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Abstract: Endothelial cells are the crucial inner lining of blood vessels, which are pivotal in vascular
homeostasis and integrity. However, these cells are perpetually subjected to a myriad of mechanical,
chemical, and biological stresses that can compromise their plasma membranes. A sophisticated
repair system involving key molecules, such as calcium, annexins, dysferlin, and MG53, is essential
for maintaining endothelial viability. These components orchestrate complex mechanisms, including
exocytosis and endocytosis, to repair membrane disruptions. Dysfunctions in this repair machinery,
often exacerbated by aging, are linked to endothelial cell death, subsequently contributing to the
onset of atherosclerosis and the progression of cardiovascular diseases (CVD) and stroke, major
causes of mortality in the United States. Thus, identifying the core machinery for endothelial cell
membrane repair is critically important for understanding the pathogenesis of CVD and stroke and
developing novel therapeutic strategies for combating CVD and stroke. This review summarizes the
recent advances in understanding the mechanisms of endothelial cell membrane repair. The future
directions of this research area are also highlighted.
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1. Introduction

Endothelial cells (ECs) form the inner lining of blood vessels that play an important
role in maintaining vascular integrity and homeostasis. They provide a physical barrier
between the blood and vessel walls or tissues, which is essential in regulating homeostasis
and coordinating responses to blood vessel injury and inflammation. As ECs are constantly
exposed to mechanical, chemical, and biological stresses, their plasma membrane is fre-
quently disrupted and repaired. Failure to repair the disrupted membrane may cause
endothelial cell death, which impairs the barrier function of blood–tissues or vessel walls,
leading to vasculopathy, acute organ injury, and the initiation of atherosclerosis [1]. The
capacity and mechanisms of cells to repair wounded plasma membranes have been studied
in a number of cell types, especially skeletal muscle and cardiomyocytes [2–5]. Although
the exact mechanisms underlying the membrane repair or resealing in these cells are still
not fully understood, shreds of evidence available so far indicate that plasma membrane
resealing is an autonomous and intrinsic process. In addition, although frequent disruption
and resealing are commonly observed in mechanically exposed tissues, including skeletal
muscle and the endothelium, the study of endothelial cell membrane repair is limited. In
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this review, we will discuss the recent advances in the study of endothelial cell membrane
repair by focusing on the protein machinery that specifically operates in ECs. The future
research direction in this area will also be highlighted.

2. A General Model of Cell Membrane Repair

The plasma membrane of eukaryotic cells is vulnerable to mechanical, chemical,
and biological stresses. Consequently, plasma membrane disruption is a common type
of cellular injury in eukaryotic cells, and effective membrane repair mechanisms have
evolved to rapidly reseal a membrane breach, restore internal homeostasis, and prevent cell
death [6,7]. Although the exact mechanisms underlying the membrane repair or resealing
are still not fully understood, and different cell types may have different mechanisms, a
general model of cell membrane repair has been hypothesized.

2.1. Ca2+ Influx as a Trigger

By actively pumping Ca2+ ions from the cytosol into the extracellular spaces, cells
maintain cytosolic resting Ca2+ concentration in the nanomolar range and extracellular
Ca2+ in the millimolar range. When the integrity of the plasma membrane is breached, a
rapid influx of Ca2+ generates localized and transient increases in the cytosolic free Ca2+

concentration. The Ca2+ influx is required to trigger a series of reactions that rapidly reseal
the disrupted membrane [8]. Early studies in sea urchin eggs showed that a Ca2+ influx
through plasma membrane wounds triggered a rapid surface reaction followed by fully
restoring the egg’s integrity, allowing subsequent fertilization and normal development. In
contrast, when Ca2+ was removed from seawater surrounding the eggs, wounding resulted
in progressive loss of cytosol and cell death [9]. These initial observations were confirmed
in mammalian cells. For example, the microinjection of cells in Ca2+-free media inevitably
results in cell death, suggesting that extracellular Ca2+ as a trigger is required to effectively
repair microneedle wounds [10].

