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Abstract: The study of functions, mechanisms of generation, and pathways of movement of cerebral
fluids has a long history, but the last decade has been especially productive. The proposed glymphatic
hypothesis, which suggests a mechanism of the brain waste removal system (BWRS), caused an
active discussion on both the criticism of some of the perspectives and our intensive study of new
experimental facts. It was especially found that the intensity of the metabolite clearance changes
significantly during the transition between sleep and wakefulness. Interestingly, at the cellular level,
a number of aspects of this problem have been focused on, such as astrocytes–glial cells, which,
over the past two decades, have been recognized as equal partners of neurons and perform many
important functions. In particular, an important role was assigned to astrocytes within the framework
of the glymphatic hypothesis. In this review, we return to the “astrocytocentric” view of the BWRS
function and the explanation of its activation during sleep from the viewpoint of new findings over
the last decade. Our main conclusion is that the BWRS’s action may be analyzed both at the systemic
(whole-brain) and at the local (cellular) level. The local level means here that the neuro-glial-vascular
unit can also be regarded as the smallest functional unit of sleep, and therefore, the smallest functional
unit of the BWRS.

Keywords: astrocytes; brain waste removal system; neuro-glial-vascular unit; local sleep; noradrenaline

1. Introduction

Sleep occurs in every animal that has a nervous system, including humans, birds,
fish, flies, and even worms [1]. “According to a simple behavioral definition, sleep is a
reversible behavioral state of perceptual disengagement from and unresponsiveness to
the environment” [2]. Humans spend about one-third of their lives sleeping. If we do
not get enough sleep, the effects of a number of processes increase, e.g., inflammation,
accumulation of protein waste, excitotoxicity, etc., which rapidly deteriorate the brain.
Indeed, chronic sleep loss is accompanied by astrocytic phagocytosis of synaptic elements
leading to microglia activation [3,4]. Even one night without sleep leads to the accumulation
of amyloid-beta (Aβ) in the brain tissue of healthy people [5,6]. Obviously, sleep is necessary
for the health of the central nervous system protecting against the development of various
diseases, including brain pathology [7]. Therefore, insufficient sleep (6 h or less per night)
over 25 years was accompanied by the development of dementia in a large group of
8000 volunteers aged 50–60 years [8].

However, the mechanisms underlying the restorative function of sleep remain un-
known. A widespread belief is that the main function of sleep is to recharge our energy.
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Many theories explaining the restorative properties of sleep have been proposed [1,9,10].
Since the pioneering work [11], a number of studies have contributed to the understanding
of the biological role of sleep in removing metabolites and toxins from the central nervous
system through the brain waste removal system (BWRS) [12–18]. The relationship between
BWRS and sleep was first described in [11], where the brain influx of CSF tracers in mice
during sleep, awake, and under anesthesia was measured [11].

Alzheimer’s disease (AD) is accompanied by both poor sleep and an increased Aβ
deposition in the brain [19]. Ref. [11] clearly demonstrated a 95% reduction in the Aβ
removal from the brain during wakefulness and the activation of this process during deep
sleep due to a 60% increase in the extracellular space (ECS) in parenchyma. It is important
to note that the Aβ content in the cerebral spinal fluid (CSF) is higher at night before sleep
and lower in the morning after sleep [5,11]. Currently, sleep is considered a biomarker
and a promising therapeutic target for AD [20–26]. There is common agreement that sleep
accelerates a removal of Aβ from the brain [5,11], while the underlying physiological
mechanisms are still under study. In [27], it was confirmed that sleep causes an increase in
the BWRS activity arising from the expansion of the ECS. In [12], it was reported that deep
sleep is accompanied by high oscillations of CSF in the human brain. In [28], it was found
that both CSF distribution over the brain and the expressions of astrocytic aquaporins
AQP4 are under circadian control. It is being actively discussed whether the nighttime
activation of the BWRS is a main driving factor for the removal of metabolic wastes from
the sleeping brain [12–18,27].

In our experiments (data not published), using multiphoton microscopy for real-time
monitoring of the BWRS in non-anesthetized mice under EEG control with further ex vivo
confocal imaging of the whole brain (Figure 1a), we found a significant increase in the
perivascular spaces (PVSs) during deep sleep (Figure 1b–e). To analyze the activation of the
BWRS during deep sleep, 2% fluorescein isothiocyanate-dextran 70 kDa (FITCD, green) was
automatically injected into the right lateral ventricle via a chronically implanted polyethy-
lene catheter in the time of monitoring of delta band EEG activity. The cerebral vessels were
filled with 1% Evans Blue dye (EBD, red), which was injected via a polyethylene catheter
implanted into the femoral vein. Figure 1d,e (ex vivo data) clearly demonstrates that the
intensity of the fluorescent signal from FITCD was higher in the sleeping vs. waking
brain. The brighter signal from FITCD during sleep can be explained by the expansion of
the space around the cerebral vessels (in vivo data, Figure 1b,c). Figure 1f illustrates the
hypothesis that during deep sleep the size of PVSs and the volume of interstitial fluids
increase, promoting the removal of metabolites from brain tissues. During wakefulness,
the size of PVSs decreases and the exchange between fluids and brain tissues is suppressed.

