogenesis, microvesicles secreted by RA-FLS contain enzymes which can
degrade the extracellular matrix (ECM). Precisely, Lo Cicero and colleagues demonstrated
that these structures contain proteases able to degrade aggrecan, which was reversed by
the tissue inhibitor of metalloproteinases (TIMP)-3 [56].
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2.5. Angiogenesis

Physiologically, angiogenesis is an important mechanism taking part in tissue repair
or wound healing. Nevertheless, in chronic inflammatory conditions present in RA, angio-
genesis can facilitate the infiltration of immune cells to affected articular tissues. One of the
key regulators of angiogenesis is the vascular endothelial growth factor (VEGF), a molecule
which has been implicated in the progression of RA [57]. Rheumatoid fibroblasts produce
the inhibitor of DNA binding 1 (id1), the majority of which is located in exosomes. The
transforming growth factor (TGF) is a strong inducer of id1, which has pro-angiogenic
features, thus contributing to the progression of RA [58]. Serum ID-1 demonstrates positive
correlations with clinical and laboratory markers, including ESR, DAS28, MMP-3 and CRP.
Importantly, ID-1 can be citrullinated and thus can contribute to autoimmunity in RA [59].
Moreover, RA-FLS interact with endothelial cells to promote angiogenesis. EVs derived
from RA-FLS stimulate migration of endothelial cells and tube formation. For instance,
EVs derived from RA-FLS and lipopolysaccharide (LPS)-stimulated RA-FLS contain miR-
1972 which then targets p53 and promotes mTOR phosphorylation, which acts in favor
of angiogenesis [60]. Mechanisms involved in the pathogenesis of RA are summarized in
Table 1 and Figure 1.

Table 1. Summary of the processes involved in the pathogenesis of rheumatoid arthritis mediated by
extracellular vesicles.

Mechanism Involved in the
Pathogenesis of RA Role of EVs in RA Progression Reference

Autoimmunity
EVs are associated with the presence of citrullinated proteins

[21,22,26–28]
Immune complexes formed with EVs induce pro-inflammatory responses

Inflammation

EVs contain TNF-αwhich can stimulate NF-κB pathway

[33,34,37,38,42]

Inflammatory environment stimulates the secretion of EVs with ncRNA
that further modulate inflammation

Microparticles derived from synovial fluid promote inflammatory
responses in FLSs

RA-FLS-derived exosomes promote macrophage migration through
pentraxin 3

Exosomes derived from synovial fibroblasts containing miR-424 promote
Th17 T cell differentiation

Bone degradation

Exosomes derived from RA-FLSs suppress osteoblast differentiation

[47,48,55]

TNF-stimulated FLS contain miR-221-3p which inhibits
osteoblast differentiation

Th17 cells stimulated with cigarette smoke-enriched medium or aryl
hydrocarbon receptor agonist promote the secretion of EVs containing

miR-132 that stimulates osteoclastogenesis

Extracellular matrix degradation RA-FLSs secrete microvesicles with proteases that degrade aggrecan [56]

Angiogenesis

RA-FLSs secrete exosomes containing inhibitor of DNA binding 1, which
has pro-angiogenic features

[58,60]
RA-FLS-derived EVs can promote angiogenesis by secreting miR-1972 that

regulates p53/mTOR
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3. The Role of Extracellular Vesicles in Suppressing Rheumatoid Arthritis
3.1. Mesenchymal Stem Cells and Rheumatoid Arthritis

In the previous section, we discussed the pro-inflammatory roles of EVs and their
contribution to the pathogenesis od RA. Nevertheless, studies showed that EVs can also
suppress the disease progression. Interestingly, these structures are being used to facilitate
the immunomodulatory properties of mesenchymal stem cells (MSCs). They are progenitor
cells found in a variety of tissues such as adipose tissue (AD-MSCs), placenta, bone marrow
(BM-MSC), human umbilical cord (UC-MSC) and gingiva (GMSCs) [61]. MSCs affect
other cells by their paracrine properties, which can be mediated by the cargo of EVs.
The immunosuppressive and regenerative properties of MSC-derived EVs have led to
investigations on whether these structures can inhibit the progression of inflammatory
diseases. Furthermore, a number of studies have investigated the genetic modifications of
MSCs, which then secrete EVS with a desired cargo.

To begin with, studies have shown that the application of MSC reduces the disease
biomarkers, as well as inflammation in the animal arthritis models [62,63]. The promising
results of the preclinical studies led to the investigation of MSCs in the therapy of RA in clinical
trials [64,65]. Furthermore, BM-MSCs show modulatory effects on RA-derived T cells, as they
decrease the production of pro-inflammatory cytokines, including TNF-α, IL-17, and IL-6,
among others [66]. Nonetheless, the use of MSCs is associated with certain limitations. High
viability, resistance to apoptosis and the ability to proliferate could be associated with the risk of
tumorigenesis. Moreover, differentiated stem cells might have a higher immunogenicity. The
repeated application of MSCs could be associated with the generation of allo-antibodies [67].
The use of MSC-EVs is an interesting approach for a cell-free therapy. Importantly, the
beneficial role of MSCs in RA can be conferred by EVs [68].