2.2. Ca2+-Targeted Proteins Form a Temporary Diffusion Barrier (Resealing Phase)

Different types of wounds may be repaired by different mechanisms. Tiny membrane
injuries (<1 nm), such as those created by electroporation or proteins that induce a lipid
disorder, may be repaired spontaneously by the force of the underlying membrane cy-
toskeleton [4]; however, this will not be discussed in this article. If a large membrane
injury is created, a Ca2+ influx will rapidly activate several cytosolic Ca2+-binding proteins,
such as calpain, dysferlin, annexins, S100A11, and transglutaminases. Calpain is a Ca2+-
dependent cysteine protease that can rapidly cleave dysferlin to release a 72-KD C-terminal
fragment (mini-DyaferlinC72). The mini-dysferlin can move to injured membrane sites and
bind to the exposed lipids [11]. MG53 (also known as TRIM72) is an E3 ligase. MG53 is
not a Ca2+ binding protein, but it can rapidly move to injured membrane sites and bind
to exposed membrane lipids. MG53 can interact with dysferlin and form a tight lattice
network to form a protein scaffold around the wounds, which forms the first protein barrier
to reseal the wound [12–14]. Annexins are Ca2+- and phospholipid-binding proteins that
move to the injured membrane sites and form a protein scaffold [15]. Annexin A2 can bind
to S100A11, another Ca2+-activated protein, both of which are required for efficient cell
membrane repair [16]. The protein complex of annexins and S00A11 may form a second
protein barrier to reseal the wound. Ca2+-activated transglutaminase has protein-linking
activity, which can make the proteins cross-link and form more intensive protein barri-
ers at the wound sites, preventing cytosol loss while the integrity of the lipid bilayer is
restored [17]. Interestingly, dysferlin can also interact with annexins to make these two
layers of protein “patch” more tightly [18]. There may be more proteins involved in the
formation of the protein barrier. In addition, the protein machinery resealing the wounds
may be different in different cell types. For example, MG53 is a skeletal muscle-specific
protein. In non-skeletal muscle cells (e.g., endothelial cells), there may be another protein
or proteins serving an equivalent role as MG53.
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2.3. Ca2+-Regulated Lysosome Exocytosis (Repairing Phase)

While the membrane injury is rapidly resealed, the loss of the membrane at the
sites of injury needs to be repaired. Experiments in sea urchin eggs and mammalian
cells revealed extensive and localized fusion of intracellular vesicles with the plasma
membrane a few seconds after injury and a Ca2+ influx [19]. Inhibiting vesicle exocytosis
by interfering with the formation of SNARE (soluble N-ethylmaleimide-sensitive factor
attachment protein receptor) complexes impaired plasma membrane repair, suggesting
that upon Ca2+ influx through the wound, pre-existing intracellular vesicles would fuse
with each other to form a membrane “patch”, which would then merge with the injured
plasma membrane and restore its integrity [20]. The identity of intracellular vesicles for
membrane repair was confirmed as lysosomes [21]. Exocytosis of lysosomes has been
extensively observed in injured cells, and plasma membrane repair is impaired after the
inhibition of lysosome exocytosis. Impaired plasma membrane repair is also seen after
the inhibition of synaptotagmin 7, a member of the synaptotagmin family of Ca2+ sensors
present on the membrane of lysosomes [22], or of the components of SNARE complexes that
mediate lysosome exocytosis [20]. Interestingly, inhibition of the lysosomal Ca2+ channel
mucolipin-1 also impairs plasma membrane repair, suggesting that Ca2+ stored in the
lumen of lysosomes may also contribute to the increase in the cytosolic Ca2+ concentration
that is critical for plasma membrane resealing [23]. Recent studies suggest that other
vesicles, such as endosomes and storage granules, may also be involved in the plasma
membrane repair [24,25].