The figure and discussion above strongly suggest that sleep-related changes in the
clearance of harmful metabolites are clearly expressed at the level of small cellular structures.
However, the specific cellular mechanisms and signaling pathways underlying the sleep-
mediated changes in the BWRS activity and brain fluid movement remain poorly understood.

Astrocytes regulate many important mechanisms of neural homeostasis. Recently,
the role of astrocytes in sleep regulation has become apparent due to significant advances
in brain imaging, the use of transgenic mice, and optogenetics. These new data show that
astrocytes change their activity across the sleep–wake cycle and may control sleep need via
changes in intracellular signaling pathways [29]. Astrocytes also modulate sleep architecture
through the secretion of sleep-inducing molecules [29]. Indeed, several in vivo studies
clearly demonstrate that sleep quality is modulated by the astroglial transport of signaling
molecules [30–32]. The astroglial intracellular calcium-dependent signaling pathways, as well
as cyclic adenosine monophosphate, regulate sleep time [33–36]. Both ex vivo and in vivo
studies revealed that the astroglial calcium activity encodes sleep need [33,37].
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Figure 1. The changes in activity of the brain waste removal system (BWRS) during sleep and
wakefulness: (a) photo of real-time multiphoton monitoring of BWRS in non-anesthetized mouse
under EEG control. (b,c) Representative images of real-time multiphoton microscopy of fluorescein
isothiocyanate-dextran (FITCD, green) distribution in perivascular spaces (PVSs) surrounding the
cerebral vessels filled with Evans Blue dye (EBD, red) after its injection into the right lateral ventricle
in awake (b) and sleeping (c) male mouse under EEG control. During wakefulness, PVSs are not
filled with FITCD and appear empty. However, during sleep, PVSs are completely filled with FITCD.
(d,e) Representative ex vivo confocal images of FITCD distribution in the brain after its injection into
the right lateral ventricle in awake (d) and sleeping (e) mice. The intensity of fluorescent signal from
FITCD is higher in sleeping vs. waking brain. (f) Schematic illustration of changes in PVS size during
wakefulness and sleep.
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In this state-of-the-art review, we discuss these findings in more detail as well as
further interactions between astrocytes and sleep. In doing so, we follow an “astrocyto-
centric” view of BWRS research, with an emphasis on the mechanisms associated with
its activation during sleep. Thus, in Section 2, we discuss experimental data and estab-
lished mechanisms of the influence of astrocytes on sleep. In Section 3, we highlight the
concept of a neurovascular unit, which recently was suggested to be extended to an “active
milieu”, which includes in a functional unit not only the neuron, astrocyte, and blood
vessel, but also tripartite synapses and intercellular spaces. There is evidence that such
an active milieu can be regarded as a functional unit of the sleep–wake transition that, in
turn, affects the clearance of harmful metabolites. In Section 4, we discuss mechanisms of
astrocyte volume regulation. In particular, we highlight that swelling and contraction of
astrocytes within the neurogliavascular unit drive BWRS activity. In Section 5, we discuss
control signals and mechanisms that provide a change in the astrocyte volume during the
transition between sleep and wakefulness. In Section 6, we describe the physical aspects
of BWRS functions and various mechanisms that can lead to astrocyte shrinking during
sleep. In Section 7, we discuss the limitations of research on the review topic related to the
possible contribution of sexual dimorphism. Finally, in Section 8 (Conclusions), we present
a condensed formulation of the outcome of our consideration.

2. Mechanisms of Modulation of Sleep by Astrocytes

Astrocytes are found in various areas of the brain and therefore can affect sleep globally,
through arousal centers, and locally, at the cell-to-cell communication level [31,38–40]. It
has been repeatedly shown that the activity of astrocytes is significantly different in the
states of sleep and wakefulness. Although all these changes should be regarded as different
features of one complex system, below we group the results according to the signaling
molecules that were measured.

2.1. Astroglial Calcium

Calcium in the astrocyte cytosol plays the role of a universal messenger, responding
to various stimuli and triggering a variety of response mechanisms [41–44]. The review
by [33] collected evidence that astrocytic calcium changes dynamically with sleep, wake,
and sleep loss, and encodes changes in sleep needs. It was also shown that the synchrony of
calcium events in the astrocyte network decreases during sleep compared to wakefulness. It
was noted that the calcium activity of astrocytes is reduced during sleep compared to wake-
fulness, and its increase precedes transitions from sleep to wakefulness [35]. The authors
of [45] emphasize the difference in spatiotemporal patterns of astrocytic calcium activity in
the murine barrel cortex. While sleep is characterized by low-intensity prolonged elevations
of calcium, widespread short-lasting calcium spikes are typical for wakefulness. Large-
scale calcium waves in aroused mice are inositol triphosphate (IP3)-dependent, evoked
mostly by the sensory input, and contributing to reliable sensory transmission. Localized
calcium spikes appeared to be IP3-independent and associated with decreased extracellular
potassium, hyperpolarization of the neurons, and suppression of sensory transmission.

It has now been established that astrocyte dysfunction, in general, and disruption in
their calcium dynamics, in particular, are reliably associated with AD [46–50] or cognitive
impairment [51,52].