3.2. Mesenchymal Stem-Cell-Derived Extracellular Vesicles and Fibroblast-like Synoviocytes

FLSs play a key role in the progression of RA. As previously mentioned, they have
an invasive character (“tumor-like appearance”) and secrete proteases and pro-inflammatory
cytokines. Furthermore, these cells demonstrate enhanced survival and proliferation [69].
As a result, regulating pathological features of RA-FLSs could become clinically beneficial.
Several studies have shown that MSC-derived EVs can suppress the invasive proper-
ties of RA-FLSs. Firstly, in a study by Bruckner et al., the authors showed that GMSCs
and their exosomes inhibit the invasiveness of RA-FLSs by suppressing the formation of
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a pannus-like structure in vivo [70]. In another study, Wu and colleagues demonstrated
that BM-MSC-derived EVs containing miR-34a reduce proliferation and induce apopto-
sis in RA-FLSs. Moreover, in an in vivo experiment, the introduction of EVs inhibited
inflammation by suppressing IL-6, IL-8 and TNF-α. In addition, the disease progressed
significantly faster in the cohort treated with EVs containing an miR-34a inhibitor. MiR-34a
inhibits cyclin I which activates the ATM/ATR/p53 pathway [71]. Meng et al. prepared ex-
osomes derived from human MSCs that overexpressed miR-124a. The authors co-incubated
MSC-derived EVs and EVs overexpressing miR-124a with RA-FLSs, and observed that the
proliferation was suppressed in both cohorts, but the inhibition was greater in the group
with modified vesicles [72]. MiR-124a has been previously found to be downregulated in
rheumatoid synoviocytes, as compared to OA cells. Moreover, an early study demonstrated
that miR-124a can suppress proliferation through the interaction with cyclin-dependent
kinases (CDKs) [73]. Due to the downregulation of miR-124a in plasma, peripheral blood
mononuclear cells (PBMC) and synovial fluid, as well as negative correlations with clinical
parameters, it has been proposed that miR-124a could be used in the diagnosis process
of RA [74]. In addition, exosomes derived from chondrogenic bone marrow stem cells
contain miR-205-5p, which targets MDM2 and reduces inflammatory responses in FLSs.
In an in vivo study, the application of exo-miR-205-5p suppressed pro-inflammatory cy-
tokines [75]. MiR-320a is another molecule downregulated in the synovial tissues of RA
patients. It mediates the proliferation and apoptosis pathways by interacting with ERK [76].
Importantly, MSCs secrete exosomes with a high expression of miR-320a. Experiments
using MSCs treated with miR-320a mimics demonstrated that exosomes containing this mi-
croRNA could suppress the invasion of RA-FLSs, through the interaction of miR-320a with
CXCL9, a member of the chemokine family upregulated in RA and positively correlated
with DAS-28 [77–79]. However, the role of certain molecules may depend on the cellular
context. A study by Qiu et al. demonstrated that miR-150-5p notably reduced levels of
the suppressor of cytokine signaling 1 (SOCS1) and promoted the growth of RA-FLSs,
which suggested its potential role as a therapeutic target in RA [80]. By contrast, Chen and
colleagues revealed that the expression of miR-150-5p is reduced in the serum and synovial
tissue in patients with RA compared to those with OA. The authors transfected MSCs with
a miR-150-5p plasmid and subsequently isolated MSC-derived vesicles overexpressing this
RNA molecule (Exo-150). These vesicles inhibited the invasion and migration in RA-FLSs.
In addition, investigated structures suppressed tube formation by endothelial cells. After
examining the mechanism of action, the authors demonstrated that miR-150-5p targeted
VEGF and MMP-14 in FLSs. Exo-150 reduced the IL-1β-induced expression of VEGF as
well as that of MMP-14 [81]. Furthermore, the expression of miR-140-3p is decreased in
rheumatoid tissues compared to normal synovium. The molecule targets SIRT3, a protein
which mediates apoptosis and increases cell viability. As a result, the overexpression of
miR-140-3p could play a beneficial role in RA [82]. The transfection of UC-MSC-derived
exosomes with miR-140-3p resulted in the suppression of proliferation and accelerated
apoptosis of RA-FLSs through the inhibition of SGK1. MiR-140-3p overexpressing exosomes
also demonstrated important activity in vivo, as they significantly reduced the severity
score in RA rat models [83]. MiR-21 plays a role in the pathogenesis of malignancies by
mediating the expression of tumor suppressors [84,85]. However, the inhibition of miR-21
in BM-MSC-derived EVs resulted in an elevation of pro-inflammatory cytokines expressed
by mouse FLSs. In this study, miR-21 acted via targeting of the TET1/KLF4 axis. This
promoted the proliferation of FLSs but inhibited the secretion of inflammatory cytokines.
The use of an miR-21 mimic in EVs resulted in decreased inflammation markers, together
with clinical ad histological scores in collagen-induced arthritis (CIA) animal models [86].
Nonetheless, the role of miR-21 in the pathogenesis of autoimmune diseases is less known.
In early rheumatoid and psoriatic arthritis, miR-21-5p was overexpressed compared to
that in healthy controls [87]. On the contrary, the study by Dong et al. showed that the
expression of miR-21 is lower in RA patients than in healthy controls. Moreover, the level
of miR-21 has been correlated with the Th17/Treg ratio [88].