2.4. Lesion Removal by Endocytosis

The final step is the removal of the repaired lesions of the cell membrane. Mammalian
cells injured mechanically or by bacterial pore-forming toxins, such as streptolysin O
(SLO), were found to undergo massive endocytosis after Ca2+-triggered exocytosis of
the lysosomes [26]. This unusual form of endocytosis observed after a Ca2+ influx is
independent of classical endocytosis proteins, such as clathrins, requires the presence
of cholesterol in the plasma membrane, and can be triggered by extracellular exposure
to the enzyme sphingomyelinase, which provides an important link between lysosomal
exocytosis and endocytosis-mediated plasma membrane repair. Caveolae are plasma
membrane invaginations with a diameter of ~80 nm that are associated with membrane
microdomains enriched in cholesterol and sphingomyelin (frequently described as lipid
rafts). Caveolae are present in many cell types and are particularly abundant in cells that
are under significant mechanical stress in vivo, such as muscle fibers, cardiomyocytes,
and endothelial cells [27]. Interestingly, electron microscopy studies have revealed a large
number of internalized vesicles with the size and morphology of caveolae in the cytoplasm
of injured cells or in intact cells treated with sphingomyelinase [26]. SLO was directly
visualized traveling into cells inside internalized caveolar vesicles, and the inhibition of
caveolae formation blocked plasma membrane repair, strongly suggesting that wounds can
be removed from the plasma membrane through caveolar endocytosis [27].

Collectively, these findings led to a multi-step model of plasma membrane repair.
According to this model, a plasma membrane injury triggers a Ca2+ influx, the formation of
a protein barrier, and exocytosis of lysosomal hydrolases, including acid sphingomyelinase
(ASM), which, in turn, remodels the outer leaflet of the plasma membrane. This triggers a
ceramide-dependent wave of endocytosis that internalizes the lesions (Figure 1).
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phospholipases. Alterations in membrane fluidity through interactions with amphipathic 
molecules or cholesterol extraction can make membranes easy to injure [28]. 

  

Figure 1. A general model of cell membrane repair. When the cell membrane is penetrated, the first
event is extracellular Ca2+ entering the cells through the injured site (1). Then, some Ca2+-sensitive
proteins, such as dysferlin and annexins, will quickly move to the injured site and form oligomers to
reseal the injured site (2). Next, cellular vesicles will move further to the site and repair the damaged
membrane (3). Finally, the repaired lesions will be removed by endocytosis (4).

3. Endothelial Cell Membrane Damage

The ECs in vivo are constantly exposed to mechanical, chemical, and biological stresses
generated by hemodynamic forces, toxic environmental substances, and metabolites and
pathogen-derived pore-forming toxins under physiological and pathological conditions.
Those extracellular and intercellular factors can constantly damage endothelial cell mem-
brane. Earlier studies found that on average, 6.5% of the endothelial cells of a rat aorta show
transient and resealable plasma membrane disruption [1]. Interestingly, these wounded
endothelial cells were particularly abundant around vascular bifurcation characterized by
turbulent and disturbed flow, which is the area prone to atherosclerosis. These results sug-
gest that the disruption and resealing of the endothelial plasma membrane may frequently
happen, and failure to repair the wounded cells may be an important mechanism leading
to the formation of early atherosclerotic lesions [1].

3.1. Mechanical Stresses

ECs are constantly subjected to a great amount of dynamic changed mechanical
forces, including shear stress and mechanical stretch, under physiological or pathological
conditions. Those mechanical stresses can directly damage endothelial cell membranes and
induce cell death. For instance, under hypertension, pressure-induced stretching of the
vascular wall may cause EC membrane damage, similar to exercise-induced skeletal muscle
membrane damage. Other mechanical forces may also cause EC membrane damage. For
example, the EC plasma membrane may be damaged by interaction with flashed blood
cells or inner substances (protein aggregates or inhaled nanoparticles) [28].