Calcium can, therefore, be regarded as a measure of the level of astrocyte activity and,
to a large extent, as an indicator of the current state (sleep or wakefulness) of the entire
organism—both in health and in disease.

2.2. Adenosine-Mediated Pathway

Currently, there is a consensus that astrocytes are actively involved in the regula-
tion of the sleep–wake cycle through gliotransmission. The most studied and confirmed
mechanism is based on adenosine as a neurotransmitter.
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The work [53] showed that astrocytes can release ATP both in tonic mode, which leads
to a permanent suppression of synaptic transmission, and in the form of phasic release,
which modulates synaptic plasticity when activity-dependent recruitment of astrocytes oc-
curs. It was demonstrated that glia-derived adenosine is responsible for activity-dependent
heterosynaptic depression at excitatory synapses. In [31], the authors genetically inhibited
the release of gliotransmitters to examine whether astrocytes play a significant role in
sleep regulation. Inhibition of gliotransmission was shown to attenuate sleep pressure
accumulation, as assessed by measuring EEG slow wave activity during non-rapid eye
movement (NREM) sleep, and prevent cognitive impairment associated with sleep loss. It
was also shown that the impairment of vesicular gliotransmission attenuates cortical slow
oscillations [54]. The reduction in slow oscillations was confirmed by per-moment EEG
recordings in freely behaving mice during natural sleep [32].

In the review [55], the authors discuss the contribution of astrocytes in the context of
conceptual models of sleep generation and functioning, which have historically focused on
neural mechanisms. They conclude that there are two different aspects of gliotransmission
that must be taken into account when building hypotheses and models, namely temporal
and spatial complexity of astrocytic neuromodulatory feedback to networks. In [56],
dnSNARE mice were used to check whether astrocytes contribute to the increased sleep
pressure during immune loading and whether this is the result of changes in adenosine
signaling. It has been shown that dnSNARE-mediated gliotransmission is required for the
ability of lipopolysaccharide to increase sleep pressure, as measured by the power of slow-
wave activity during NREM sleep. The study [57] demonstrated that the antidepressant
effect of sleep deprivation depends on the ability of astrocytes to regulate extracellular
adenosine, thereby affecting sleep. The paper [58] discussed various roles of astrocytes
during sleep, including modulation of the sleep homeostasis process through the release of
adenosine, which acts on adenosine receptors A1 and promotes sleep. In [59,60], a specific
mechanism of action of adenosine was proposed, including the interaction of astrocytes
and neurons in the regulation of sleep, in which endogenous adenosine derived from
astrocytes excites sleep-promoting neurons and thus reduces the excitability of neurons in
brain regions associated with awakening.

Taken together, it has been shown that astrocytic adenosine, acting through A1 recep-
tors, contributes to the modulation of sleep pressure. The relative roles of these processes
in sleep homeostasis are essentially unknown.

2.3. Non-Adenosine Pathways

In [61], it was reported that direct stimulation of astrocytes powerfully induces sleep
during the active phase of the sleep–wake cycle. It is hypothesized that optogenetic stimu-
lation of astrocytes released cytokines, which then affected the orexin and MCH neurons
regulating sleep. In [1], it has been indicated that in addition to the adenosine pathway,
astrocytes and oligodendrocytes can have an effect mediated by voltage-dependent external
potassium currents. The authors of [34] examined the astrocytic network, comprising a
cortex-wide syncytium that influences the population-level neuronal activity. They find
that different astrocytic G-protein-coupled receptor (GPCR) signaling pathways separately
control the NREM sleep depth and duration and that astrocytic signaling causes differential
changes in the local and remote cortex. These data support a model in which the cortical
astrocyte network serves as a hub for regulating distinct NREM sleep features. Some evi-
dence suggesting that modulation of sleep–wake behavior by astrocytes can occur without
adenosine signaling can be found in [62]. According to [63], astrocytes detect neuronal
signals released during wakefulness, integrate those signals via changes in intracellular cal-
cium, and, via negative feedback, dampen those waking signals, resulting in an increased
slow-wave activity during NREM and sleep time.

Summarizing the above, astrocytes have the ability to communicate with brain struc-
tures that control sleep. Changes in astrocyte calcium activity are closely associated with
sleep needs—the canonical measure of which is considered to be slow wave activity
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(SWA) [31,64]. This connection depends on the brain region, but in general, can be found in
multiple locations [33,55,62].

The above is quite consistent with the research on “local sleep”, which we discuss in
the next section and allows us to hypothesize that a local increase in sleep need may signal
excessively high neural activity. Indeed, the mechanisms of the astrocyte calcium response
to the synaptic activity of a neuron are well known, for example, [65,66]. The concept of
gliotransmitter signaling, including the discussed adenosine pathway, suggests that this
signal is particularly strong at high levels of neural activity, which, in turn, is associated
with the local depletion of metabolic resources. Therefore, it is reasonable to hypothesize
that such a signaling pathway may be directed toward increasing the need for sleep under
conditions of local neuronal ”overload”.

2.4. Astrocytes Participate in Circadian Timekeeping

Currently, there is increasing evidence that the suprachiasmatic nucleus (SCN) circuit
includes astrocytes as essential time-keepers.