Cells 2023, 12, 2716 8 of 24

Limited studies have evaluated encapsulated lncRNAs or circRNAs and the use
of their properties as sponges of miRNAs. For instance, the expression of miR-143-3p
is upregulated in RA patients. The inhibition of miR-143-3p promoted apoptosis and
inhibited the expression of pro-inflammatory mediators in human RA MH7A synovial
cells. Therefore, it was suggested that miR-143-3p could become a therapeutic target [89].
Subsequently, a study by Su et al. investigated the transfection of MSC-secreting exosomes
with the HAND2-AS1 plasmid, a lncRNA which sponges miR-143-3p. The sssimilation
of these structures by RA-FLSs was associated with inhibited inflammation. In this study,
miR-143-3p was found to target TNFAIP3, an NF-κB inhibitor [90]. However, conflicting
results regarding the role of miR-143-3p in RA have been published. Shen and colleagues
demonstrated that the expression of the abovementioned miRNA is elevated in CD4+ cells
in moderate RA but decreased in severe disease, as compared to healthy controls. Moreover,
the authors observed that miR-143-3p mimics reduced joint inflammatory scores [91].
Furthermore, MSCs-EVs were mixed with curcumin, a natural herbal medicine, which
showed anti-proliferative, anti-inflammatory and pro-apoptotic properties in synovial
cells [92]. Overall, the ability of RA-FLSs to accumulate MSC-derived EVs represent
an exciting method to precisely deliver therapeutic agents that can modulate the activity of
RA-FLSs. The summarized studies demonstrate beneficial effects of molecules inhibiting
RA-FLSs’ invasiveness and proliferation, as well as those that promote apoptosis. Targeting
RA-FLSs is being investigated as potential method of RA treatment [93].

3.3. Mesenchymal Stem-Cell-Derived Extracellular Vesicles and T Cells

In RA, multiple T cell subtypes with the potential to contribute to RA progression
have been identified [94]. Moreover, an imbalance between T cells has been observed, such
as the widely studied Th17/Treg ratio [95,96]. Studies have demonstrated that EVs can
modulate T cell responses as well as their differentiation. The differentiation of T cells
depends on the expression of specific transcription factors, which promote gene patterns
typical for the final subtype. For instance, t-bet is considered as a regulator of Th1 cells,
while the retinoid acid-related orphan receptor (ROR)γt is associated with the Th17 differen-
tiation [97]. Recently, Bolandi et al. demonstrated that MSC-derived exosomes containing
miR-29b can modulate the expression of several major T cell transcription factors, including
RORγt [98]. Small EVs derived from UC-MSCs inhibit synovial hyperplasia and suppress
arthritis in animal models. Importantly, these structures affect T cell differentiation, as
they reduce the proportion of Th17 and promote the Treg cells population [99]. Exosomes
derived from GMSCs also reduce the percentage of Th17 cells and decrease IL-17 levels.
In addition, GMSC-derived exosomes suppressed arthritis in an in vivo experiment [100].
Intriguingly, UC-MSC-EVs primed with pro-inflammatory mediators showed upregu-
lation of FoxP3 in peripheral blood mononuclear cells [101]. As previously mentioned,
encapsulated miR-21 could alleviate RA [86]. Moreover, it could be associated with T cell
differentiation, due to its interaction with STAT3. This inhibits the transformation of Tregs
into the cells secreting IL-17 [102]. Similarly, another study demonstrated that Maresin1,
a macrophage-derived mediator, suppressed Th17 and enhanced the Treg differentiation
by miR-21 overexpression [103].

3.4. Mesenchymal Stem-Cell-Derived Extracellular Vesicles and Macrophages

Macrophages take part in RA progression, as they are the major source of the pro-
inflammatory TNF-α. These cells can present different phenotypes, which is associated
with their role in inflammation. M1 polarization is associated with pro-inflammatory
responses that take part in the pathogenesis of RA [104]. Thus, targeted therapies able
to modify macrophage polarization are of great interest. The use of MSCs could rep-
resent such a strategy. IL-1β-stimulated UC-MSCs promote the anti-inflammatory M2
phenotype and induce apoptosis of the M1 cells [105]. Since MSCs secrete EVs that show
immunomodulatory properties resembling their parental cells, these structures could mod-
ify the macrophage phenotypes as well. Indeed, as demonstrated by Choi and colleagues,
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priming AD-MSCs with RA disease serum resulted in a higher production of exosomes,
which contained elevated TGF-β1 levels and promoted the M2 macrophage phenotype in
the CIA models [106]. IL-4 is a cytokine that promotes the M2 polarization. The use of IL-4
with MSCs has shown benefits in RA animal models [62]. Interestingly, a modification of
small EVs-producing cells to secrete vesicles containing IL-4 promoted the polarization of
macrophage towards M2 and achieved beneficial effects in animal models [107]. Therefore,
the use of EVs to control macrophage polarization seems to be a potential future strategy to
reduce inflammation.

3.5. Extracellular Vesicles and Programmed Cell Death Pathways

Programmed cell death protein 1 (PD-1) is a negative regulator of T cell responses. It
binds to two ligands (PD-L1 and PD-L2), and its activation is associated with tolerance.
In RA, it has been suggested that the PD-1/PD-L1 axis may be dysfunctional, and the
ligand may not be available in the inflamed synovium [108]. Interestingly, the intra-
articular delivery of PD-L1 vectors decreased the histopathological score, as well as pro-
inflammatory cytokine concentrations in CIA mice [109]. Hypothetically, PD-L1 could be
delivered with the use of EVs. MSC-derived EVs modified to express PD-L1 were found to
induce beneficial effects in the model of ulcerative colitis and psoriasis [110]. In addition,
He and colleagues demonstrated that EVs with PD-L1 could reduce the proportion of
Th17 cells and promote Tregs in colitis rat models [111]. Therefore, the results of studies
evaluating PD-L1-EVs suggest that similar structures could be investigated in the treatment
of RA.