3.2. Chemical Stresses

Oxidation of low-density lipoprotein (oxLDL) is believed to play a key role in the
pathogenesis of atherosclerosis. It was demonstrated that a high dose of oxLDL can directly
damage the cell membrane and cause cell death [29]. Oxidative stress and intracellular
iron promote lipid peroxidation of poly-unsaturated fatty acids, leading to the removal
of damaged fragments and destabilization of the plasma membrane [30]. In addition,
lipid peroxidation can be induced by reactive oxygen species (ROS). During hypoxia or
ischemia/reperfusion (I/R) injury, an inadequate blood supply leads to mitochondrial dys-
function and the generation of ROS, which is further exacerbated upon re-oxygenation [28].
In addition, membrane lipids are subject to enzymatic damage by host or foreign phospho-
lipases. Alterations in membrane fluidity through interactions with amphipathic molecules
or cholesterol extraction can make membranes easy to injure [28].
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3.3. Biological Stresses

Pathogen infection can induce plasma membrane damage by several mechanisms.
For example, some bacteria can breach the plasma membrane and enter the cells. To
breach the plasma membrane, the bacteria can secrete virulence factors, such as secreted
sphingomyelinases and phospholipases [31]. In addition, the membrane damage can also be
achieved by pore-forming toxins, the largest class of bacterial toxins [32]. Although distinct
from bacterial pore-forming toxins, viruses similarly compromise host membrane integrity
through transmembrane channels termed viroporins [33]. There is also a large group of
endogenous pore-forming proteins that can cause cell membrane damage. Perforin and
complement factors are a major weapon of immune killing by pore-forming activities [34].
Other pore-forming proteins, such as gasdermins and MLKL (mixed-lineage kinase domain-
like pseudokinase), which are end products of pyroptosis and necroptosis pathways,
respectively, cause cell lysis by forming pores at the cell membrane [35,36].

4. Endothelial Cell Membrane Repair

Despite the fundamental importance of membrane repair for cell survival and tissue
integrity, studies on endothelial cell membrane repair are limited. Current studies suggest
that endothelial cell membrane repair may share some general mechanisms with other
cell types, such as skeletal muscle, but also have specific components to fulfill the specific
situations that endothelial cells encounter.

4.1. Dysferlin and Myoferlin

All known mammalian ferlin gene products (dysferlin, myoferlin, and otoferlin) are
essential for the trafficking of intracellular vesicles and may be involved in cell membrane
repair. Both dysferlin and myoferlin are abundantly expressed in skeletal muscles and
are important components of repairing machinery for muscles [37]. Loss of dysferlin
or myoferlin activity causes limb–girdle muscular dystrophy through impaired skeletal
muscle repair after physical injury [38,39]. Otoferlin is a specific member strongly expressed
in the auditory inner hair cells that are responsible for transmitting auditory information to
the central nervous system. Mutations of otoferlin cause autosomal recessive deafness in
humans, and genetic inactivation of the otoferlin gene impairs Ca2+-dependent exocytosis
in mouse auditory inner hair cells and causes profound deafness [40]. Proteomic profiling
showed that both dysferlin and myoferlin are localized at the endothelial membrane and
lipid rafts [41]. Western blot confirmed their expression in human primary endothelial
cells. Moreover, recent studies show that dysferlin may participate in endothelial cell
membrane repair by mediating lysosome fusion with the endothelial cell membrane [42],
and myoferlin is required for efficient endothelial membrane repair after mechanical
injury [43]. Nevertheless, the importance and mechanisms of dysferlin and myoferlin
in endothelial cell membrane repair in vitro and in vivo need to be further determined.

