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Abstract: While it is well known that 98–99% of the human genome does not encode proteins, but are
nevertheless transcriptionally active and give rise to a broad spectrum of noncoding RNAs [ncRNAs]
with complex regulatory and structural functions, specific functions have so far been assigned to
only a tiny fraction of all known transcripts. On the other hand, the striking observation of an
overwhelmingly growing fraction of ncRNAs, in contrast to an only modest increase in the number
of protein-coding genes, during evolution from simple organisms to humans, strongly suggests
critical but so far essentially unexplored roles of the noncoding genome for human health and disease
pathogenesis. Research into the vast realm of the noncoding genome during the past decades thus
lead to a profoundly enhanced appreciation of the multi-level complexity of the human genome. Here,
we address a few of the many huge remaining knowledge gaps and consider some newly emerging
questions and concepts of research. We attempt to provide an up-to-date assessment of recent
insights obtained by molecular and cell biological methods, and by the application of systems biology
approaches. Specifically, we discuss current data regarding two topics of high current interest: (1) By
which mechanisms could evolutionary recent ncRNAs with critical regulatory functions in a broad
spectrum of cell types (neural, immune, cardiovascular) constitute novel therapeutic targets in human
diseases? (2) Since noncoding genome evolution is causally linked to brain evolution, and given the
profound interactions between brain and immune system, could human-specific brain-expressed
ncRNAs play a direct or indirect (immune-mediated) role in human diseases? Synergistic with
remarkable recent progress regarding delivery, efficacy, and safety of nucleic acid-based therapies, the
ongoing large-scale exploration of the noncoding genome for human-specific therapeutic targets is
encouraging to proceed with the development and clinical evaluation of novel therapeutic pathways
suggested by these research fields.

Keywords: immunology; innate immunity; immunogenetics; neurobiology; neurogenetics;
noncoding genome; primate evolution genetics

1. Introduction

While it is well known that 98–99% of the human genome does not encode proteins,
but are nevertheless transcriptionally active and give rise to a broad spectrum of noncoding
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RNAs (ncRNAs) with complex regulatory and structural functions, specific functions
have so far been assigned to only a tiny fraction of all known transcripts [1–9]. While
massive expansion of the noncoding genome relative to the protein-coding sequences
during evolution from simple to complex organisms is obvious, functionality of transcription
of almost the entire genome is not. There will be transcriptional noise, and involvement of
transcription of repeats, pseudogenes, retroviruses, and so on. The fraction of functional
noncoding transcripts across the huge spectrum of highly diverse species must certainly
await final determination in a more remote future.

The critical, but so far essentially unexplored, impact of the noncoding genome in
human health and disease [8,10–12] is nevertheless strongly suggested by the overwhelm-
ingly expanding fraction of ncRNAs, sharply contrasting with only a modest increase in
the number of protein-coding genes, during evolution from simple organisms to humans.
Importantly, deep research into the vast realm of the noncoding genome during the past
decades has led to a fundamentally enhanced appreciation of the multi-level complexity of
the human genome.

Here, we address a few of the many remaining knowledge gaps, and consider some
newly emerging topics and strategies of research. We provide a critical up-to-date as-
sessment of recent insights obtained by molecular and cell biological methods and by
application of systems biology approaches, focusing upon two topics of high current in-
terest. First, since several evolutionary recent noncoding regions of the human genome
have been discovered to exert critical regulatory functions in a broad spectrum of cell types
(neural, immune, cardiovascular), might these regions constitute novel therapeutic targets
in human diseases? Second, noncoding genome evolution has been shown to be causally
linked to brain evolution, and increasingly profound interactions between mind and brain
and the immune system in humans are emerging. Thus, how could human-specific brain-
expressed genes play a direct or indirect (immune-mediated) role in human diseases?

“Human-specific” in this context does not necessarily mean there are no paralogues or
similar genes in other species, but that the respective gene has gained novel or particularly
important functions in humans. This may simply occur because an organ such as the brain
has dramatically increased in size and complexity during evolution, requiring more sophis-
ticated genome-level regulation and spatiotemporal coordination of cellular functions and
cell–cell interactions.

Caution should still be exercised when assuming that humans are the most complex
organism from a molecular genetic perspective, too. Maybe the overwhelming number
of ncRNAs found in humans is, at least in part, a consequence of humans being the most
extensively studied organism. Currently, it cannot be excluded that equally deep investiga-
tion of more “primitive“ species, e.g., octopuses or amoebae, would show an unexpectedly
high proportion of ncRNAs. Future research, covering a more comprehensive spectrum of
species, may unveil unexpected new insights regarding the role of the noncoding genome
during evolution in general.

2. Overwhelming Expansion of the Noncoding Genome in Higher Organisms

Decades ago already, landmark studies documented the intracellular presence of large
amounts of RNAs that are transcribed, but do not encode proteins. Only part of these ncR-
NAs could later be linked to mRNA splicing (e.g., small nuclear RNAs [snRNA]), or were
specifically involved in the translation machinery and its regulation (e.g., transfer RNAs
[tRNAs], ribosomal RNAs [rRNAs], small nucleolar RNAs [snoRNA], but the vast majority
remained functionally cryptic for a long time. More recent studies then led to the discovery
of entire new classes of small RNAs, generated not only by novel biosynthetic pathways
and mediating gene expression post-transcriptionally (e.g., microRNA [miRNAs]), but also
unusually large long ncRNAs [lncRNAs], in almost all cases, of still unknown functional
significance. Broad evidence derived from multiple genetic, biochemical, and other experi-
mental and clinical studies during the past decades clearly revealed a key role of ncRNAs
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in the genetic programming of complex organisms, during their development and in health
and disease.

The steeply increasing fraction of ncRNAs in the genome during evolution, from
simple to highly complex organisms, strongly contrast with the only modest increase in
the number of protein-coding genes (Figure 1) and is consistent with the assumption of an
overwhelming role of the ncRNA species in higher organisms. Both Caenorhabditis elegans
with ~1000 somatic cells and humans with ~30 × 1012 somatic cells have ~20,000 protein-
coding genes (‘g-value paradox’) [13]. Regarding disease pathogenesis, it is evident since
the Encyclopedia of DNA Elements (ENCODE) project [3] that confinement to the analysis
of protein-coding regions of the human genome is inadequate, because many noncoding
variants are associated with important human diseases. Inclusion of the noncoding genomic
elements in pathogenetic studies seems mandatory and one approach is comprehensive
transcriptome mapping encompassing protein-coding genes, as well as diverse small and
large ncRNAs.

Apparently, ~5% of the human genome are functionally constrained [14]. Since only
~1.5% of the genome could possibly be assigned to protein-encoding genes, a major part of
these constraints is necessarily associated with functionally important conserved noncoding
elements (CNEs), preserved among organism through millions of years of evolution at the
cellular and systemic level. As one example, there is evidence for higher-order genome
organization functions of lncRNAs in diverse cell types and cell lineages, and during cell
differentiation [15]. It was recently found that not only transcription, but also translation,
is pervasive outside of protein-coding regions (e.g., lncRNAs, 3′-untranslated regions,
introns). Although resulting polypeptides are generally nonfunctional, their translation is
considered relevant for the emergence of novel functional genes [16].

One particularly interesting but highly complex group of ncRNAs are those designated
long noncoding RNAs (lncRNAs). The term ‘lncRNAs’ encompasses RNA polymerase I
(Pol I), Pol II, and Pol III transcribed RNAs, and RNAs from processed introns that are
at least 200 nt in length. More than 100,000 human lncRNAs have been identified, many
of which are primate-specific [17–24]. A recent consensus statement addressed definition,
nomenclature, conservation, expression, phenotypic visibility, structure, and functions
of lncRNAs [25]. The paper emphasizes that many lncRNAs are cell lineage-specific,
associated with developmental enhancers, and likely contribute to species diversity and
evolution. Segments of lncRNAs may maintain sequence conservation comparable to
protein-coding genes, exhibit conserved exon-intron structures and splice junctions, and
retain orthologous functions despite rapid sequence evolution [26–29].