4. The Role of Extracellular Vesicles in the Pathogenesis of Osteoarthritis
4.1. Osteoarthritis and Extracellular Vesicles

Osteoarthritis is a whole joint disease with a significant prevalence and burden. The
pathogenesis of OA involves changes in the synovium, articular cartilage, subchondral
bone, muscles and ligaments. Metabolic, mechanical and inflammatory factors contribute
to structural joint impairment [112]. Studies demonstrated the presence of inflammatory
cells in OA tissues and suggested their important roles in the progression of the disease.
Innate immunity is a critical step in the pathogenesis of OA, as injury or mechanical stress
causes the release of damage-associated molecular patterns (DAMPs). These molecules
then interact with pattern recognition receptors (PRRs), such as toll-like receptors (TLRs),
which propagate inflammatory processes [113]. As described previously, cells taking part
in RA pathogenesis can secrete or assimilate EVs to produce the desired cellular effects. In
this section, we will focus on the role of EVs in the progression of OA.

To begin with, the cargo of exosomes derived from synovial fluid depends on the
severity of OA. Exosomes isolated from the synovial fluid of patients with severe disease
contain more cytokines and chemokines than those of patients with mild OA [114]. OA-
EVs demonstrate a great abundance of molecules. Recently, Zhang et al. identified almost
seven hundred peptides in EVs derived from synovial fluid, which correlate with severity
scores. The majority of these peptides were associated with the immune system [115].
Consequently, these structures could be used in the diagnosis process. Similarly to RA, cells
implicated in the pathogenesis of OA secrete EVs to induce particular responses in other
cells. Thus, EVs take part in various processes, such as inflammation, cartilage degeneration
or senescence.

4.2. Cartilage Degeneration and Inflammation

Cartilage damage and low-grade inflammatory responses are important mechanisms
taking place in the pathogenesis of OA [112,116]. These responses can be induced through
EVs. For instance, IL-1β-stimulated synovial fibroblast-derived exosomes induce OA-
associated changes in articular chondrocytes. They decrease the expression of COL2A1
and ACAN, key ECM markers, and promote MMP-13. Furthermore, exosomes from IL-
1β-treated cells promote angiogenesis in human umbilical vein endothelial cells [117].
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In addition, exosomes derived from OA-FLSs demonstrate the elevated expression of
the lncRNA prostate cancer gene expression marker 1 (PCGEM1) versus vesicles from
healthy FLSs. Exosomal lncRNA suppressed the proliferation of chondrocytes, promoted
apoptosis and stimulated cartilage degradation. The mechanism of action of PCGEM1
involves the miR-142-5p/RUNX2 axis [118]. Similarly, the pathological environment can
stimulate chondrocytes to secrete EVs that can enhance disease progression. For instance,
Ni et al. demonstrated that EVs from IL-1β-pre-treated chondrocytes promoted inflam-
matory responses in LPS-primed macrophages through miR-449a-5p [119]. Similarly, the
upregulation of circRNAs circ-BRWD1 and circ_0001846 in exosomes from IL-1β-stimulated
chondrocytes were detected. Silencing these molecules inhibited inflammation and MMP-
13 expression [120,121]. Circ-BRWD1 was found to act through sponging miR-1277 and
promoting TRAF6. A previous study demonstrated that the expression of TRAF6 is ele-
vated in damaged OA cartilage. Targeting TRAF6 with miRNA suppresses NF-κB and
MAPK pathways [122]. In addition, exosomes derived from osteoclasts can also modulate
the activity of chondrocytes. In surgery-induced OA mice models, these cells could transfer
miRNA to chondrocytes to reduce their resistance to ECM damage and reduce the expres-
sion of tissue inhibitors of metalloproteinases (TIMPs) [123]. Furthermore, sclerotic OA
subchondral bone osteoblasts secrete exosomes containing miR-210-5p, which are assimi-
lated by articular chondrocytes. Cartilage cells transfected with miR-210-5p mimics show
an elevated expression of hypertrophic markers, such as MMP-13 or ADAMTS5, as well as
the decreased expression of chondrogenic factors, namely SOX9, COL2 or ACAN [124].

Liu and colleagues found elevated concentrations of circ-PRKCH in serum exosomes
of patients with OA. Silencing circRNA reduced inflammatory IL-6 and TNFα. CircPRKCH
positively regulated ADAMTS5 expression through the sponging of miR-502-5p. Exosomes
extracted from IL-1β-stimulated chondrocytes promoted the expression of circPRKCH
in other chondrocytes, which confirms the ability of articular cells to transfer this RNA
molecule using EVs [125]. Similarly, another report demonstrated the upregulated lncRNA
plasmacytoma variant translocation 1 (lncPVT1) expression in exosomes from the serum of
OA patients compared to healthy controls. The suppression of lncRNA reduced the LPS-
induced inflammatory responses in chondrocytes. LncPVT1 was found to exert its activity
through the miR-93-5p/HMGB1 axis. HMGB1 is a member of DAMPs, which induces
inflammation through NF-κB activation [126]. Taken together, these lines of evidence
indicate that multiple RNA molecules have been found to mediate inflammation and
cartilage degeneration in OA. Furthermore, these agents can be loaded and secreted in EVs
to induce appropriate activities in other cells. Some vesicles can be detected in the blood,
which could become beneficial in the diagnosis process.