The authors of [67] discuss the involvement of astrocytes in the regulation of the
circadian rhythm. It is argued that SCN circuit-level timekeeping arises from interde-
pendent and mutually supportive astrocytic-neuronal signaling since the somatic genetic
re-programming of intracellular clocks in the SCN astrocytes was capable of remodeling
circadian behavioral rhythms in adult mice. The review article [68] presents the current
view of the SCN circuit and discusses whether astrocytic functions described in other
brain regions could help explain those well- and not-so-well-known features of the central
pacemaker. A recent review article by Hastings et al. [69] takes the next step, showing the
connection between rhythm disturbances and the development of pathologies. Thus, in
mouse models of AD, circadian disturbances accelerate astroglial activation and other brain
pathologies. In brain cancer, treatment in the morning has been associated with prolonged
survival, suggesting that circadian time is fast becoming critical to elucidating reciprocal
astrocytic-neuronal interactions in health and disease.

3. Neuro-Glia-Vascular Unit Is also Local-Sleep Unit and Local Brain-Drainage Unit

As noted above, the sleep–wake cycle is a two-way street. In such feedback systems, it
can be difficult to isolate cause and effect, but it is always useful to break the system down
into separate functional blocks. Applied to cortical astrocytes and neurons, this approach
was formalized two decades ago in the form of the “neurovascular unit”.

3.1. Neuro-Glia-Vascular Unit

The concept of a neurovascular unit took shape in 2001 when it became clear that meeting
the metabolic needs of a neuron is actively regulated at the local level. This concept refers to a
structure in which a single astrocyte handles the request of a neuron, initiating a vasodilating
response when it is highly active, and also provides delivery of glucose to the neuron, while
oxygen reaches the neuron through diffusion [70–72]. A number of modeling studies have
been devoted to simulating the main functions of the neurovascular unit [73–76].

With the accumulation of data, it became clear that both the functions of the neurovas-
cular unit and the role of the astrocyte in it are much more diverse than it was initially
thought. In particular, the concept of a tripartite synapse [77,78] has been developed,
according to which thin processes of astrocytes, tightly covering the synapse, intercept
leaking glutamate and thus monitor the level of the current activity of neuronal activity
and respond to it both dynamically, generating calcium bursts, and long-term, providing
neuronal plasticity [79–83].

By now, it has been established that the neurovascular unit is also sensitive to quite
moderate physiologically normal changes in neuronal activity, such as the transition be-
tween sleep and wakefulness [29,58,84,85].
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Since extrasynaptic transmission is important in all these processes, it is logical to
consider a fragment of the intercellular space associated with the neurovascular unit as its
part. The growing understanding of the complexity and diversity of connections in the
neurovascular unit logically led to its expansion to the neuro-glia-vascular unit (NGVU),
which now includes the neuron, astrocyte, pericytes, and endothelial cells of the blood
vessel, as well as the extracellular space and extracellular matrix [86,87]. In [87], Semyanov
and Verkhratsky proposed a new term, “active milieu”, and the above set included neuronal
and glial compartments, extracellular space, extracellular matrix, and vasculature.

For the topic of our review, it is extremely important that the NGVU has a clear spatial
localization [88]. According to [89,90], an astrocyte has the shape of a cloud with many thin
processes, and the areas occupied by neighboring astrocytes do not overlap much.

In addition, this astrocyte morphology provides a very high ratio of cell membrane
area to extracellular space (ECS) volume, which, for the parenchyma, is in the range of
10–30% of the total tissue volume.

Thus, the NGVU can be regarded as a spatially isolated structure that receives external
signals (e.g., noradrenaline) and, in response, changes its state according to the current
level of neuronal activity. We will return to a discussion of these ways of responding below,
and in this section, we will discuss what the important implications of this isolation are.

3.2. NGVU as Sleep Unit

For a long time, the state of sleep was considered a global state of the brain, needed
only by the brain itself and controlled exclusively by neural connections between neuron
nuclei, forming a “sleep switch” [91,92]. However, the emergence of data on unihemispheric
sleep in aquatic mammals and the accumulation of knowledge about the physiology of
the brain led to the concept of local sleep, which, at the moment, can be considered
quite reasonable [93–95]. According to this concept, not all areas of the brain may be
in a physiological state corresponding to sleep. In [94], the authors wrote: “. . . taking
into account the neuronal firing pattern, sleep onset (SO) may occur in a strictly local
manner; the animal can be behaviorally awake, but local cortical “islands of sleep” can
appear”. It should be especially noted that we are talking about both populations and
individual neurons. It has been shown that in sleep-deprived monkeys performing a visual
discrimination task, neurons in the striate cortex showed a waking pattern of activation,
but some neurons in the extrastriate visual cortex displayed a characteristic sleep firing
pattern [96]. Thus, there are no obstacles to considering the concept of local sleep at the
level of one single NGVU.

Here, the results of [84,97] provide encouraging help, according to which the ionic
composition of interstitial fluid changes significantly during sleep, as expected. More
importantly, when an artificial “sleepy” intercellular fluid is applied, the brain tissues
locally go into a state physiologically similar to sleep [84].

Since the local sleep is detected and measured by means of SWA, the results described
above refer to neural activity. However, as mentioned above, the degree of manifestation
of SWA depends on the activity of astrocytes [29,33]; therefore, their participation in local
sleep is implied.

