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Abstract: Sarcopenia is a disease characterized by the progressive loss of skeletal muscle mass
and function that occurs with aging. The progression of sarcopenia is correlated with the onset
of physical disability, the inability to live independently, and increased mortality. Due to global
increases in lifespan and demographic aging in developed countries, sarcopenia has become a major
socioeconomic burden. Clinical therapies for sarcopenia are based on physical therapy and nutritional
support, although these may suffer from low adherence and variable outcomes. There are currently
no clinically approved drugs for sarcopenia. Consequently, there is a large amount of pre-clinical
research focusing on discovering new candidate drugs and novel targets. In this review, recent
progress in this research will be discussed, along with the challenges that may preclude successful
translational research in the clinic. The types of drugs examined include mitochondria-targeting
compounds, anti-diabetes agents, small molecules that target non-coding RNAs, protein therapeutics,
natural products, and repositioning candidates. In light of the large number of drugs and targets being
reported, it can be envisioned that clinically approved pharmaceuticals to prevent the progression or
even mitigate sarcopenia may be within reach.
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1. Introduction: Skeletal Muscle Aging, Definition of Sarcopenia and Current
Treatment Options

Skeletal muscle is the major organ system in the body and constitutes around 40% of
total body weight [1]. The main functions of skeletal muscle related to contraction include
the production of movement, maintenance of posture, stabilization of joints, and respira-
tion [2] letal muscle also plays a central role in metabolic health, because it is a major site
of carbohydrate and fatty acid metabolism [3] keletal muscle is the main protein reservoir
in the body and provides amino acid substrates for glucose and glycogen synthesis [4].
More recently, the endocrine functions of skeletal muscle have been recognized. Through
the action of myokines (cytokines synthesized and released during contractions) and my-
ometabolites (such as lactate, ammonia, and adenosine), skeletal muscle acts as a sensor
of nutrient status, environmental challenges, and organelle dysfunction that can regulate
systemic nutrient and stress signaling [5]. Consequently, skeletal muscle can influence the
physiology of multiple organs, such as the brain, liver, and gut.

A remarkable feature of skeletal muscle is its plasticity. Myofibers and associated
tissues, including capillaries and motor neurons, adapt to various stimuli, such as contrac-
tions, loading, nutrition, and environmental factors [6]. These adaptations in myofibers
involve alterations to contractile properties, mitochondrial function, metabolic capacities,
and both intercellular and intracellular signaling pathways [6]. Skeletal muscle is also sen-
sitive to aging (Figure 1). The most prominent changes are reduced mass and strength [7].
Aging-related skeletal muscle atrophy typically begins in the fourth decade of life, with
a loss of 3–8% muscle mass per decade thereafter [8]. This decline begins to accelerate
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after the age of 60 [9,10]. By 80 years of age, there is an approximately 30–50% reduction
in skeletal muscle mass [11]. One important consideration of skeletal muscle aging is
that strength declines more rapidly than mass [12]. For example, the reduction in knee
extension strength in old age is two- to four-times greater than the loss of muscle mass [13].
Overall leg strength decreases 10–15% per decade until 70 years of age, at which time it
is approximately 20–40% lower compared to young adults. After 70 years, this decline in
strength also accelerates to a 25–40% strength reduction for each decade [6].
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Although reduced mass and function are the two hallmarks of skeletal muscle aging,
there are multiple structural and biochemical changes in the muscle tissue that contribute
to this decline [14]. The myofiber cross-sectional area (CSA) is decreased, and this is ac-
companied by an increased accumulation of fat tissue [15]. The myofiber composition also
changes, with declining numbers of type II ‘fast’ twitch myofibers associated with strength
that rely on anaerobic glycolysis for energy production, alongside increasing numbers of
type I ‘slow’ twitch myofibers associated with endurance that rely on oxidative phospho-
rylation for energy production [16]. There is also a decline in the numbers and activity
of motor neurons, especially alpha-motor neurons that innervate type II myofibers [17].
Additionally, the denervated type II myofibers may be re-innervated by the branching
of adjacent motor neurons that innervate type I myofibers, resulting in their eventual
conversion into type 1 myofibers [18]. Mitochondria also become dysfunctional in aged
skeletal muscle [19]. Human studies have reported reduced mitochondria size, biogenesis,
respiration rate, and increased accumulation of mutations in the mitochondrial genome [20].
Other changes in aged skeletal muscle include a higher number of myonuclei undergoing
apoptosis, elevated levels of oxidative stress, increased production of proinflammatory
cytokines (known as ‘inflammaging’), and a reduction in the regenerative potential and
self-renewal capacity of skeletal muscle stem cells (also described as satellite cells due to
their proximal location to mature myofibers) [21].