4.3. Cartilage Calcification

OA pathogenesis is associated with mineralization disturbances and cartilage calcifi-
cation [127]. Studies suggest that EVs can contribute to the calcification process. Liu et al.
found that mimicking abnormal biomechanics present in the OA of temporomandibular
joint (TMJ) promotes the development of calcified nodules and the expression of CD63
in primary condylar chondrocytes. The suppression of exosome formation decreased the
number of calcified nodules. Importantly, in an in vivo experiment, the application of
an exosome inhibitor suppressed cartilage calcification in the TMJs of rat models after
a unilateral anterior crossbite stimulation [128]. Therefore, the major finding is that the
suppression of exosome formation inhibited cartilage calcification. Thus, cells can use EVs
to modulate cartilage impairment in different mechanisms. Interestingly, a disturbance of
autophagy could promote the calcification associated with EVs. Autophagy involves recy-
cling of organelles and intracellular molecules, which is important for energy homeostasis,
and takes part in the response to stress or injury. It has been considered that autophagy
plays a chondroprotective role and thus could suppress OA progression. Nevertheless, the
associations between autophagy and apoptosis make the relationship with the disease more
complex [129]. Recently, impaired autophagy flux has been associated with a secretion
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of LC3+ calcified EVs, structures that take part in cartilage calcification [130]. Since the
inhibitors of autophagy stimulate the progression of OA [131], EVs could represent one of
the potential pathogenetic mechanisms.

4.4. Cell Death Pathways

Promoting the viability of chondrocytes represents one of possible strategies inves-
tigated in the treatment of OA. The pathogenesis of the disease is associated with chon-
drocyte death. Various cellular death processes have been identified. For instance, fer-
roptosis is an iron-dependent mechanism that has been identified in the pathogenesis of
OA [132]. Chondrocytes under inflammation or iron overload enter the process of fer-
roptosis. Moreover, the induction of ferroptosis in chondrocytes results in an elevated
and decreased expression of MMP-13 and collagen type II, respectively [133]. Kong et al.
showed that OA-FLS can promote ferroptosis and inflammation in chondrocytes by de-
livering miR-19b-3p [134]. Similarly, EVs have been found to take part in the process
of pyroptosis, a form of programmed cell death which involves the activation of inflam-
masomes and caspases. This process can contribute to cartilage degeneration, synovial
inflammation and pain [135]. Ebata et al. demonstrated that the stimulation of chon-
drocytes with EVs derived from LPS-treated macrophages resulted in the induction of
inflammatory and catabolic markers. Importantly, these vesicles promoted the expression
of pyroptosis-related molecules in chondrocytes, such as Nlrp3, Il18, Il1β and Gsmdm [136].
Thus, EVs can be secreted to induce death in other cells and then promote the progression
of OA.

4.5. Senescence

Senescence is associated with morphological alterations, the accumulation of stress
molecules and vacuolization. These alterations lead to the inhibition of growth and re-
sistance to apoptosis, as well as to the production of senescence-associated secretory
phenotypes (SASPs) which are inflammatory mediators and growth factors [137]. Cul-
turing chondrocytes with a senescent cell-conditioned medium decreases the production
of proteoglycan. The observed induction of senescence could result from the activity of
EVs. Vesicles derived from senescent chondrocytes induced a similar phenotype in non-
senescent cells. These results were found to occur through the transmission of miRNAs, as
vesicles secreted by senescent cells contained less miR-140-3p and more miR-34a-5p than
EVs from non-senescent cells [138]. Mir-34a-5p has been correlated with OA progression.
Firstly, its expression is elevated in the tissues and plasma of patients compared to controls.
Moreover, the treatment of human chondrocytes with mir-34a-5p mimics reduced the ex-
pression of COL2A1 and ACAN [139]. Therefore, OA chondrocytes can induce senescence
in non-senescent cartilage cells through the transmission of miRNA, which decreases the
production of ECM.

Connexins (Cx) form hemichannels and gap junctions to mediate cellular communi-
cation. Importantly, they can take part in the process of senescence induction. Firstly, the
Cx43 expression is upregulated in OA, and its downregulation decreases the expression of
pro-inflammatory mediators and MMPs [140]. Intriguingly, Cx43 can be expressed on the
surface of EVs and form functional channels with targets cells to facilitate the release of
cargo. The presence of Cx43 has been found on EVs derived from various cells, such as
endothelial cells and retinal epithelial cells [141]. Valera-Eirin et al. found that small EVs
derived from OA-patients were enriched in Cx43. The incubation of chondrocytes with
EV-Cx43 lead to the downregulation of COL2A1 and ACAN, and promoted ERK signaling.
Vesicles with Cx43 contained more proteins related to catabolic cell cycle processes, stress
responses and the immune system. Importantly, EVs from OA-chondrocytes induced the
expression of Cx43 and stimulated pro-inflammatory behaviors in bone and synovial cells.
The authors observed that OA-chondrocytes can induce senescence in target cells through
small EVs enriched with Cx43 [142]. Table 2 contains a summary of mechanisms involving
EVs that take part in the OA pathogenesis.
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Table 2. Summary of the processes involved in the pathogenesis of osteoarthritis mediated by
extracellular vesicles.