4.2. Annexins and S100A10/11

Annexins constitute a multigene family of Ca2+-dependent phospholipid-binding
proteins, with members of the family being expressed in animals, plants, fungi, and protists.
This family can be divided into five classes (A–E) based on their biological origins. In
vertebrates, class A is composed of 12 members, AnxA1–AnxA13 (Anx12 is currently
unassigned). Annexins have two structural domains: a conserved C-terminal domain with
4 repeats of 70–80 amino acids (8 in the case of AnxA6) and a variable N-terminal domain.
Each repeat contains a Ca2+ binding motif, allowing the annexins to rapidly translocate
to the plasma membrane or intracellular membranes by binding to negatively charged
phospholipids [44]. The functions of annexins include Ca2+-regulated endocytic and
exocytic events, the maintenance and regulation of membrane–cytoskeleton contacts, and
membrane domain organization [45]. AnxA2 is the most abundant member in endothelial
cells [46]. A1 and A5 are also expressed in endothelial cells. Recent studies show that
AnxA1, A2, A5, and A6 all rapidly move to the wounded sites after injury in endothelial
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cells. They can form a protein complex with S100A11, which is an EF hand-type Ca2+-
binding protein. The knocking down of AnxA2 or S100A11 proved that both of them are
required for efficient repair of endothelial cell membrane wounds. Further studies show
that the S100A11 C-terminal extension (residues 93–105) can interact with AnxA1 and
AnxA2 in a Ca2+-dependent manner. In addition, synaptotagmin-1 also binds to S100A11
in the presence of Ca2+, and depletion of synaptotagmin-1 interferes with wound site
recruitment of S100A11 and proper membrane resealing in endothelial cells [47].

4.3. Caveolins

Caveolins are major components associated with caveolar lipid rafts in the plasma
membrane and are implicated in many aspects of cellular functions. There are three
members of caveolins: caveolin-1, caveolin-2, and caveolin-3. Caveolin-1 is the primary
member of caveolins and is ubiquitously expressed in all tissues, including endothelial cells.
Caveolin-3 (Cav3) is strictly expressed in skeletal muscles. Mutation of Caveolin-3 is linked
to muscular dystrophy in patients [28]. Cav3 is essential for the repair of muscle membrane
damage. Cav3 can form a protein complex with MG53 and dysferlin. Cav3 mutants that
cause retention of Cav3 in the Golgi apparatus result in aberrant localization of MG53 and
dysferlin in a dominant-negative fashion, leading to defective membrane repair [48]. These
results suggest that Cav3 at the membrane is required for correct localization and retention
of MG53 and dysferlin on muscle membranes. While Cav3 is specifically expressed in
muscles, Cav1 is expressed in many tissues, including endothelial cells. Cav1 forms a
protein complex with myoferlin in endothelial cells. Both Cav1 and myoferlin are critical
for efficient endothelial membrane repair after injury [43].

4.4. Weibel–Palade Bodies

Weibel–Palade bodies (WPB) are unique secretory organelles in endothelial cells
that undergo evoked exocytosis following intracellular Ca2+ or cAMP elevation, thereby
supplying the vasculature with factors controlling hemostasis. The major components
stored within WPB are the multimeric glycoprotein von Willebrand factor (VWF) and the
adhesion receptor P-selectin. WPBs move to the endothelial cell membrane when there
is a blood vessel injury and fuse with the plasma membrane. VWF is released into the
lumen of the blood vessel and provides platelet adhesion sites. Low levels of VWF can
lead to a bleeding tendency, such as in von Willebrand disease, and elevated levels of VWF
are associated with an increased risk for thrombosis and cardiovascular disease [49]. A
recent study observed that complement-mediated endothelial membrane injury can be
mitigated by the mobilization of WPBs along with the secretion of VWF. Endothelial cells
lacking WPBs were not resistant to complement-mediated damage but became resistant
when transfected to express VWF. The study suggests that WPB exocytosis in response
to endothelial plasma membrane damage may be an essential mechanism for endothelial
cell membrane repair [50]. Interestingly, several other studies show that annexin A2 and
S100A10 complex is required for WPB exocytosis [51,52]. In a recent study, the Annexin
A2/S100A10 was confirmed to be required for efficient endothelial cell membrane repair
after mechanical injury [46]. How WPB repairs the endothelial cell membrane still needs
further study.