The results described above explain that sleep can be interpreted as a specific state of
cells that form the neurogliavascular unit, and the NGVU itself can be regarded as the smallest
“sleep unit”, at the level of which the transition between sleep and wakefulness occurs.

3.3. Why NGVU is Also a Drainage Unit

Based on the above, it is logical to interpret NGVU as the minimum possible cellular
structure of BWRS. Indeed, “individual astrocytes tend to form nonoverlapping domains,
placing them at the center of regulating local homeostatic functions” [88]. An integral part
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of each NGVU is the access to the blood vessel [86,87], and hence to the perivascular space,
which, in turn, serves as the BWRS conduit.

Fellin et al. wrote: “Astrocytes are characterized by a highly ramified structure of
cellular processes that occupy non-overlapping domains” [55]. The volume occupied by
the astrocyte is connected to the perivascular space through gaps between the endfeet of the
astrocyte. Astrocytes are networked and support the spread of calcium activity from cell to
cell. When studying astrocyte cultures, various phases of wave activity were discovered,
with the number of cells covered by a single wave before its disappearance ranging from 3
to sometimes 8–10 [98]. According to the review work of [99], the number of cells captured
in one wave ranged from 100 to 400 cells, depending on the region of the brain where
the astrocytes were taken from and the method of stimulating them. There is, however,
evidence that calcium waves observed in vivo are rarely spread more than 80 µm [100,101].
Thus, intercellular calcium waves cover an area that is small in terms of activity patterns
measured by EEG and can be considered a local phenomenon.

These data support the assumption that NGVU (or a small ensemble of them) can
be seen as a self-contained “drainage unit”, subordinate to the whole-brain mechanisms,
which, in turn, supply fresh cerebrospinal fluid and create arterial and other pulsations [12].

From the point of view of physical laws, facilitating drainage during sleep is a conse-
quence of a significant increase in the proportion of intercellular space. Therefore, the way to
understand BWRS activation lies in understanding how the proportion of ECS in NGVU is
regulated in general and during the transition between sleep and wakefulness, in particular.

4. Astrocyte Volume Regulation

There are many experimental data on astrocyte swelling or shrinking under the
influence of osmotic forces in various situations [102–106]. At the same time, it is noted that
neurons swell to a lesser extent and restore their volume faster [107–110]. The recent review
article [111] provides a good overview of the mechanisms of astrocyte volume regulation.

Early hypotheses were based on potassium buffering, then siphoning, and relied on
inward-rectifier potassium channels and on AQP4 as a channel for passing water into the
astrocyte [112–115].

To date, it is clear that the situation is more complicated, and at different levels of
extracellular potassium rise, various mechanisms are activated, (see Figure 5 in [111]).
Specifically, when there is a local and transient increase in extracellular potassium lev-
els due to local synaptic activity, it can enter astrocyte processes through KIR channels,
while water moves through AQP4. When potassium levels increase to 5–6 mM, mono-
carboxylate transporters, NBCe1 and Na+/K+ ATPase, may contribute to the increase in
the intracellular potassium concentration in conjunction with the marked increase in the
astrocyte volume under these conditions. At very high levels of extracellular potassium,
such as in seizure or even higher, a strong cellular depolarization activates the sodium–
potassium–chloride cotransporter NKCC1 and reverses potassium–chloride cotransporter
KCC, resulting in the rapid ion influx and associated severe cell swelling.

In relation to sleep and awake states, we are interested in the range between normally
low (sleep) and normally high (wakefulness) levels of extracellular potassium.

As can be expected, astrocyte contraction during the transition to sleep is in the region
of regulation by the sodium–potassium pump (Na+/K+ ATPase, NKA). Recent studies us-
ing MRI indicate that there is considerable water movement tied to NKA activity [116,117].

However, this is not entirely clear, since the operation of the pump itself creates an
outward osmotic gradient. It is most likely that the change in the astrocyte volume is not due
to the transfer of ions by the pump itself but to multiple processes associated with changes in
NKA activity: “... must be other processes working hand-in-hand with the NKA to produce a
net increase in intracellular osmolarity in conditions of elevated potassium” [111].

The decrease in intracellular sodium corresponded to only about 10% of the accumu-
lated intracellular potassium [118]. This is likely because the inward movement of sodium
ions through other membrane transport processes is tightly coupled with pump activity;
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otherwise, the pump would rapidly become ineffective at potassium removal as intracellu-
lar sodium falls [119,120]. Some influx or reduced efflux of chloride due to the potassium-
induced membrane depolarization, or production of endogenous anionic metabolites, such
as bicarbonate and lactate [118,121], are also regarded as relevant mechanisms.

It is reasonable to consider the contraction of astrocytes during sleep as an inversion
or simply a cessation of those processes that provide swelling with moderate activation of
neurons. Then, by itself, the work of the NKA can provide astrocyte shrinking.