Importantly, noncoding genome research during the past decades not only revealed
unanticipated multi-level complexity of the genome in higher organisms, but has also
inspired fundamentally new therapeutic avenues as outlined in Figure 2.



Cells 2023, 12, 2660 4 of 35Cells 2023, 12, x FOR PEER REVIEW 4 of 36 
 

 

 
Figure 1. Evolutionary expansion of the noncoding genome in higher organisms. (A) The basic mol-
ecules of life already found in the earliest and most simple organisms are increasingly supple-
mented, during the evolution to complex species, by molecules needed for correct embryonic de-
velopment and homeostatic stability of their morphology and functions. (B) Whereas the number 
of protein-coding genes remains similar from simple to complex species, it is the noncoding part of 
the genome that increases dramatically with morphological complexity to >98% in humans. (C) Few 
types of noncoding RNAs arising from the noncoding genome have been phylogenetically mapped 
in depth. Thus, investigation of microRNA (miRNA) family evolution revealed impressive increases 
with the advent of vertebrates, and ancient miRNAs families can well be distinguished from those 
more recently arising. (D) No definitive classification of the huge number of lncRNAs has been es-
tablished so far. Several basic elements suitable as components for classification are shown, encom-
passing sequence elements, conserved structural motifs, mechanisms of action, and physiological 
or disease processes in which the respective lncRNAs are involved (Modified from Poller et al. 2013 
[9] by permission of Circ. Res.). 

Figure 1. Evolutionary expansion of the noncoding genome in higher organisms. (A) The basic
molecules of life already found in the earliest and most simple organisms are increasingly sup-
plemented, during the evolution to complex species, by molecules needed for correct embryonic
development and homeostatic stability of their morphology and functions. (B) Whereas the number
of protein-coding genes remains similar from simple to complex species, it is the noncoding part of
the genome that increases dramatically with morphological complexity to >98% in humans. (C) Few
types of noncoding RNAs arising from the noncoding genome have been phylogenetically mapped
in depth. Thus, investigation of microRNA (miRNA) family evolution revealed impressive increases
with the advent of vertebrates, and ancient miRNAs families can well be distinguished from those
more recently arising. (D) No definitive classification of the huge number of lncRNAs has been
established so far. Several basic elements suitable as components for classification are shown, encom-
passing sequence elements, conserved structural motifs, mechanisms of action, and physiological or
disease processes in which the respective lncRNAs are involved (Modified from Poller et al. 2013 [9]
by permission of Circ. Res.).
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Figure 2. Endogenous non-coding RNAs as blueprints for RNA therapeutics. Non-coding RNAs 
may be addressed as therapeutic targets, but an increasing spectrum of endogenous ncRNAs (e.g., 
siRNAs) are also employed as blueprints for the development of novel therapeutic tools. The spec-
trum of possible therapeutic targets has vastly expanded beyond proteins, but likewise the thera-
peutic ‘toolbox’. One current topic is therapeutic RNA interference triggers (siRNAs) originally de-
veloped from endogenous siRNAs as blueprints, and made clinically applicable based on sophisti-
cated chemical modifications and coupling to carriers/ligands for tissue targeting. Appreciation of 
the profound pathogenic impact of diverse small and long ncRNAs has inspired the development 
of multiple other therapeutic tools engaging these ncRNAs. The tools may be engineered nucleic 
acids themselves, acting through sequence homologies, or “classical” small molecule drugs de-
signed to interact with e.g., conserved 3D structural motifs in lncRNAs which are not necessarily 
dependent on strict RNA sequence conservation. 

3. Recent Searches for Evolutionary Relevant Primate/Human-Specific  
Noncoding Genes 

Landmark studies: Nobel-prize winning work by Pääbo et al. [30], based on experi-
mentally revolutionary work ultimately enabling deep sequencing of the genomes of ex-
tinct primates and hominids, has revolutionized a field of research which was previously 
the exclusive realm of archaeologists and paleoanthropologists. The puzzle to mankind, 
when and where modern humans originated and how they differ from and interacted 
with other now-extinct forms of humans is now being addressed by molecular geneticists 
[30–39] and protein biochemists [40] also. These recent developments have enabled revo-
lutionary novel approaches to diverse and so far enigmatic issues such as the evolutionary 
development of speech [41]. 

Screening for evolutionarily relevant genetic changes during the diversion of humans 
from the other primate species first focused on protein-coding genes with a favorable sig-
nal/noise ratio and commonly more obvious functional impact, as assessed by conven-
tional molecular and cell biological approaches. Almost two decades ago, however, after 
the discovery that 98.5% of the human genome is transcribed but not translated into pro-
teins, a first study scanned for “human accelerated regions“ [HARs] with accelerated sub-
stitution rates in the human lineage [42]. This pioneering work identified one region 

Figure 2. Endogenous non-coding RNAs as blueprints for RNA therapeutics. Non-coding RNAs may
be addressed as therapeutic targets, but an increasing spectrum of endogenous ncRNAs (e.g., siRNAs)
are also employed as blueprints for the development of novel therapeutic tools. The spectrum
of possible therapeutic targets has vastly expanded beyond proteins, but likewise the therapeutic
‘toolbox’. One current topic is therapeutic RNA interference triggers (siRNAs) originally developed
from endogenous siRNAs as blueprints, and made clinically applicable based on sophisticated
chemical modifications and coupling to carriers/ligands for tissue targeting. Appreciation of the
profound pathogenic impact of diverse small and long ncRNAs has inspired the development of
multiple other therapeutic tools engaging these ncRNAs. The tools may be engineered nucleic acids
themselves, acting through sequence homologies, or “classical” small molecule drugs designed to
interact with e.g., conserved 3D structural motifs in lncRNAs which are not necessarily dependent on
strict RNA sequence conservation.

3. Recent Searches for Evolutionary Relevant Primate/Human-Specific
Noncoding Genes

Landmark studies: Nobel-prize winning work by Pääbo et al. [30], based on experimen-
tally revolutionary work ultimately enabling deep sequencing of the genomes of extinct
primates and hominids, has revolutionized a field of research which was previously the
exclusive realm of archaeologists and paleoanthropologists. The puzzle to mankind, when
and where modern humans originated and how they differ from and interacted with other
now-extinct forms of humans is now being addressed by molecular geneticists [30–39] and
protein biochemists [40] also. These recent developments have enabled revolutionary novel
approaches to diverse and so far enigmatic issues such as the evolutionary development of
speech [41].

Screening for evolutionarily relevant genetic changes during the diversion of humans
from the other primate species first focused on protein-coding genes with a favorable
signal/noise ratio and commonly more obvious functional impact, as assessed by con-
ventional molecular and cell biological approaches. Almost two decades ago, however,
after the discovery that 98.5% of the human genome is transcribed but not translated into
proteins, a first study scanned for “human accelerated regions“ [HARs] with accelerated
substitution rates in the human lineage [42]. This pioneering work identified one region



Cells 2023, 12, 2660 6 of 35

(HAR1) expressed during human cortical development as the most significantly altered
element. While the two transcripts from this region (HAR1F and HAR1R RNAs) lacked
protein-coding potential, HAR1F transcript folded into a stable RNA structure and occurs
with ncRNAs such as miRNAs and many lncRNAs [42]. Since the first study [42], further
HARs were identified and investigated; as one important discovery, their proximity to
neuropsychiatric disease genes was revealed, which is discussed in more detail below.

Brain transcriptome: Pembroke et al. [43] recently discussed the evolutionary conserva-
tion and divergence of the human brain transcriptome in general. They emphasize that,
although mouse models allow dissection of genetic effects on molecular, cellular, physiolog-
ical, and behavioral brain phenotypes, the extent to which neurological or psychiatric traits
are human- or primate-specific, and cannot be faithfully recapitulated in mouse models, is
unknown. Pembroke et al. name multiple human neuropsychiatric and neurodegenerative
disease risk genes (COMT, PSEN-1, LRRK2, SHANK3, SNCA) with grossly divergent
expression pattern in mice vs. humans, for some of which functions at the cellular level
have recently been assigned. We review similar and possibly critical knowledge gaps in the
cardiovascular field, which are likewise due to differences between the noncoding genome
in humans vs. experimental animals (Section 6).