Mechanism Involved in the
Pathogenesis of OA Role of EVs in OA Progression Reference

Inflammation

Exosomes derived from IL-1β-stimulated synovial fibroblasts
promoted TNFα expression in chondrocytes.

[117,119,120,126]

EVs derived from IL-1β-stimulated chondrocytes further promoted
IL-1β production in macrophages.

Silencing circ-BRWD1, which can be secreted in exosomes by
chondrocytes, reduced the expression of IL-6 and IL-8.

Chondrocyte stimulation with LPS promotes the secretion of exosomal
lncRNA PVT1, which plays a role in inflammatory responses.

Cartilage Degradation

Exosomes derived from IL-1β-stimulated synovial fibroblasts
promoted MMP-13 and suppressed ACAN expression.

[117,118,120,121,
123,125,126]

LncRNA PCGEM1 present in exosomes derived from OA-FLSs
promoted chondrocyte apoptosis. Furthermore, it promoted MMP-13

and inhibited COL2A1 and Aggrecan expression in chondrocytes.

IL-1β-stimulated chondrocytes secrete exosomes with elevated
circ-BRWD1 and circ_0001846 expression, which take part in

cartilage degradation.

Osteoclast secrete exosomes containing miRNA that can suppress
tissue inhibitors of metalloproteinase (TIMPs) in chondrocytes.

IL-1β-stimulated chondrocytes can transfer circ-PRKCH in exosomes,
which can modulate ADAMTS5 expression.

Chondrocyte stimulation with LPS promotes the secretion of exosomal
lncRNA PVT1, PVT1 knockdown reduced MMP-13 and

promoted aggrecan.

Cartilage Calcification EVs mediate the process of cartilage calcification, observed in the
pathogenesis of OA. [128,130]

Cell death

Exosomes derived from OA-FLSs promote ferroptosis in
IL-1β-stimulated chondrocytes.

[134,136]
EVs derived from LPS-stimulated macrophages promote pyroptosis

in chondrocytes.

Senescence
EVs derived from senescent cells induce senescence in chondrocytes.

[138,142]
EVs enriched with Cx43 promote senescent state in other cells.

5. The Role of Extracellular Vesicles in Suppressing Osteoarthritis
5.1. Mesenchymal Stem Cells and Osteoarthritis

As previously mentioned, MSCs possess immunomodulatory and regenerative fea-
tures which have been explored in OA. The use of these cells has been examined clinically.
A phase IIb clinical trial investigated the intra-articular treatment with the autologous
AD-MSCs in OA patients. The use of MSCs was associated with significantly improved
Western Ontario and McMaster Universities Osteoarthritis index score after 6 months
of treatment [143]. Recently, positive effects of MSCs have been observed in a phase
III trial [144].

5.2. Mesenchymal Stem-Cell-Derived Extracellular Vesicles and Chondrocytes

Dysregulated chondrocytes represent the major cells affected by and involved in OA.
Therefore, suppressing the catabolic and senescent phenotype of chondrocytes could be of
great interest. EVs derived from MSCs may represent an interesting strategy to achieve this
goal. Stem-cell-derived EVs can promote chondrocyte proliferation and migration. Thus,
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these structures can suppress the negative effects induced by inflammatory conditions [145].
The cargo of MSCs-EVs includes immunomodulatory molecules that can inhibit chondro-
cyte senescence, such as lncRNA MEG3 [146]. A previous study demonstrated that MEG3
is downregulated in OA chondrocytes, whereas its forced expression stimulated ECM
components through the miR-361-5p/FOXO1 pathway [147]. Furthermore, AD-MSC-EVs
can enhance chondrogenesis by promoting the expression of chondrogenic markers that
stimulate chondrocyte proliferation and differentiation [148]. Li et al. found that EVs
secreted by adipose stem cells can exert their immunosuppressing role by transferring
miR-338-3p, a molecule that targeted the runt-related transcription factor 2 (Runx2) [149].
Runx2 is considered as a significant molecule in the pathogenesis of OA, as its expression
is elevated in OA mouse models. Furthermore, it has been associated with catabolic fac-
tors [150]. Nonetheless, its role in OA progression might be more complex. A recent study
demonstrated that the heterozygous knockdown of Runx2 suppressed OA progression,
but homozygous silencing promoted the disease. However, MMP-13 transcription was
suppressed in both models [151]. Tofiño-Vian and colleagues also showed that EVs se-
creted by AD-MSCs suppressed the pro-inflammatory mediators stimulated by IL-1β in
chondrocytes. Interestingly, the authors also observed that the expression of annexin 1 is
elevated in EVs. The highest expression has been noted in microvesicles. The suppression
of annexin 1 reduced the beneficial effects of microvesicles on the IL-6 and collagen II
expression [152]. Importantly, vesicles secreted by MSCs suppress oxidative stress in chon-
drocytes. Guillen et al. demonstrated that microvesicles derived from AD-MSCs induced
the expression of peroxiredoxin 6, an agent that can protect from oxidative injury and has
been associated with the suppression of inflammation [153].