It has been repeatedly noted that changes in the astroglial chloride concentration are
associated with changes in the astrocyte cell volume associated with activity [122–124]. The
review paper [125] summarizes that one of the important functions of astroglial chloride is
the regulation of cell volume and, hence, morphological plasticity. Currently a number of
swelling-activated anion channels in glial cells and neurons are known [126–128]. When
removing a large amount of excessive extracellular potassium, astrocytes take up large
amounts of anions, mostly chloride [129,130]. The clearance of excessive extracellular
potassium due to high neuronal activity by astrocytes leads to osmotic gradients, resulting
in water influx through aquaporins and astrocytic dilation [131–133]. According to this
mechanism, the high activity of the neuron, in which the astrocyte ensures the removal of
excess potassium, is accompanied by an inward flow of chloride ions into the astrocyte and
dramatically increases astrocyte swelling. This path was implemented in a mathematical
model and was proven to work [134].

It should be noted that although chloride homeostasis in cultured astrocytes has
been well studied [135,136], corresponding in situ experiments are rare and the results are
controversial. In this light, a recent study [137] reports that the intracellular concentration
of chlorides in astrocytes during sleep is significantly higher and more stable than during
wakefulness, contrary to the mechanism described above.

From the point of view of cleaning the extracellular space from harmful metabolites,
swelling of the astrocyte during wakefulness and a decrease in its volume during sleep are
critical properties. Therefore, the actual role of chlorine and its dynamics are important
and require further clarification.

It was multiply reported that aquaporin 4 (AQP4) water channels on the endfeet of
astrocytes optimize brain fluid movement and waste clearance [18,138,139]. The deletion
of AQP4 channels in transgenic mice eliminates the brain fluid transport and the clearance
of proteins from the brain [139,140]. However, the specific role of AQP4 in the regulation of
the BWRS functions is still under discussion [141–145].

The new findings in the field suggest a change in the views on the role of AQP4
aquaporins. From the increased expression on astrocytes, the endfeet were interpreted as a
probable pathway for the passage of water through the parenchyma.

However, recent results indicate that AQP4 is not required for increased astrocyte
volume in either condition: neither hypoosmolar interstitial fluid [146] nor an increased
extracellular concentration of potassium [106]. At the same time, AQP4 seems to be
important for getting rid of excess water at, say, astrocyte shrinking during the transition
from the high to low activity state.

In most mammalian cells, plasma membranes are water permeable, as water can
diffuse across the lipid bilayer [147–149]. In [111], it is hypothesized that this water entry
mechanism (simple diffusion across the cell membrane) may contribute significantly to
astrocyte shrinking or swelling. This passive water movement can be fast, as significant
volume increases occur in neurons and astrocytes within 1 min in hypo-osmolar conditions
using standard solution perfusion rates (1–1.5 mL/min) [150].

Note that AQP4 expression depends on the phase of the circadian cycle [28]. How
important this is for the regulation of astrocyte volume during the transition between sleep
and wakefulness is currently unknown.

Thus, although all the details are far from being clear, it can be considered an estab-
lished fact that switching NGVU to a state of low activity is accompanied by a significant
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change in the intercellular volume, which is critical for BWRS activation. Below we will
discuss what is known about the signal that controls such a switch.

5. Noradrenaline: Master Regulator or Trigger?

At the systemic (whole-brain) level, the transition between sleep and wakefulness is
due to the switching of activity between different groups of neuronal nuclei. When we
wake up, the ventrolateral preoptic nucleus decreases its activity, while the monoamine
nuclei increase their activity [91,92].

An important part of the structure active during wakefulness is the locus coeruleus
(LC) nucleus, which has numerous projections throughout the brain [151,152], where
it delivers noradrenaline (NA) [153]. LC release is achieved largely via non-junctional
varicosities [154]. Specifically, NA released from small spherical enlargements (about 1 µm
in diameter) and spaced at short intervals (1–3/µm) [155].

In the sleep state, LC activity is low, and astrocytic calcium responses are blunted or
absent [156,157]. When awake, noradrenaline levels are significantly elevated compared to
sleep and vary significantly with activity levels [158]. The work [159] found a correlation
between LC activity and increased functional connectivity in human subjects using pupil-
lometry. Pronounced calcium reactions of astrocytes to NA were observed; e.g., during
locomotion [160].

Even larger changes in NA levels accompany the transition from sleep to wakeful-
ness [85,161]. In [85], the authors describe the complexity of astrocyte responses to NA,
including changes in cell volume in response to activation of noradrenaline receptors. The
involvement of astrocytes in the formation of responses to NA both in the stark shift from
sleep to awake and perhaps also in other behavioral states is marked in [162].

An intriguing question, however, is that the gradual change in NA levels during
wakefulness responds to a smooth change in activity and does not seem to be related to the
intensity of drainage. At the same time, a drop in NA below a certain level puts the system
into a state of consistently low activity and, obviously, less sensitivity to neuronal excitatory
signals. In life systems, these kinds of threshold reactions are typically organized as
biological triggers, with positive feedback (or two reciprocal inhibitory couplings, which are
the same). At the system level, such a mechanism is known—this is the above-mentioned
switching between ventrolateral preoptic and monoamine cores [91,92]. Are there signs
of a similar mechanism at the cellular level, within, for example, the NGVU population
as well?

In [163], the GANE (“glutamate amplifies noradrenergic effects”) mechanism was
proposed, according to which adrenergic hot spots, activation centers, are formed. Although
this hypothesis is designed to explain the attention span at the behavioral level, the authors
proposed specific cellular mechanisms.