4.5. Other Proteins

Theoretically, any proteins that regulate processes such as cytoskeleton, exocytosis,
and endocytosis may affect cell membrane repair. For example, Rab3a, Rab10, myosin 11A,
11B, SNARE, and ESCRT III (endosomal sorting complexes required for transport III) are re-
ported to be involved in the regulation of cell membrane repair [53–56]. However, whether
they are also involved in endothelial cell membrane repair needs to be determined. Anoc-
tamin 5 (ANO5, also known as TMEM16E) is a member of the transmembrane 16 (TMEM16)
family of Ca2+-activated ion channels and phospholipid scramblases. Human mutations
of ANO5 cause adult-onset limb–girdle muscular dystrophy 2L (LGMD2L) and Miyoshi
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muscular dystrophy (MMD3). In mice, ANO5 is implicated in muscle differentiation and
membrane repair [57]. ANO5 is primarily expressed in muscle and bone. It is also expressed
in endothelial cells; however, its role in endothelial cells remains unclear. Endophylin-A2,
which participates in membrane vesiculation during receptor-mediated endocytosis, is a
~40 kDa SH3 domain-containing protein that binds to the proline/arginine-rich domain
of dynamin 2, a ~100 kDa GTPase that is essential for endocytic membrane scission. Both
endophilin-A2 and dynamin 2 are involved in the regulation of cell membrane repair [58];
however, whether those proteins are also involved in endothelial cell membrane repair
remains to be studied. MG53 (also known as TRIM72) is a protein member of the TRIM
family that acts as a key component of cell membrane repair machinery in muscles [14];
however, MG53 is not expressed in human endothelial cells. The role of MG53 may be
fulfilled by another TRIM protein or non-TRIM protein in endothelial cells, but this needs
to be determined.

5. The Diseases Linked with Defective Endothelial Membrane Repair

Failure to rapidly reseal a damaged endothelial membrane may result in endothelial
cell death, which is linked with acute or chronic vascular diseases, such as disruption of
the blood–tissue barrier or atherosclerosis.

5.1. Atherosclerosis

Atherosclerosis is a common condition that links to cardiovascular diseases and stroke
and is associated with local inflammation and oxidative stress. Disruption of endothelial
cell homeostasis is an early step in the atherosclerosis process, as it can lead to vascular
permeability, impaired clotting function, and lipid infiltration into perivascular intima,
which causes stress injuries to the vascular wall. It was established that dysferlin, myoferlin,
annexins, and caveolins are actively involved in the process of endothelial membrane repair
and other functions in endothelial cells. It may be expected that the loss of function of
those proteins may promote the development of atherosclerosis. Despite high dysferlin
expression in mouse and human atheromatous plaques, the loss of dysferlin did not affect
the atherosclerotic burden as measured in the aortic root, arch, and thoracic and abdominal
aortic regions in ApoE−/− mice [59]. These results may be due to myoferlin compensating
for the role of dysferlin in endothelial cells. In addition, genetic ablation of caveolin-1,
a principal structural protein component of caveolae, which are small invaginations in
the plasma membrane, was proven to protect against the development of atherosclerosis,
with about a 65% reduction in the atherosclerotic lesion area [60]. Annexin A1 is a 37 kDa
protein that plays an important role in the cardiovascular system. Annexin A1 is found
in different locations, including the plasma membrane, endosomes, secretory vesicles,
cytoskeleton, and nucleus. It can also be secreted outside of cells when the cells are
activated. Several studies have demonstrated that annexin A1 protects from atherogenesis
and atheroprogression in mice [61]. Annexin A2 expression is markedly upregulated
in atherosclerotic lesions of ApoE knockout mice [62]. However, germline deletions of
Annexin A2 did not reduce the atherosclerotic burden in ApoE-deficient mice [63].

5.2. Diabetes Mellitus

Diabetes mellitus is a metabolic disorder characterized by hyperglycemia due to insuf-
ficient insulin production or insulin resistance. Vascular injury arising from hyperglycemia
is considered a major contributor to the growing morbidity and mortality rates associated
with diabetes. In diabetic patients, oxidative stress, reduced nitric oxide (NO) levels, and in-
flammation all can contribute to the disruption of endothelial integrity, leading to abnormal
blood fluidity and vascular tone. Instant cell membrane resealing (ICMR) is a crucial mech-
anism that helps to maintain endothelial integrity. Annexin A5 can form a two-dimensional
bandage at the torn membrane edges to prevent the expansion of the membrane wound
and promote the final step of membrane resealing. However, more retarded ICMR was
observed in mouse aortic endothelial cells exposed to high glucose, which is because high
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glucose decreased the association of membrane ceramide with annexin A5 [64]. The high
glucose-induced impairment of membrane resealing could be prevented by sphingomyelin
or C24-ceramide pretreatment [65]. Additionally, hyperglycemia also elevates lysosome
exocytosis, ceramide production, and membrane raft clustering. Overall, high glucose
impairs endothelial membrane resealing and makes the cells more vulnerable to secondary
membrane damage.