Interestingly, the pretreatment of synovial MSC-derived exosomes with LPS further
improved the beneficial effects of EVs. LPS stimulation induced alterations in the expres-
sion patterns of miRNAs. In a study by Duan et al., 64 and 18 miRNA molecules were
downregulated and upregulated, respectively. Among RNA molecules, let-7b was found to
target ADAMTS5 and suppress cartilage degradation [154]. Similarly, EVs derived from
BM-MSCs under hypoxic conditions also further improved the efficacy of these structures.
Again, the altered environment significantly changed the expression of 29 miRNAs [155].
Furthermore, BM-MSCs cultured with curcumin produce EVs, which also improved the
disease-suppressing properties of primary vesicles [156].

MSC-derived vesicles have been modified to include the bone morphogenic protein
(BMP), which plays a role in cartilage repair and is considered chondroprotective. Impor-
tantly, recombinant BMPs are unstable, and studies have searched for an efficient delivery
system [157]. The transfection of synovial MSCs with BMP-7 plasmid promoted the secre-
tion of BMP-7-overexpressing exosomes. Importantly, synovial MSC-derived exosomes
enhanced M2 macrophage polarization, which was further evident in the case of vesicles
with BMP-7. In addition, the modified structures promoted chondrocyte proliferation and
inhibited apoptosis. Importantly, MSC-exosomes and BMP-7-vesicles significantly reduced
the histological score in vivo [158]. Another important protein in OA is matrilin-3 (MATN3),
a member of the ECM adaptor family. Mutations in MATN3 have been associated with
an increased risk of OA [159]. Synovial MSC-derived exosomes with MATN3 improved
OA scores in mice. Long et al. identified that MATN3 interacted with IL-17A to prevent the
activation of its downstream signaling (PI3K pathway) [160].

5.3. Extracellular Vesicles Derived from Other Cells

The above-mentioned evidence highlights the beneficial role of MSC-derived EVs.
Nevertheless, EVs secreted by different cells have also been found to have immunomodula-
tory properties. For instance, platelet-derived exosomes demonstrated significant positive
effects on chondrocytes, as well as in OA animal models [161]. Mir-126-3p has been found
to suppress chondrocyte inflammation and induce proliferation. After the transfection of
the miR-126-3p plasmid into synovial fibroblasts, this molecule was loaded and secreted in
exosomes. Similarly to the direct chondrocyte transfection, the treatment with miR-125-3p
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containing exosomes reduced inflammation in chondrocytes. Moreover, the prepared
exosomes were associated with clinical improvements in an in vivo experiment [162]. Fur-
thermore, exosomes derived from FLSs transfected with lncRNA H19 can be absorbed by
chondrocytes. Importantly, this lncRNA could diminish the negative effect of IL-1β on
chondrocytes. Namely, the treatment with exosomes promoted COL2A1 and ACAN, as
well as reduced the MMP-13 and ADAMTS5 expression. The molecule has been found to
act through the miR-106b-5p/TIMP2 axis [163]. As previously mentioned, TIMP2 takes
part in the resistance to extracellular matrix damage. Importantly, reduction in its levels
has been correlated with OA in mice [164]. Moreover, H19 has been found in exosomes
secreted by UC-MSCs to modulate pain reactions [165], which demonstrated the broad
interaction networks of ncRNA and their contribution to various cellular processes.

Importantly, Wang and colleagues point to the importance of a healthy synovium
in OA. A co-culture of EVs derived from healthy FLSs with chondrocytes resulted in the
enhanced expression of ECM markers, together with reduced pro-inflammatory cytokines.
These effects could be mediated by miR-150-3p which inhibited the Trim14/NF-κB/IFNβ
pathway [166]. These observations seem to be confirmed by a recent study, in which the
authors treated OA mice with exosomes derived from FLSs extracted from neonatal mice.
Clinical arthritis scores declined after the treatment. Moreover, the vesicles could carry miR-
25-3p to inhibit pyroptosis [167]. Additionally, the downregulation of SOX9 has been found
in OA tissues. Promoting the expression of this transcription factor reduces the production
of TNF-α and inhibits apoptosis in IL-1β-treated chondrocytes. Moreover, introducing the
SOX9 lentivirus vector into the surgically induced OA animal models improved clinical
scores (Osteoarthritis Research Society International and the synovitis scores) [168]. SOX9
mediates chondrogenesis and regulates the expression of ECM molecules [169]. Intriguingly,
SOX9 could be transported from M2 macrophages to chondrocytes through exosomes,
which could support the functions of the latter cells [170].

5.4. Extracellular Vesicles Containing Mitochondria

Impaired mitochondria have been suggested to play a role in OA progression. Various
pathologies of these organelles have been observed, which could contribute to the disease
progression. These disruptions include impairment of the mitochondrial respiratory chain, ex-
cessive generation of reactive oxygen species (ROS) and mitochondrial DNA damage, among
others [171]. Importantly, EVs have been found to contain mitochondrial proteins, mitochon-
drial DNA or even functioning organelles, and their role have been investigated in a number
of diseases [172]. Intriguingly, vesicles containing mitochondria can be assimilated by chon-
drocytes [173]. Yu et al. showed that BM-MSC-derived EVs could stimulate mitochondrial
function in chondrocytes. The authors showed that microvesicles contained mitochondria,
and these structures could ameliorate the progression of OA. Moreover, beneficial effects
were observed when OA models were treated with BM-MSC-derived mitochondria [174].
Overall, the delivery of functioning mitochondria to chondrocytes is an interesting approach
that seems to induce beneficial effects and should be further explored.