With some simplifications, the GANE pathways are illustrated in Figure 2, where the
involved couplings are numbered and explained in the caption. An analysis of these paths
reveals not one, but three feedback loops that form a local NA-switch.

(i) Firstly, glutamate spillover reaches the closely located NA varicosite and amplifies
NA release (2), which in turn stimulates the presynaptic terminal (3). (ii) Further, released NA
reaches the astrocyte (4) and cooperates with glutamate in IP3 production, thus triggering as-
trocytic calcium response. The activated astrocyte releases gliotransmitters, including D-serine,
which is a co-agonist of NMDA receptors at the NA varicosite (5). This is the second positive
feedback loop, evidently more slowly activated and longer lasting. (iii) Finally, autoreceptors
at NA varicosities make the transition between low and high NA levels more sharp.
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Figure 2. Simplified chart of pathways according to [163]. Glutamate spillover reaches both astro-
cyte (1) and closely located noradrenaline (NA) varicosite (2). Released NA activates presynaptic
β-adrenoreceptors (3) and thus promotes further glutamate release. When astrocyte reaches mem-
brane, NA cooperates with glutamate to activate calcium response via inositol triphosphate (IP3)
production (4). Activated astrocyte releases gliotransmitters, including D-serine, which is a co-agonist
of N-methyl-D-aspartate (NMDA) receptors at NA varicosite (5). This, in turn, promotes further NE
release. Autoreceptors at NA varicosities inhibit its release at low levels but amplify it at high levels
and thus serve as neural gain amplifiers (6).

Taken together, these mechanisms are able to provide a sharp switch between low and
normal activity states—the local sleep switch that is necessary for NGVU to also become a
sleep unit. There are still enough questions as to what extent the proposed hypothesis is
reliable at the level of an individual NGVU. However, direct modeling of the proposed set
of regulation pathways shows that the GANE hypothesis is workable [164]. This, in turn,
means that the response to noradrenaline signaling of two small populations or even two
nearby NGVUs can be different. All of this offers a logical basis for understanding the key
role of the astrocyte in the mechanism of local sleep at the level of the individual NGVU.

Bar et al. investigated the global effects of the neuromodulator norepinephrine (NE)
on neuron-astrocyte network communication in co-cultures of neurons and astrocytes
and in isolated astrocyte networks [165]. The combination of electrical stimulation and
noradrenaline application was used to activate the glutamate-mediated pathway in the
elementary neuron–astrocyte networks, each being an experimental model of NGVU. It
was found that noradrenaline action causes a marked rise in calcium signaling in astrocytes,
while neuronal spontaneous activity is reduced, and the synchrony between elementary
neuron–astrocyte networks is perturbed. In general, the results described in [165] at least do
not contradict the GANE hypothesis. In particular, they confirm the spatial heterogeneity
of the response to NA, even with its global application. Although they did not measure the
cell volume directly, the morphological changes found in astrocytes upon application of
NA can be interpreted as a swelling of thin astrocyte processes in the presence of NA.

Recently, the authors of [166] concluded that astrocytic NE signaling acts as a separate
neuromodulatory pathway that regulates the cortical state and links excitation-related
desynchrony with cortical circuit resynchronization.

6. Physical Implications for Metabolite Clearance and Prospects for Future Research

While an accelerated removal of substances from parenchyma during sleep has been
demonstrated experimentally [11], there is still debate about which specific physical mech-
anism is responsible for this.



Cells 2023, 12, 2667 12 of 21

In particular, advection is considered, that is, the transfer of molecules of a substance
with a fluid flow, in contrast to the classical diffusion of molecules in a porous medium,
which is the parenchyma.

For a detailed analysis of the essence of the issue and the resulting contradictions, we
refer to recent reviews on the topic [141,167,168], where arguments for and against both
mechanisms are provided. The authors of this review are convinced that only a direct
visualization of flows in the parenchyma, which is not yet available, would resolve this
dispute. However, regardless of which mechanism is dominant, it is possible to assess
how significant the above-discussed changes in the extracellular volume of the neuro–glia–
vascular unit are in terms of the relative contributions of advection and diffusion.

On the one hand, diffusion in brain tissues has been purposefully studied in recent
decades [48,169–173]. Assuming the classical nature of the process, it is conventional to
quantify the properties of parenchyma tissues with the effective diffusion coefficient, which
takes into account the tortuosity of the channels and other features of the intercellular space.
Recently, [174] drew attention to the fact that diffusion in the brain parenchyma has signs
of a more complex process. The so-called Brownian-non-Gaussian diffusion has recently
been studied in theoretical physics [175]. Generally, the diffusion flux is determined by the
concentration drop and the area of some average cross-section of the channels.

On the other hand, the intensity of the transport of substances by advection is based
on the Poiseuille–Hagen law and its varieties [176,177]. Unlike diffusion, the intensity
of this process essentially depends on the shape of the cross-section of the channels. In
addition to the canonical cases of a round pipe and Couette flow (flow in a flat slot) [178],
many variants and complicating factors are possible, which were investigated on specific
applications [179–182].