Espinos et al. [44] discuss in-depth genetic mechanisms regulating the evolution of
cortical neurogenesis. They address genes which emerged in the recent human and primate
lineages and apparently promote cortical progenitor proliferation and increase neurogene-
sis. These include structurally conserved primate lncRNAs transiently expressed during
human cortical differentiation and modulating the expression of cell type-specific genes
sequentially activated during cortical neurogenesis [45]. Several HARs [46,47] involved
therein are predicted to act as regulatory enhancers [48] and are located in the vicinity of
genes important for brain development [49].

4. Exploration of the Noncoding Genome for Human-Specific Therapeutic
Targets—Three Levels of Increasingly Complex Genome–Disease Relationships

Obviously, any potential pathogenic role of “human-specific” protein-coding genes, as
well as of noncoding RNAs, will remain hidden during studies of animal models (murine
and diverse others) of human diseases. In principle, any such gene may play an important
role in some human disease, however.

It is important to note that “human-specific” in this context does not necessarily mean
there are no paralogues in other species, but that the respective gene has gained novel or
particularly important functions in humans. This may occur, for instance, because an organ
such as the brain has dramatically increased in size and complexity during evolution. Such
genes are more likely to play a pathogenic role in diseases (e.g., neuropsychiatric), which
are relatively unique to or display distinct phenotypes in humans.

From a technical standpoint, it is essential to exercise caution when designating a
lncRNA as specific to humans or primates. This is because in numerous species, the
non-protein coding regions are frequently incompletely annotated, and lncRNA databases
remain inadequately established. Additionally, since many lncRNAs are expected to play
roles in local chromatine remodeling (i.e., function in-cis), not only sequence conservation,
but also positional conservation in the context of genomic location should be considered.

At a first level, human-specific proteins could directly alter known signal pathways or
other canonical cellular functions. One example is interleukin 8 (IL8), which emerged as
one of the most strongly deregulated genes in peripheral blood mononuclear cells (PBMCs)
after human myocardial infarction [8,10,50] but does not exist in mice, the most used
animal model in cardiovascular research. Drury et al. [51], investigating the evolution
and emergence of interferon regulatory factor 9 (IRF9), a key component of the ISGF3
complex and the cellular innate immune response, identified primate-specific IRF9 (PS-IRF9)
isoforms unique to old world monkeys and great apes. Ellwanger et al. [52] analyzed the
function of the primate-specific NLRP11 gene product and found it highly expressed in
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human immune cells (myeloid cells, B cells, lymphoma lines). This identified a novel role
in the regulation of inflammatory responses in humans.

At a second level, human-specific noncoding RNAs non-existent in animal models
may directly alter cellular functions and cell–cell interactions through non-canonical mecha-
nism, and via complex interactions with other proteins and ncRNAs. An interesting recent
study found a primate-specific lncRNA (CHROMR) to be induced by SARS-CoV-2 infection
coordinated expression of interferon-stimulated genes (ISGs), and restricted viral infection
of macrophages [53]. Another study [54] found the primate-specific lncRNA (CHROME)
elevated in plasma and atherosclerotic plaques of coronary artery disease (CAD) patients.
Gain- and loss-of-function approaches showed that CHROME promotes cholesterol ef-
flux and HDL biogenesis and constitutes a central component of the non-coding RNA
circuitry controlling cholesterol homeostasis in humans. Both CHROMR and CHROME
are antisense RNAs.

Neuroscience has likewise identified brain-expressed lncRNA several of which are
primate/human-specific and associated with brain development and neuropsychiatric
diseases, as outlined in Section 7. Any of these could directly induce damage at their sites of
expression in the brain.

At a third level, indirect impact of human-specific genes and ncRNAs upon patho-
genesis may be exerted via peculiar interactions between human brain and mind and the
immune system. Interactions between the immune system and the nervous system were
initially described in the context of diseases. More recent studies have begun to reveal
how immune cell-derived effectors can influence host behavior even in the absence of
infection [55]. Essentially, the immune system shapes nervous system function and controls
manifestations of host behavior. In the context of evolution, interactions between these two
highly complex biological systems may have evolved to maximize an organism’s ability to
respond to environmental threats in order to survive [56].

5. Genetics of Immune System and Neuro-Immune Interactions Impact upon a Large
Spectrum of Human Diseases

From the discovery that about 98–99% of the human genome do not encode proteins,
but instead generate a broad spectrum of ncRNAs many of whom are involved in the
immune response [57–87], decades passed until finally successful clinical exploitation
of ncRNAs and of novel drugs developed using them as blueprints was achieved [8,10]
(Figure 2). Across the entire spectrum of medical disciplines, it has been ascertained that the
non-coding genome plays a key role in genetic programming and gene regulation during
development as well as in health and disease (Figures 3 and 4).

A particularly important biological network critically involved in multiple human
diseases is the immune system. It is paramount to understanding disease pathogenesis,
and to open new therapeutic avenues, from cardiovascular medicine to neurology and
other clinical disciplines. For instance, in-depth molecular and genetic analyses of innate
immunity have led to the identification of novel molecular players and therapeutic tar-
gets in cardiovascular diseases [89]. Immunity in general is deeply involved in many
processes which are discussed more specifically in the following chapters. In this context
Silverstein [56] has thoughtfully suggested that, in contrast to ”Darwinian” evolution
involving adaptation to past challenges, evolution has “devised” two unique biological
mechanisms permitting to anticipate future challenges: adaptive immune response and
neural memory functions.

The study of immune systems evolution revealed differences, but also striking similar-
ities of the immune mechanisms across different taxa in the context of evolution [90,91].
Major impact of the noncoding genome upon functions and stability of the immune
response against diverse challenges has long been appreciated. There is a broad spec-
trum of broadly diverse non-coding RNAs (ncRNAs) involved in the human immune
response [57–86]. Some of these have been identified as primate-specific, e.g., the lncRNA
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CHROMR [53]. These and related discoveries highlight diverse clinically relevant peculiar-
ities of human immunology beyond the inbred mouse model [92].
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Figure 3. Multi-level functional integration of extended regions of the human genome, above and
beyond individual noncoding RNAs. The NEAT1–MALAT1 genomic region encodes a biologically
integrated circuit controlling innate immune sensing and cell–cell interactions. From an evolutionary
perspective, the NEAT1–MALAT1 genomic region appears as a highly integrated RNA processing
circuitry critically contributing to immune homeostasis. Its components MEN-β, MEN-ε, menRNA,
MALAT1, TALAM1, and mascRNA are obviously set for well-balanced interactions with each other.
Genetic ablation of any element therefore leads to major dysfunction. Beyond prior work in NEAT1
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and MALAT1 knockout mice, a recent cell biological study identified menRNA and mascRNA as novel
components of innate immunity with deep impact upon cytokine regulation, immune cell–endothelium
interactions, angiogenesis, and macrophage formation and functions. These tRNA-like transcripts
appear to be prototypes of a class of ncRNAs distinct from other small transcripts (miRNAs, siRNAs) by
biosynthetic pathway (enzymatic excision from lncRNAs) and intracellular kinetics, suggesting a novel
link for the apparent relevance of the NEAT1–MALAT1 cluster in cardiovascular and neoplastic diseases.
For the long primary transcripts of NEAT1, a function of general cell-biological interest has been
identified. They are critical for the formation of paraspeckles which are involved in multiple cellular
functions, and possibly also in the broader context of micellization and the formation of biomolecular
condensates essential for proper subcellular and nuclear compartmentalization. Obviously, molecules
involved in these fundamental processes may deeply impact upon various cellular functions in a
context-dependent manner, so that their observed association with diverse diseases is therefore not
entirely unexpected. Overall, the NEAT1–MALAT1 genomic region may serve as paradigm of a
biological integrated circuit fine-tuning multiple cellular processes covering innate immune sensing
and cell–cell interactions. (Modified from Poller et al. 2023 [11] by permission from J. Clin. Med.).
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Figure 4. Promoter and enhancer RNAs regulate chromatin reorganization and activation of miR-
10b/HOXD locus, and neoplastic transformation in glioma. miR-10b is silenced in normal neuroglial
cells of the brain but commonly activated in glioma, where it assumes an essential tumor-promoting
role. The entire miR-10b-hosting HOXD locus is activated in glioma via the cis-acting mechanism
involving 3D chromatin reorganization and CTCF-cohesin-mediated looping. This mechanism requires
two interacting lncRNAs, HOXD-AS2 and LINC01116, one associated with HOXD3/HOXD4/miR-
10b promoter and another with the remote enhancer. Knockdown of either lncRNA in glioma cells
alters CTCF and cohesin binding, abolishes chromatin looping, inhibits the expression of all genes
within HOXD locus, and leads to glioma cell death. Conversely, in cortical astrocytes, enhancer
activation is sufficient for HOXD/miR-10b locus reorganization, gene derepression, and neoplastic cell
transformation. LINC01116 RNA is essential for this process. Our results demonstrate the interplay of
two lncRNAs in the chromatin folding and concordant regulation of miR-10b and multiple HOXD
genes normally silenced in astrocytes and triggering the neoplastic glial transformation. (Modified
from Deforzh et al. 2022 [88] by permission from Mol. Cell).
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6. Noncoding Genomic Regions Impact upon Cardiovascular Pathogenesis in Humans