5.5. Extracellular Vesicles and Osteoarthritis Pain

Pain is the hallmark symptom of OA. Inflammation and structural impairment of
the elements of the joint contribute to pain development. Multiple ion channels and
neuropeptides have been found to take part in the transduction of nociception. Furthermore,
neuropathic mechanisms are also considered to play a role in OA pain processes [175].
Studies have demonstrated that EVs can suppress pain-related signaling.

Nerve growth factor (NGF) is a significant mediator of pain transduction that can
be secreted by various cells involved in OA pathogenesis. Surprisingly, an in vivo study
showed that silencing NGF provided pain relief but seemed to promote disease progres-
sion [176]. Interestingly, MSC-derived EVs have been found to suppress excitability in the
dorsal root ganglion (DRG) neuron stimulated with NGF, which could be associated with
the inhibition of pain reactions in mice [177].
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Moreover, studies have demonstrated that the calcitonin gene-related peptide (CGRP)
takes part in pain transduction in OA. Its expression is elevated in OA patients and has
been correlated with somatic pain intensity [178]. He et al. demonstrated that BM-MSC-
derived exosomes reduced CGRP levels in rat OA DRG tissue [145]. Furthermore, Lu
and colleagues have developed exosomes loaded with miR-204. Intra-articular injections
of those structures provided pain relief in animal OA models. The authors identified
that miR-204 could achieve pain suppression through inhibition of the SP1- LDL receptor-
related protein 1 (LRP1) axis [179]. Overall, MSC-derived EVs have been demonstrated to
positively regulate pain responses in OA. Figure 2 summarizes major positive roles of EVs
secreted by MSCs in OA progression.
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5.6. Boosting the Efficacy of Extracellular Vesicles

Recently, a trend towards precision therapy in medicine can be observed. Importantly,
EVs can be modified to precisely deliver cargo that can suppress the disease. For instance,
Liu and colleagues identified miR-223 as a potential agent in UC-MSCs-EVs which sup-
presses the NLRP3 inflammasome. Subsequently, EVs were engineered to include the
collagen II binding peptide and overexpress miR-223. These structures amplified the bene-
ficial effects of UC-MSCs-EVs. Thus, these structures contained a precise therapeutic agent
and were equipped with proteins which allowed for precise targeting [180]. Moreover,
a modification of exosomes to include the chondrocyte-affinity peptide has recently been
found to further improve the efficacy of vesicles derived from subcutaneous fat MSCs
loaded with miR-199a-3p [181]. In addition, EVs can be modified to alter their surface
charge, which can improve their intra-articular bioavailability [182].

5.7. Apoptotic Bodies

Apoptosis is a programmed cell death mechanism during which cells release large
ABs. Interestingly, these structures can be functional and modulate the number of cel-
lular processes [183]. Importantly, macrophage reprogramming can involve ABs. The
introduction of M2-derived ABs significantly protected bone loss in the OA mice model.
M2-ABs have been found to reprogram M1 macrophages into the M2 subtype, which
was associated with a reduced expression of pro-inflammatory cytokines. These effects
were found to occur through the presence of miR-21-5p [184]. Furthermore, ABs from
MSCs have been found to induce the M2 macrophage, which has been investigated in the
context of wound healing [185]. Such MSC-derived structures can influence macrophage
polarization through transporting miR-21-5p as well [186]. Moreover, studies demonstrated
the beneficial properties of MSC-derived ABs in various models and diseases [187].
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6. Conclusions

Overall, the aim of this review was to describe the broad roles of EVs in the patho-
genesis and treatment of RA and OA. Cells implicated in the progression of these diseases
can communicate through EVs and induce various responses. In RA, these vesicles can
regulate autoimmunity and inflammed bone impairment, as well as T cell differentiation.
Nevertheless, these vesicles can also carry immunomodulatory cargo, which suppresses
inflammation and the proliferation of RA-FLSs. Similarly, EVs have been found to act
in both ways to promote or suppress OA. Cells can modulate each other’s activities by
transporting ncRNA molecules, which mediate gene expression. Interestingly, these RNA
molecules form a broad machinery of molecular interactions, which can impact various
signaling pathways. EVs can be modified to overexpress a required molecule or contain
a binding protein to improve bioavailability. The use of EVs can be an interesting continua-
tion of ncRNA studies, as molecules downregulated in the RA/OA tissues could be loaded
into exosomes and delivered to the affected joint. Furthermore, monitoring the content
of EVs might help in predicting the treatment response [188]. Current evidence suggests
that MSCs and MSC-derived EVs play an enormous role in cartilage regeneration and the
suppression of inflammation. Future studies should investigate the potential efficacy and
safety of this cell-free therapy. Importantly, EVs can also be used as carriers for already
known medicines. For instance, encapsulating dexamethasone in macrophage-derived
and modified exosomes showed significant clinical activity in the RA mice model [189].
MSC-derived EVs are being examined as therapeutic agents in other diseases [190,191].
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