On the topic of our review, using basic algebra, we can make rough estimates of how a
twofold (from 10% to 20%) increase in the ECS share can change the diffusion and advection
flows. Our reasoning is illustrated in Figure 3.

L
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Figure 3. Extracellular space (ECS) fraction and molecular transport, physical background. (a) The
diffusion flux is proportional to the channel cross-section if the concentration difference is constant.
However, if the amount of substance is constant, then increasing the volume of the channel will
not increase the flow. (b) The flow during advection (transport of particles by liquid) depends on
the shape of the cross-section of the channels. (c) The specific choice of the approximating method
is determined.

Consider a tube of length L with radius R and cross-section πR2. The volume of this
tube will be V = LπR2. Its increase by two times corresponds to a twofold increase in S. If,
in this case, the concentration difference does not change, then the diffusion flux will also
increase by a factor of two. If, however, the number of molecules is taken constant, then an
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increase in volume will lead to a decrease in concentration and the diffusion flux will not
change (see panel (a) in Figure 3).

According to Poiseuille’s law, the advection flow in this case will increase by four
times, in proportion to R4. In this case, the hydrostatic gradient is assumed to be constant.
A similar calculation for flat slots instead of round channels will give an increase in flows
by eight times, respectively (see panel (b) in Figure 3).

A more realistic account of the 3D ECS structure will make this ratio less impressive,
but will not cancel the main result: an increase in the ECS during sleep can significantly
change the relative contribution of the mechanisms in favor of advection. Thus, the change
in astrocyte volume is indeed a key factor that determines the effectiveness of the removal
of harmful metabolites at the local level.

The discussion above suggests an obvious problem for future research. Panel (c) in
Figure 3 shows that the model approximation of the real structure of the extracellular space
can be different. Thus, it would be of great interest to experimentally quantify simultaneous
changes in hydrodynamic characteristics and diffusion properties coupled with a change in
the amount of water in tissues. Both data on structure-controlled tissue phantoms [183] and
in vivo measurements using recently developed methods [140,184] will be of great interest.

7. Problems and Issues in Research of Gender Differences of Night Life of Astocytes

An overwhelming number of studies on mechanisms of sleep have been conducted
on male rodents. This is due to the fact that sex hormones in females, depending on the
cycle, significantly affect the work of internal organs and the brain. However, there are
also sex differences in the development of AD and sleep disorders. One can expect that sex
differences may also contribute to the mechanisms of sleep regulation and BWRS function.

In particular, sex differences are significant when it comes to the risk of developing AD.
For example, in [185], Zhu et al. list a number of reasons that lead to different frequencies of
AD in men and women, including brain parameters, sleep disorders, hormonal differences,
vascular disorders, etc. The urgent need to understand how sexual dimorphism should be
taken into account when diagnosing AD is also under discussion in the field of psychia-
try [186]. There are significant differences in sleep disturbances and quality between men
and women [8,21,22,25].

At the same time, the possible contribution of sexual dimorphism becomes much
less obvious if we move to the local level of BWRS operation, where such parameters as
the geometry of the perivascular space are important, and in relation to the topic of our
review—the signaling pathways of astrocytes—the nature of their response to changes in
neuronal activity, etc.

One of the rare focused studies on this issue was explored by Gianetto et al. [187].
The main result they obtained is expressed in the paper “Biological sex does not predict
glymphatic influx in healthy young, middle aged or old mice”. This conclusion was made
based on observations of the distribution of fluorescent markers.

At the same time, very recent results from a human study by Han et al. revealed
significant sex-specific changes of the gBOLD-CSF coupling, as a measure of glymphatic
function, over a wide age range [188]. Despite the fact that these measurements have
been made on large areas of the brain, that is, in fact, at the system level, they raise
the question again: Are there differences in astrocyte function between male and female
laboratory animals?

The reality is that the bulk of the experimental studies we cited, obtained using
laboratory animals, do not allow us to give an unambiguous answer since they were carried
out without taking into account the sex of the animals. A noticeably smaller part of the
work is based on the use of only males [11,17,35,60,62,84,101,105,128,154–157].

Few studies take into account the possible dependence of the results on gender but
report that no significant differences were found [139,140].

Human studies typically included mixed groups of subjects. As an exception, we note
the study [5] effect of one night of total sleep deprivation on beta-amyloid accumulation,
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and the work [12] where the dependence of slow global CSF oscillations on gender was
tested and no differences were found.

Thus, it seems reasonable to assume that sexual dimorphism is clearly significant for
system-level processes (sleep, risk of developing AD) but has little, if any, effect on the
functioning of small cellular structures, such as neurogliavascular units. However, this fact
cannot be considered proven since there is not enough targeted research.

8. Conclusions

In this review, we aimed to highlight a chain of facts and mechanisms linking together
the transition between sleep and wakefulness, on the one hand, and changes at the level
of the smallest functional unit of the brain parenchyma—the neuro-glia-vascular unit. In
our opinion, this connection becomes more understandable if we take into account the
recently emerged concept of local sleep, which actually suggests considering sleep as a
spatially inhomogeneous process. Together with the new understanding of the switching
mechanism of action of noradrenaline, a coherent, albeit still incomplete, picture of the
relationship is emerging, and awaiting further research.
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