5.3. Acute Respiratory Distress Syndrome (ARDS) and Idiopathic Pulmonary Fibrosis (IPF)

Cell injury and death play a critical role in lung-injurious diseases. In ARDS and IPF,
the lung is exposed to various insults, such as infection, oxidative stress, and mechanical
stress, and is highly susceptible to plasma membrane wounding. Cell death always oc-
curs through apoptosis, necrosis, necroptosis, and other undefined mechanisms following
plasma membrane wounding. Lung injury and repair are involved in the pathogenesis of
ARDS and IPF. Prolonged cell wounding and aberrant repair make it difficult to maintain
cell membrane integrity, resulting in the release of intracellular contents and a subsequent
immune response. Proinflammatory cytokines can also activate downstream signaling,
which either produces membrane injury productions or direct compromised plasma mem-
brane integrity as part of the cell death mechanism. Quick and effective plasma membrane
repair can restore the injurious cells and preserve cellular homeostasis. In type I alveolar
epithelial cells, MG53 improves cellular integrity through its interaction with caveolin 1 [66];
however, the link between MG53 and caveolar endocytosis or other protein-binding part-
ners at the plasma membrane in the context of repairing the wounding of lung endothelial
cells is not well understood.

6. The Resealing Agents for Endothelial Membrane Repair

When the endothelial cell membrane is damaged, it may lead to cell death and
have various adverse consequences; therefore, treatment targeting membrane repair may
help to maintain the integrity of endothelial cells and benefit patients with membrane
repair defects.

6.1. Recombinant MG53

MG53, also known as TRIM72, has been identified as an essential component of the
cell membrane repair machinery in striated muscles. The recombinant human MG53 can
specifically be transported to the membrane wounding sites and prevent the expansion of
the rupture. Several studies have demonstrated that treatment with recombinant human
MG53 protein increased membrane integrity and protected against organ injury in mice,
such as in the muscles, heart, lungs, kidney, brain, and liver [67–72].

6.2. Recombinant Annexins

Several annexins can be secreted outside of cells. The recombinant human annexins
exhibit many effects on cells, including membrane repair, anti-inflammation, promoting
fibrinolysis, etc. In numerous studies, treatment with recombinant human annexins and
annexin analog peptides have consistently found positive outcomes in animal models
of sepsis, myocardial infarction, and ischemia-reperfusion injury. Annexins A1 and A5
improve organ function and reduce mortality in animal sepsis models, inhibit inflammatory
processes, reduce inflammatory mediator release, and protect against ischemic injury. The
mechanisms of action and demonstrated efficacy of annexins in animal models support
the development of annexins and their analogs for the treatment of sepsis. The safety and
efficacy of recombinant human annexin A5 are currently being studied in clinical trials in
septic patients [73].

6.3. Poloxamer 188

Poloxamer 188 (P188) is a stable amphiphilic polymer localized in lipid monolayers
and damaged regions of membranes. The FDA approved it as a therapeutic reagent to
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reduce blood viscosity for transfusions. It has been shown to increase the structural stability
and resealing of the plasma membrane, making it a potential therapeutic agent for various
conditions that involve membrane damage. For example, the administration of P188 can
reduce the loss of muscle mass in dysferlin-deficient SJL mice, which could provide a
basis for potential therapeutic strategies for dysferlinopathy [74]. In addition, P188 can
instantly improve ventricular geometry and block the development of acute cardiac failure
in dystrophic mice during a dobutamine-mediated stress protocol [75]. P188 pretreatment
could restore brain–blood barrier (BBB) integrity, suppress traumatic brain injury (TBI)-
induced neural cell death, and improve neurological function [76]. Notably, a recent study
demonstrated that P188 could prolong endothelial cell survival in bovine corneas stored at
4 ◦C by lowering the surface tension of the cell membranes [77]. The safety and non-toxicity
of P188 in humans was confirmed, but high doses may be toxic for long-term use; therefore,
more research is needed to understand the potential benefits and risks of P188.