Within the field of cardiovascular medicine, a number of early experimental
studies [93–102] revealed that certain ncRNAs (miRNAs) are regulators of cardiovascular
homeostasis in animal models. This of course immediately suggested they might have
potential to improve diagnostics and could possibly even be developed into novel thera-
peutics. The road to in-depth understanding of the molecular workings of at least a few
of the numerous ncRNA classes, however, and beyond that the development of highly
sophisticated bioengineered nucleic acid drugs [93,103–113] (Figures 2, 5 and 6) which are
critically required to render them safe and efficacious for clinical applications, required crit-
ical input from several disciplines and two decades, counting from the early experimental
work to the first clinically successful trials. In Section 12 below, we update the conceptual
and methodological challenges on the road towards clinical exploitation of potential novel
human-specific therapeutic targets.
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Particularly advanced is the development of RNA interference [RNAi] drugs, which
use recently discovered pathways of endogenous short interfering RNAs (siRNAs) and have
become highly versatile tools for the efficient silencing of any protein-coding or noncoding
transcript and gene. A series of ground-breaking clinical trials [108,112–135] has provided
definite evidence of therapeutic potential of RNA interference [RNAi] and antisense drugs
for cardiovascular disorders. For more in-depth coverage of the enormously challenging
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bioengineering, safety, and regulatory hurdles to be overcome towards clinical therapy
during the past decades, we may refer the reader to comprehensive recent reviews [8,10,136].
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the missing coagulation factor genes could be successfully and durably transferred to the liver
using AAV vectors. In the cardiovascular field, cardiac-targeted gene augmentation (SERCA2a) or
ablation (phospholamban) therapies were successful in animal models, but this could not yet be
translated to the clinical arena due to as yet insufficient gene transfer efficacy in patients. The opposite
approach is post-transcriptional silencing of genes involved in disease pathogenesis. Complementary
to chemically synthesized base- and backbone-modified ASOs or siRNAs (Figure 6), silencing of any
protein-coding or noncoding transcript may be achieved by viral vector-based RNA interference
(RNAi). Two fundamentally distinct approaches (lower panel) use synthetic siRNAs, or recombinant
shRNAs continuously produced from viral vectors. RNA is inherently unstable and must be modified
to achieve sufficient biostability, and delivered via synthetic carriers, to become therapeutically useful.
Viral vectors, which may be organ-targeted and regulatable, may circumvent targeting issues by their
inherent biological properties, and the RNA stability problem by continuous synthesis in the host
cells. Apart from these differences, the same characteristics will be considered when the therapeutic
potential of synthetic or recombinant RNA drugs is assessed. AAV indicates adeno-associated virus;
ASO, antisense oligonucleotide; LNA, locked nucleic acid; shRNA, short hairpin RNA; siRNA, short
interfering RNA; TS, target site. (Modified from Poller et al. 2013 [9] by permission from Circ. Res.).

As examples of human-specific noncoding RNAs non-existent in animal models,
we invoke two primate-specific lncRNAs. One of these (CHROMR) [53] is induced by
SARS-CoV-2 infection, coordinates expression of interferon-stimulated genes (ISGs) and
restricts viral infection of macrophages [53]. Given the immense and diverse impact of
SARS-CoV-2 upon human health, existence of this primate-specific lncRNA is of interest per
se. Moreover, the human host’s innate immune response plays a critical role in COVID-19
pathogenesis [137–140]. Thus, several SARS-CoV-2 accessory proteins have been suggested
to affect the innate immune response. Abnormal pro-inflammatory cytokine levels and
immune cell infiltration are associated with tissue damage severity and morbidity. Overall,
dysregulation of the host immune response and elevated cytokine release are crucial factors
for the severity of COVID-19, and thus any peculiar human-specific immunoregulatory
ncRNA deserves attention.

Another primate-specific lncRNA is CHROME [54]. It is elevated in plasma and
atherosclerotic plaques of coronary artery disease (CAD) patients. Gain- and loss-of-
function experiments revealed that CHROME promotes cholesterol efflux and HDL bio-
genesis and constitutes a key component of the ncRNA circuitry controlling cholesterol
homeostasis in humans. Both publications illustrate how, after decades of traditional
research in the respective fields, investigation of the noncoding genome still uncovers
unexpected novel molecular players. These may significantly contribute to improved
pathogenic understanding, beyond what could possibly be derived from animal models.
Similar to these examples from the cardiovascular field, studies from the neurosciences
and clinical neurology identified impact of species-specific transcripts upon human brain
development and neurological disorders [45,141–146].

7. Primate/Human-Specific ncRNAs in Neural/Neuroimmune Cells and Their Impact
upon Brain Development and Neuropsychiatric Disorders

There is broad and growing interest in the identification of primate-specific genes
involved in primate evolution and the evolution of humans. This includes not only
coding genes, but also diverse types of noncoding transcripts, e.g., miRNAs [141] and
lncRNAs [147]. One driver of this interest, beyond deeper understanding of human evo-
lution [30], is a hope [141] to identify unique features of human brain development and
function which may be critical towards the elucidation of higher cognitive functions, and
of human-specific pathologies like neuropsychiatric and behavioral disorders.

After a first study had identified and partially characterized a “human accelerated
region” (HAR) [42], further HARs were investigated and indeed, as one important discov-
ery, their proximity to neuropsychiatric disease genes was revealed [39,148–154]. Since
many HAR-associated genes are regulators and hubs in transcriptional networks, their
differential expression would affect many other genes and cellular processes, suggesting
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outsized effects caused by noncoding HAR mutations. HAR enhancers may help to dis-
cover the genetic basis for disease, while medical genetics may reveal which HAR variants
are pathogenic.

Further along this line, drug target data were employed to map neuropsychiatric
disorders to HARs via nearby genes [155–158]. These genetic studies, involving large
neuropsychiatric patient populations, suggest that human-specific noncoding transcripts
from HARs as well as species-specific miRNAs are involved in human-specific pathologies
like psychiatric and behavioral disorders. If so, sequence variants or altered expression
pattern of these ncRNAs in the brain would directly lead to brain dysfunction and disease.