6.4. Acid Sphingomyelinase (ASM), Sphingomyelin, or Ceramide

Plasma membrane repair requires Ca2+-dependent endocytosis to remove membrane
lesions. Membrane rafts are specialized domains in the plasma membrane that are enriched
in certain lipids, such as sphingomyelin and glycosphingolipids, as well as cholesterol. The
clustering of membrane rafts can be mediated by the translocation of acid sphingomyelinase
(ASM) to these domains. In response to certain stimuli, such as cell injury or stress, ASM
can translocate to the site of injury and become activated to facilitate repair. The local
ASM activation and ceramide production is an important step that mediates membrane
raft clustering. Ceramide-mediated endocytosis could repair membrane wounding quickly.
Exogenously added recombinant ASM restores endocytosis and membrane resealing in
ASM-depleted cells [78]. Chen et al. also suggest that ceramide-mediated instant cell
membrane repair in endothelial cells is impaired during diabetes, and this impairment
could be prevented by sphingomyelin and ceramide pretreatment [64]. In addition, caspase-
7 could enhance the endocytic membrane repair of GSDMD and MLKL pore opening by
activating ASM to produce ceramide [79]. The information on resealing agents has been
summarized in Table 1.

Table 1. The resealing agents for cell membrane repair.

Name Action Experimental Conditions References

Reconbinant MG53 Increased membrane integrity and protects
against organ injury Mice, in vivo injection [67–72]

Recombinant annexins
Improve the outcome of sepsis, myocardial
infarction, and ischemia-reperfusion injury

Mice, in vivo injection
Clinical trial [73]

Poloxamer 188
Reduce blood viscosity for transfusion FDA-approved

Improve outcome of TBI Mice, in vivo injection [76]
Prolong endothelial cell survival Bovine corneas, in vitro [77]

Acid sphingomyelinase Promote membrane resealing Cells, in vitro [78]

Sphingomyelin and ceramide Protect endothelial cell membrane impairment
during diabetes

Cells, in vitro
Mice, in vivo [64]

7. Discussion

ECs are constantly exposed to mechanical, chemical, and biological stresses generated
by hemodynamic forces, toxic environmental substances and metabolites, and pathogen-
derived pore-forming toxins under physiological and pathological conditions. A complex
reparative/regeneration system is required to repair the wounded membrane to keep cells
surviving. However, despite the fundamental importance of membrane repair for cell
survival and vascular integrity, studies on endothelial cell membrane repair are limited.
Current studies suggest that endothelial cell membrane repair may share some general
mechanisms with other cell types, such as skeletal muscle, but also have specific compo-
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nents to fulfill the specific challenges/stimuli that endothelial cells encounter. The core
machinery for endothelial cell membrane repair remains to be determined along with
injury-specific (sepsis, shear stress, metabolic insults) repair mechanisms. Some of the
proteins identified as playing a role in endothelial plasma membrane repair include dysfer-
lin, myoferlin, annexins, and caveolins, as described above. There may be other proteins
involved in this process. In the future, (1) the importance of cell membrane repair in the
pathogenesis of endothelial cell-related diseases needs to be evaluated; (2) the core machin-
ery and its working mechanisms of endothelial cell membrane repair needs to be identified;
and (3) the follow-up effect of endothelial cell injury and repair on endothelial function
needs to be further studied. Identifying the mechanisms might enable the future application
of recombinant molecular therapy to reconstitute the EC membrane and attenuate progress
of diseases.
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