Conveniently, more than two decades of research into the development of diverse
types of RNA therapeutics towards clinical applications (as discussed above for cardio-
vascular and metabolic diseases) has set the stage for targeting/silencing of essentially
any type of transcript considered relevant in other disease fields, too. In addition to RNA
interference (RNAi) drugs, antisense therapeutics and CRISPR/Cas9-based approaches are
also being evaluated with regard to their potential for the treatment of neuropsychiatric
disorders [159,160]. Since many ncRNAs are specifically enriched in the central nervous
system [CNS], and their dysregulation implicated in Alzheimer’s disease and related de-
mentias, Nguyen et al. [161] review conventional small molecule drugs targeting ncRNA
as possible therapeutics for Alzheimer’s disease and related dementias (ADRD).

Noncoding RNA targets: lncRNAs play important roles during normal brain develop-
ment and in the pathogenesis of neurodegenerative disorders (ND) [162]. One target of
particular therapeutic interest is Nuclear enriched abundant transcript 1 (NEAT1) (Figure 3),
which plays a role in mediating nuclear retention of TAR DNA-binding protein 43 (TDP-43)
and is potentially protective in certain proteinopathies [163–168] involving aberrant protein
aggregates comprising tau, amyloid-β, and α-synuclein. TDP-43 is a highly conserved
nuclear RNA/DNA-binding protein regulating RNA processing. Accumulation of TDP-43
aggregates in brain is common to ND such as amyotrophic lateral sclerosis, frontotemporal
dementia, and Alzheimer’s disease (AD). Relevant with regard to possible therapeutic
options, NEAT1 is upregulated in AD temporal cortex and hippocampus. Hippocampal
knockdown of NEAT1 with siRNA improved memory in aged mice and vice versa [169].
Viral knockdown of NEAT1 rescued memory deficit in APP/PS1 mice [170].

Further lncRNA targets of interest include activity-dependent transported Adeptr [171],
brain cytoplasmic BC200 [172–175], BACE1-AS (antisense relative to β-secretase 1
gene) [176–178], and Carip [179]. In addition, other types of ncRNAs (miRNAs, piRNAs,
lncRNAs, circRNAs) are dysregulated in AD and related dementias with first evidence
for therapeutic potential [161] (Figure 7). Thus, miR-132 is downregulated in AD hip-
pocampus, prefrontal, and temporal cortex. Viral overexpression as well as miR mimics
rescued hippocampal cell death, tau homeostasis, hippocampal adult neurogenesis, and
behavioral deficits in various AD mouse models [180–182]. miR-195 is downregulated
in AD parietal cortex. Viral overexpression in mouse models decreased Aβ plaque, tau
hyperphosphorylation, and rescued cognitive deficits in ApoE4+/+ mice [183].

These first experimental therapeutic studies hold promise for further developments
with translational potential employing highly sophisticated and safe drug delivery systems.
These should have well-established molecular and cellular mechanisms of action, including
carrier ligand–cell surface receptor [184–190] interactions, as well as clearly characterized
in vivo behavior [191–193].
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Figure 7. Summary and outlook. On the right side, this figure aims to summarize- the molecular and
cellular basis of liver targeting of nucleic acid-based drugs, which is already being applied clinically
for several disorders. Here, drug delivery is facilitated by the fenestrated endothelium of the liver and
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the availability of a safe and efficient hepatocyte-specific ligand-receptor system. The left side outlines
the multiple challenges arising once targeting to other organs is attempted, focusing upon brain
delivery. Targeted and safe delivery of any nucleic acid-based (siRNA, ASO) drug to specific regions
of the brain appears as far greater challenge than liver targeting or ex vivo blood stem cell modulation.
A remarkable spectrum of brain-targeting approaches encompasses synthetic nanoparticles and viral
vector, yet so far, none of these are established with respect to key efficacy requirements (Figure 5).
AAV vectors encounter high interest for brain-targeted therapies since genetically engineered and
surface-modified (pseudotyped) versions of this vector have been extensively studied in other fields
of medicine (e.g., hematology, cardiovascular medicine). The blood-brain-barrier (BBB) constitutes
a particularly challenging anatomical barrier against nanoparticle or vector based drug delivery.
Remarkably, the serotype AAV9 is capable to cross the BBB under certain conditions, raising the
possibility of intravascular administration as a non-invasive delivery route of nucleic acid-based
drugs to the CNS. Noteably, this same AAV serotype is also able to enter the myocardium across
the tight cardiovascular endothelium (impermeable for other AAV serotypes) and was previously
employed for cardiac-targeted gene transfer and RNA interference therapy. Regarding the next step
of delivery, little is known about differential tropism of currently available AAV variants for distinct
brain cell types of specific therapeutic interest. Recent high-throughput screens have identified
host proteins essential for AAV delivery in a comprehensive manner and revealed unanticipated
complexity and serotype specificity of the entry process. Theoretical predictability of any in vivo
effects of vector modifications is therefore limited and experimental validation essential. The figure
depicts recent experimental approaches to improve BBB passage and brain cell type-specific delivery.
Starting from AAV9 holding promise for trans-BBB therapy, AAV-PHP.eB was engineered by insertion
of a 7-amino acid peptide and point mutations of neighboring residues into the AAV9 capsid and
enhanced CNS delivery in mice only under certain conditions. Similar challenges with regard to
clinical translation, generated by species differences, have been extensively investigated before for
another “hard target”, i.e., the heart. Instead of recognizing the glutamate receptor GluA4 through a
displayed GluA4-specific DARPin, AAVs deficient in HSPGs attachment resulted in preferential >90%
transduction of interneurons. Another highly innovative strategy employs membrane protein-specific
nanobodies inserted into a surface loop of the VP1 capsid protein of AAVs. Nanobody-VP1 fusion
was applied to AAV1, AAV2, AAV8, and AAV9 and effectively re-directed the target specificity of all
these AAV serotypes. Beyond stability in the blood circulation and capability to cross the blood–brain
barrier, transgene expression stability or even control is also desirable. Alphaherpesvirus latency-
associated promoters (LAPs) enabled stable, pan-neuronal transgene transcription and translation
from AAV-LAPs in the CNS for 6 months. Thus, these LAPs are suitable candidates for AAV-based
CNS gene therapies requiring chronic transgene expression after one-time viral-vector administration.

8. Multi-Level Functional Integration of Extended Noncoding Regions of the Human
Genome—Critical Impact upon Fundamental Cellular Processes Governing Immune
Response and Oncogenesis

To illustrate the multi-level functional integration of major regions of the human
genome, above and beyond individual ncRNAs, we invoke two examples addressing
genome-level immunoregulation (NEAT1–MALAT1 cluster) (Figure 3), and neoplastic trans-
formation in glioblastoma (HOXD-embedded HOXD-AS2 and distant enhancer-associated
LINC01116) (Figure 4).

The evolutionary conserved NEAT1–MALAT1 cluster encounters interest in cardio-
vascular medicine [50,194,195], oncology [196–201], and neurosciences and clinical neurol-
ogy [170,202–204]. While single studies from these fields identified pathogenic roles in spe-
cific disease settings, broad interdisciplinary interest apparently results from a deep-rooted
complex stabilizing function of the cluster. Within the cardiovascular field, suppression of
lncRNA NEAT1 was observed in circulating immune cells of post-myocardial infarction
(MI) patients. Mice devoid of NEAT1 or MALAT1 displayed immune disturbances affecting
monocyte-macrophage and T cell differentiation, and an immune system highly vulnerable
to stress stimuli [205] and prone to the development of atherosclerosis. Uncontrolled in-
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flammation is a key driver of multiple other diseases (see Section 7 below), too, which may
underly the current broad interdisciplinary interest.

The structure, organizational levels and functions of the noncoding genome are
still largely unexplored [8,10,25]. One aspect of particular interest with regard to func-
tion(s) is the common unusual complexity of lncRNA interactions with other ncRNAs,
proteins, and cellular and subcellular membrane components, as well as their posttranscrip-
tional processing and intracellular kinetics. As an example, the human NEAT1–MALAT1
cluster generates lncRNA remaining nuclear, whereas tRNA-like transcripts (mascRNA,
menRNA), enzymatically generated from these precursors, translocate to the cytosol.
NEAT1-/- and MALAT1-/- mice display massive atherosclerosis and vascular inflamma-
tion [50,194,195,206]. A recent study found that these tRNA-like molecules are critical
components of innate immunity and contribute to a balance response of immune cells to
diverse challenges. They appear as prototypes of a new class of noncoding RNAs distinct
from others (miRNAs, siRNAs) by biosynthetic pathway and intracellular kinetics.

For the long primary transcripts of NEAT1 a particularly interesting function of general
cell-biological interest has been elucidated in much detail. These lncRNAs are critical for the
formation of paraspeckles which are involved in multiple cellular functions [205]. Yamazaki
et al. have put the phenomenon of paraspeckle formation into a much broader context of
micellization and the formation of biomolecular condensates [207], which are essential for
subcellular and nuclear compartmentalization. Molecules involved in these fundamental
processes may have deep impact upon various cellular functions in a context-dependent
manner (e.g., immune stress, infections, toxins). Association of such molecules with diverse
diseases is therefore not entirely unexpected.

Other recent studies [88,208,209] have elucidated—- in mechanistic detail—- the com-
plex multi-level functional integration of distinct regions of the human genome, expressing
lncRNAs, in the molecular pathogenesis of glioblastoma (Figure 4).

A remarkable molecular circuit involving ncRNAs plays a pivotal role in governing
cell fate and transformation within the brain. This circuit comprises a miRNA, lncRNAs,
and a small nuclear RNA (snRNA). The initial component of this intricate network, miR-
10b, was originally identified as a unique miRNA that remains transcriptionally silenced in
normal brain cells but becomes derepressed in low-grade gliomas and nearly all adult high-
grade gliomas, including the most aggressive glioblastoma (GBM), a highly heterogeneous
class of brain tumors [210,211]. While activated in glial lineage cells, miR-10b functions
through both classical and non-conventional pathways. It regulates the expression of
multiple mRNAs associated with cell cycle, cell death, and invasion, such as CDKN1A,
CDKN2A, BIM, as well as ncRNA targets [210,212,213]. Notably, an unbiased analysis of
miR-10b targets has identified an essential ncRNA component of the spliceosomal machin-
ery, U6 snRNA, as a principal direct target. By modulating the structure, modifications, and
levels of U6 snRNA, miR-10b exerts influence over the splicing of numerous cancer-related
genes [213].

Overall, glioma cells display a strong dependence on miR-10b, making this small
tu-mor-promoting RNA an attractive target for the development of GBM therapies. Various
miRNA-targeting modalities, formulations, and delivery approaches employing antisense
oligonucleotides (ASOs), gene editing, and small molecules, are currently under develop-
ment [214–217].

The intriguing phenomenon of miR-10b’s silencing in neuroglial cells of the brain and
its transcriptional activation during gliomagenesis has prompted investigations into the up-
stream mechanisms responsible for this activation. Interestingly, the entire miR-10b locus,
which also encodes 12 HOXD genes, becomes activated in gliomas through a mechanism
involving lncRNA-mediated spatial chromatin reorganization (looping). Two interact-
ing lncRNAs, HOXD-AS2 and LINC01116, associate with the HOXD3/HOXD4/miR-10b
promoter and a distant enhancer, respectively, and both are necessary for the locus’s
derepression and gene expression ([88] and Figure 4).
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Furthermore, recent work suggests that the LINC01116 enhancer RNA (eRNA) also
acts in trans and exhibits global genome wide-modifying activity. It directly binds to
more than a thousand gene promoters, including those of 44 glioma-specific transcription
factors distributed across all chromosomes, derepressing them by removing the Polycomb
repressive complex 2 (PRC2). Consequently, the activation of this single lncRNA in astro-
cytes, which are cells of glioma origin, is sufficient to trigger the glioma transcriptional
program. In addition to miR-10b and HOXD factors, this includes the activation of neuro-
developmental regulators like OLIG2, SOX2, POU3F2, and SALL2, along with multiple
oncogenes such as EGFR, PDGFR, TERT, BRAF, and miR-21, ultimately leading to malignant
transformation [208]. Conversely, targeting LINC01116 with siRNA or ASO may hold
substantial therapeutic potential for malignant gliomas, opening exciting new avenues in
neuro-oncology and, more broadly, neurology.

It is worth noting that this circuit encompasses various types of ncRNAs, both in
terms of evolutionary conservation and functional diversity. These include the highly
conserved and functionally essential in diverse eukaryotic species U6 snRNA, the relatively
well-conserved miR-10b in vertebrates, and the largely primate-specific LINC01116. These
observations prompt intriguing questions about the origin of human brain tumors, a
phenomenon uncommon in other mammals, with only a few exceptions. This parallels the
scenario seen in most human neurologic diseases.

The recent evolutionary emergence and the species- and cell-type specificity of
LINC01116 and many other lncRNAs invite further in-depth research, undoubtedly lead-
ing to better understanding of human pathologies and the discovery of new therapeutic
targets and biomarkers for various diseases. Furthermore, with regard to LINC01116, it is
noteworthy that this transcript is expressed at high levels not only in the brain, but also in
some normal and cancer cells outside the central nervous system. Additional studies into its
functions beyond the CNS are needed. It is also imperative to integrate our under-standing
of its chromatin-modifying activity with potential extra-nuclear functions [218,219].

9. Impact of Human-Specific Genes and ncRNAs upon Pathogenesis via Peculiar
Interactions between Human Brain and Mind and the Immune System

Considering three levels of increasingly complex genome–disease relationships as out-
lined in Section 4, at the third level peculiar indirect pathways from the noncoding genome
to neurological diseases may result from the well-documented close and intense interactions
between human brain and mind and the immune system. In the latter, immunoregulatory
ncRNAs play important stabilizing roles and some of these, e.g., CHROMR, are primate-
specific [53]. Sequence variants or altered expression pattern of these ncRNAs in immune
cells may directly trigger brain dysfunction.

The grave adverse effect of psychological stress upon human diseases is well
known [220–222], and several stress-induced brain–immune system interactions have
been elucidated at the molecular, cellular, and systemic level [55,221,223]. In fact, the field
of psychoneuroimmunology is one of the fastest-growing fields in the life sciences aiming
to stepwise elucidate the highly complex interactions between nervous system and immune
system at the molecular and cellular level [224–229].

Since psychological stress is certainly different in humans as compared to all other
species, as a consequence of the peculiarity of the human brain and mind [158], any direct
genetics-based immune dysfunction (Section 5) may well synergize with any direct genetic
predisposition towards neuropsychiatric disorders (Section 7), indirectly resulting in grave
brain dysfunction and disease once sufficient psychological stress peculiar to humans
is imposed.

10. Current Status of Translational Research into Nucleic Acids-Based Therapeutics

Nucleic acid-based and nucleic acid-targeting therapeutics are currently developed at
large scale for the prevention and management of multiple diseases for several reasons:
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(1) Genetic studies have highlighted novel therapeutic RNA targets suggested to be
causal for these diseases;

(2) There is substantial recent progress in delivery, efficacy, and safety of nucleic
acid-based therapies;

(3) They enable effective modulation of therapeutic targets that cannot be sufficiently or
optimally addressed using traditional protein-targeting small molecule drugs or antibodies.

Nucleic acid-based therapeutics in development also being evaluated for the diseases
outlined and discussed above include: mRNA-targeting drugs for gene silencing; miRNA
inhibitors and mimics; gene augmentation therapies; genome-editing approaches:

(A) mRNA-targeting drugs for gene silencing: several large-scale clinical development
programs, using antisense oligonucleotides [ASO] or short-interfering RNA [siRNA] ther-
apeutics for prevention and management of cardiovascular disease have been initiated.
These include ASO and/or siRNA molecules to lower apolipoprotein (a), proprotein conver-
tase subtilisin/kexin type 9 (PCSK9), apoCIII, ANGPTL3 for the prevention and treatment
of patients with atherosclerotic cardiovascular disease. In other fields of medicine includ-
ing neurology, silencing of transthyretin (TTR) was evaluated for the treatment of TTR
amyloidosis [10,133,230–232].

(B) miRNA mimics and inhibitors for miRNA modulation: Several types of mimetic drugs
and inhibitors (e.g., antagomirs) have been developed and a few of them evaluated in
clinical trials [135]. These drugs may be “classical” small molecule drugs [233–235] or
engineered nucleic acids [106,217].

(C) Gene augmentation therapies: EMA/FDA have approved “classical” gene therapies,
i.e., those involving vector-based transfer of the protein-coding cDNA sequence into the
patient, for monogenic disorders. These include the hemophilias [236–242], homozygous
hypercholesterolemia [243], and others. Very recently, entirely different approaches towards
gene augmentation are being developed which are based on highly specific modulation of
RNA-based regulatory networks [244,245]. The molecular details of these approaches for
RNA-targeted gene activation and their potential for clinical translation are discussed by
Khorkova et al. [244].

(D) Genome editing approaches: These technologies, such as those using CRISPR-Cas9,
have proven powerful in stem cells; however, grave challenges remain, such as low rates of
homology-directed repair in differentiated somatic cells (e.g., cardiomyocytes, neurons)
and risk for off-target effects encompassing the germline.

Despite complex biotechnological challenges, current lack of efficient therapies for
multiple severe and abundant diseases is clear evidence for the need to proceed beyond
current options. Reassuringly, a remarkable number of pioneering clinical trials have
proven technical and clinical feasibility of nucleic acid therapeutic approaches for impor-
tant cardiovascular [108,112–135] and hematological [236–242] diseases. These are truly
fundamental achievements compared to the situation one decade ago.

The versatility of therapeutic non-coding RNA structures will certainly continue to
expand the repertoire of our therapeutic tools, with majors leaps to be expected once
critical technological issues are solved (Figures 2, 5 and 6). Fundamentally different from
DNA, RNAs are carrying information not only in their linear sequences of nucleotides
(primary structure), but local nucleotide pairing creates secondary structures, e.g., hairpins,
and interactions among distantly located sequences create tertiary structures. In fact, this
structural versatility needs to be considered for RNAs as therapeutic tools as well as targets.
The plethora of RNA types, sequences, and structures created by evolution is a treasure
trove of potential therapeutic tools and targets.

The strategies outlined above involve the use of “informational” drugs designed
based on the sequences of specific targets. Additionally, extensive research in the field
of RNA-targeted small molecules [234,235,244] complements these approaches and holds
promise for enhancing drug delivery to traditionally challenging target tissues, such as
the CNS. The current framework primarily employs small molecules as modulators of
mRNA splicing and translation. However, it has the potential to expand to target various
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classes of ncRNAs and encompass both RNA inhibitors and activators. Initial strides have
been taken to identify small molecule inhibitors of miRNAs that interfere with miRNA
biogenesis [246,247]. Recent work has also out-lined a high-throughput screening strategy
for identifying small molecule miRNA modulators using phenotypic expression-based
profiling [161,233]. Furthermore, numerous opportunities exist for the targeting of highly
structured lncRNAs once their functional domains become better investigated, as reviewed
elsewhere [234].

11. State-of-the-Art in Nucleic Acid-Based Therapeutics and Their Molecular and
Cell-Biological Foundations

It is important to note that nucleic acid-based approaches are currently the only
therapeutic tools capable to address a multitude of therapeutic targets with proven key
impact upon disease pathogenesis, but without any traditional pharmacological options
(small molecule drugs, antibodies). Two decades of intense worldwide efforts to develop
the novel approaches towards clinical utility have led to remarkable progress for a number
of important diseases and in a few cases their entry into clinical practice. Whereas the liver
and hepatocytes emerged as rather easily accessible target for RNAi or ASO strategies, once
breakthrough molecular design and delivery discoveries (Figure 5) were made, efficient
and selective targeting of many other organs and, in particular, proper targeting of specific
cell population therein [248–252] has not yet been successfully applied in clinical trials.

While for many cell types and tissues there is currently still no clinically established
targeting system available, this was also the case for liver/hepatocyte targeting just one
decade ago. This problem is meanwhile solved through elegant molecular drug design
and delivery systems. Considering the putative novel human-specific therapeutic targets
discussed above, pathogenic involvement and possible molecular pathomechanisms have
already been well documented in cell cultures, organoids, and animal models. Since several
of these regard most severe and abundant diseases, this should be considered a strong
incentive to solve the remaining methodological hurdles.

Promising progress has recently been made employing direct intrathecal delivery of
chemically engineered siRNAs and ASOs to the CNS, enabling long-term target modu-
lation [253,254]. These breakthrough molecular design studies may possibly, in the long
run, have similar translational impact as those which have previously led to the successful
liver-targeting trials reviewed above. One study engineered a peculiar divalent siRNA
chemical scaffold, which enabled potent modulation of gene expression throughout the
CNS sustained over six months upon a single intrathecal injection [253]. Another study
achieved allele-specific gene silencing in Huntington’s disease models when using chemi-
cally engineered siRNAs [254].

An alternative approach to nonviral, chemically synthesized, delivery systems for
protein augmentation or RNAi-based target gene silencing is a broad spectrum of recom-
binant virus-based vectors (Figure 6). Due to the inherently grossly different organ and
cell tropisms of the respective basic viruses, their broadly variable stability in the target
cells, as well as their potential to induce systemic and local immune responses, selection
of a suitable viral vector needs to consider multiple details of the attempted therapeutic
strategy [93,94,248,255–262]. These include the desired duration of target modulation, the
vector’s capacity to cross relevant anatomical, vascular, and cellular barriers, and preferably
even target cell-specific vector–cellular surface receptor interaction to achieve selectivity
and avoid off-target side effects.

12. Unsolved Challenges and Novel Therapeutic Approaches Guided by Mechanistic
Insights at the Molecular and Cell Biological Level

Molecular and cellular basis of liver targeting: Similar to the situation about a decade
ago, when efficient and hepatocyte-selective in vivo delivery systems (Figures 3 and 5) for
experimentally already well established targets in the liver were still unavailable, brain
or even brain cell-specific drug delivery is still in early infancy today. While hepatocyte-
specific genetic drug delivery is clinically applied, for none of a range of brain-targeting
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approaches based on synthetic nanoparticles [189,191,192,263–271], or involving rabies
virus proteins [272,273] or vectors [274–280], the key therapeutic efficacy requirements
(Figure 5) have been established so far. Nonetheless, they are most useful for experimental
pathogenetic research purposes already.

Challenges of brain targeting: Targeted and safe delivery of any nucleic acid-based
(siRNA, ASO) drug to specific regions of the brain appears to be a far greater challenge than
liver targeting or ex vivo blood stem cell modulation (Figure 7). A remarkable spectrum
of brain-targeting approaches encompasses synthetic nanoparticles [189,191,192,263–271],
rabies virus proteins [272,273], or vectors [274–279], yet none of these are established with
respect to key efficacy requirements (Figure 5). Nonetheless, they are already most useful
for pathogenetic research. Recombinant AAV vectors are currently encountering particular
interest for brain-directed therapies due to favorable inherent or engineered properties, as
outlined below.

First experimental steps: A number of first experimental therapeutic studies in mice
(Section 3) holds promise for further developments with translational potential employ-
ing more sophisticated and safe drug delivery systems. These will need to have well-
established molecular and cellular mechanisms of action, including carrier ligand–cell
surface receptor [184–189,281] interactions, as well as clearly characterized in vivo behav-
ior [191–193]. The latter encompasses possible crossing of the blood–brain barrier via
transcytosis [282–286], as well as local drug delivery through stereotactic approaches.
Furthermore, non-invasive monitoring of therapeutic drug function in patients is highly
desirable. For therapeutic proteins this may be enabled by a magnetic resonance imaging
(MRI) approach [287–289] for real-time reporting of the gene therapy product in vivo by
use of an MRI probe that is activated in the presence of therapeutic protein expression.

Advanced AAV-based vector systems: Currently, AAV-based vectors are encountering
high interest for brain-targeted therapies [248,290–292]. In other fields, e.g., hematology
or cardiovascular medicine, genetically engineered and surface-modified (pseudotyped)
versions of this vector have been extensively studied previously for therapeutic gene
augmentation [258,293] and RNA interference (RNAi) mediated gene silencing [93]. AAVs
are considered as vectors of choice for many nervous system targets due to desirable
safety profile, extensive basic science, and clinical experience from other fields including
clinical trials, stable transgene expression in post-mitotic cells, and neuronal tropism. Low
immunogenicity of AAVs is a further critically important aspect, and the recently developed
system of extracellular vesicle-encapsulated AAVs (EV-AAVs) enables efficient gene transfer
even in the presence of pre-existing AAV-neutralizing antibodies in patients [258,294–296].

Anatomical barriers against nanoparticle or vector-based therapeutics: One study [291]
reported that a particular serotype, AAV9, is capable to cross the blood–brain barrier
(BBB) [286,297], raising the possibility of intravascular administration as a non-invasive
delivery route to achieve widespread CNS gene expression (Figure 7). Crossing of the blood–
brain barrier appears to occur via transcytosis [282–285]. Notably, this same AAV serotype
is also capable to enter the myocardium across the tight cardiovascular endothelium
(impermeable for other AAV serotypes) and has previously been successfully employed
for cardiac gene transfer [258,293] and the first demonstration of cardiac RNA interference
(RNAi) therapy [93].

Differential tropism and cell type selectivity: So far, however, very little is known about
differential tropism of the currently available AAV pseudotypes for different brain cell
types of specific therapeutic interest [298,299]. From previous studies, it is well known
that genetic engineering of the vector surface i.e., pseudotyping has, in principle, the
capacity to alter tropism in a desired direction [248,250,291,292,300,301]. However, recent
high-throughput methods have identified the host proteins essential for vector attachment
and internalization more comprehensively, and subsequent molecular studies including
cryogenic electron microscopy (cryo-EM) have revealed unanticipated complexity and
serotype specificity of the cellular vector entry process [302]. Theoretical predictability of
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the in vivo effects of vector modifications is therefore limited and extensive experimental
validation essential [303].

Pillay et al. [304] used an unbiased genetic screen to identify proteins essential for
AAV infection and identified a previously uncharacterized type I transmembrane protein,
KIAA0319L, which they named AAV receptor (AAVR). They characterized AAVR as capable
of rapid endocytosis and trafficking to the trans-Golgi network. AAVR was a critical host
factor for all tested AAV serotypes and AAVR−/− mice were resistant to AAV infection,
establishing AAVR as a universal receptor for involved in AAV infection. GPR108, a
member of the G protein-coupled receptor superfamily, was subsequently identified as
another highly conserved AAV entry factor [305]. Among 20 divergent AAVs across all
AAV clades, only AAV5 transduction was unaffected in the GPR108 knockout (KO). Thus,
this study identified the second of two AAV entry factors conserved between mice and
humans and relevant in vitro and in vivo.

Starting from the AAV9 serotype holding promise for trans-BBB therapy, a recombinant
AAV-PHP.eB was engineered by insertion of a 7-amino acid peptide and point mutations
of neighboring residues into the AAV9 capsid, thereby enhancing potency in the central
nervous system [306]. Consideration will be required for translation beyond mouse models,
however, because the CNS transduction benefits of AAV-PHP.eB over AAV9 are dependent
on administration route and mouse strain [307]. Specifically, AAV-PHP.eB produced higher
CNS transduction than AAV9 after intravenous injection, but only in C57BL/6J and not
in B6C3 mice. Another study [308] found mutation of certain tyrosine (Tyr) residues on
the AAV2 capsid enhanced neuronal transduction in striatum and hippocampus, while
analogous Tyr substitutions on AAV5 and AAV8 did not, emphasizing the unforeseeable
impact of any modifications with regard to both targeting efficacy and specificity. Similar
challenges with regard to clinical translation, generated by species differences, have been
extensively investigated with regard to another “hard target” for nucleic acid therapeutics,
i.e., the myocardium [8,93,258,294,309–311].

One approach towards selective targeting of specific brain cell types are engineered
AAVs deficient in heparan-sulfate proteoglycans (HSPGs) attachment, but instead recogniz-
ing the glutamate receptor 4 (GluA4) through a displayed GluA4-specific DARPin (designed
ankyrin repeat protein). When injected into mouse brain, >90% of the transduced cells
were interneurons. The DARPin mediated selective vector attachment to GluA4-positive
cells, while actual transgene delivery still required expression of AAVR [312].

Another highly innovative strategy employs membrane protein-specific nanobodies
inserted into a surface loop of the VP1 capsid protein of AAV2. Nanobodies are sin-
gle immunoglobulin variable domains of heavy chain antibodies naturally occurring in
camelids [313]. Nanobodies specific for different membrane proteins dramatically enhanced
the transduction of specific target cells by recombinant AAV2. Nanobody-VP1 fusion was
incorporated into AAV1, AAV8, and AAV9 and effectively re-directed the target specificity
of these AAV serotypes, too.

Transgene expression control: Beyond stability in the blood circulation and capability
to cross the blood–brain barrier, it is also desirable to equip the vector with a promoter
providing long-term transgene expression in the brain. Maturana et al. [314] have identified
and characterized small alphaherpesvirus latency-associated promoters (LAPs) which
enabled stable, pan-neuronal transgene transcription and translation from AAV-LAPs in
the CNS for 6 months. Thus, these LAPs are suitable candidates for AAV-based CNS gene
therapies requiring chronic transgene expression after one-time viral-vector administration.

13. Summary and Outlook

Figure 7 highlights the fact that liver-targeted genetic therapies (both for protein
augmentation or gene silencing) are established for several important human metabolic
and monogenic disease, since the key problem of proper targeting and stability upon
systemic injection has been solved. In principle, genetic modulation of immune cells
might expand the currently available arsenal of small molecule drugs, antibodies, and
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therapeutic cells. Except for ex vivo transduction of progenitor cells, however, immune
cell subtype-specific transduction for the treatment of inborn haematological or immune
diseases is still immature. The ultimate goal in neurology would be crossing of the intact
blood–brain barrier (e.g., transcytosis), followed by spontaneous vascular egress and
selective but efficient entry of the therapeutic nucleic acid into the target cell type where
pathogenesis occurs.

It must be kept in mind that each new nucleic acid-based drug and therapeutic target
may raise specific and previously unexpected issues, the most critical ones regarding
safety (immune activation, off-target effects at the cellular level, systemic mis-targeting and
accumulation, delayed-onset safe effects). It should be emphasized that each individual,
e.g., siRNA or ASO drug formulation, may have a specific side-effect, or particularly high
efficacy, which is not ‘group-specific’ i.e., not common to the siRNA or ASO class of drugs
in general. Seemingly minute molecular details of a siRNA, ASO, or gene therapy drug
may determine whether, for example, immune reactions or thrombopenia will be triggered
by this individual compound. High vigilance therefore needs to be focused upon each
individual drug from the field of novel nucleic acid-based and epigenetic therapies.

14. Conclusions

There is an expanding spectrum of diseases for which nucleic acid-based therapeutics
addressing fundamentally new therapeutic targets are envisaged or under development. Ex-
tensive genetic, experimental, and clinical work has highlighted important new therapeutic
targets possible causal or significantly contributing to development of these grave diseases.

Synergistic with the most remarkable recent progress regarding delivery, efficacy, and
safety of nucleic acid-based therapies, past and ongoing large-scale exploration of the
noncoding genome for human-specific therapeutic targets is encouraging to proceed with
the development and clinical evaluation of such new therapeutic pathways.
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