Aging-related skeletal muscle atrophy was given the term sarcopenia by Irwin Rosen-
berg in 1989 (derived from the Greek σάρξ sarx, “flesh” and πενία penia, “poverty”) [22].
The definition and diagnosis of sarcopenia have evolved over time. In 2010, the European
Working Group on Sarcopenia in Older People (EWGSOP) provided a clinical diagnosis of
sarcopenia based on the loss of skeletal muscle mass and function [23]. In 2016, sarcopenia
was designated as a disease by the World Health Organization (ICD-10 code M62. 84: soft
tissue disorders) [24]. In 2018, the EWGSOP2 updated their clinical diagnosis of sarcopenia
to increase focus on reductions in muscle function (strength) and severe sarcopenia involv-
ing the loss of physical function [25]. In 2020, the Asian Working Group of Sarcopenia
(AWGS) defined its clinical criteria for sarcopenia based on poor physical function in the
presence or absence of reduced muscle mass [26]. The Foundations of National Institutes of
Health (FNIH) sarcopenia project in the USA incorporated clinically relevant cut-off points
of both low muscle mass and strength [27]. However, there are no universal, standardized
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parameters for diagnosing sarcopenia, with health organizations in different continents
designating their own criteria [27]. For example, the EWGSOP definition includes grip
strength of <30 kg for men and <20 kg for women, whereas the AWGS definition includes
grip strength <26 kg for men and <18 kg for women [27–29].

These differences in the criteria used to define sarcopenia influence calculations of
its prevalence in the aged population [27]. The ethnicity of the population studied and
healthcare setting (community versus hospital) also affect estimates of sarcopenia preva-
lence [27,30]. A systematic review by Cruz-Jentoft et al. in 2014 reported a prevalence
rate of up to 29% in community-dwelling older people aged ≥60 years and up to 33%
in long-term care aged >70 years [31]. A recent systematic review plus meta-analysis by
Petermann-Rocha et al. reported a prevalence of 8–36% for <60 years and 10–27% for
≥60 years [32]. Overall, the prevalence of sarcopenia in the general population is predicted
to increase due to gains in worldwide life expectancy and decreased fertility [33]. For
example, in the USA in 2030, the population over the ages of 65 and 85 is predicted to rise
by 147% and 389% compared to 2018 [33].

Sarcopenia is associated with an increased risk of developing a range of negative health
sequelae, such as poor overall and disease progression-free survival rate, postoperative
complications, longer hospitalization in patients with different medical issues, a greater
propensity for falls and broken bones, metabolic diseases, cognitive impairment, (such as
Alzheimer’s disease), and increased mortality [34]. Although aging is the major risk factor
for developing sarcopenia, it should be noted that other factors also increase the risk, such
as physical inactivity, malnutrition, smoking, extreme sleep duration, and diabetes [34].

The current treatment options for sarcopenia are based on exercise programs and
nutritional supplements. At the time of writing, there is no clinically approved drug for
this disorder. Resistance exercise (RE) has been shown to improve skeletal muscle mass
and strength in patients with sarcopenia [35]. The majority of exercise regimes prescribed
involve a combination of balance, aerobic, and RE, which have been shown to be more
effective than RE alone [36]. Full body exercise programs should be performed at least twice
per week, with a relatively high level of effort [37]. Nutritional supplements, such as greater
protein intake, are used to improve the muscle hypertrophic response to RE [38]. Balanced
meal frequency plus protein intake has been shown to increase muscle protein synthesis in
the elderly [39]. Animal-derived proteins, such as whey protein, are recommended due
to containing a wider spectrum of amino acids and increased ease of digestion compared
to plant-derived proteins [40]. The branched-chain amino acids (leucine, isoleucine, and
valine; BCAA) are important for sarcopenia research, because they have been shown to
promote protein synthesis/turnover and glucose metabolism in skeletal muscle [41]. A
recent meta-analysis indicated that BCAA supplementation may have beneficial effects
on muscle mass and strength in the elderly [42]. Other nutrition-based supplements
for treating sarcopenia include beta-hydroxy-beta-methylbutyrate, a naturally occurring
compound in humans that is derived from leucine and was shown to preserve or increase
strength in subjects with aging-related muscle atrophy [43]. Vitamin D supplementation
has also shown potential to treat and prevent sarcopenia [44]. More generalized dietary
interventions, such as the Mediterranean diet, have been reported to delay sarcopenia
progression in elderly communities [45].

Although exercise and nutritional interventions have shown effectiveness for treating
sarcopenia, there is still a need to develop therapeutics. For example, aging-related skeletal
muscle loss is still observed in the elderly that follow healthy lifestyles, such as Master’s
Athletes [46]. Adherence to exercise and nutrition interventions can also be problematic [47],
especially in patients with dementia [47]. Beneficial responses to exercise and nutrition
may also be blunted by anabolic resistance and inefficient digestion [48,49].

Numerous drug candidates have been assessed in clinical trials. Recent examples
include perindopril (angiotensin-converting enzyme (ACE) inhibitor) combined with
leucine [50], anamorelin hydrochloride (gherlin receptor agonist) [51], water extract of
Codonopsis lanceolata (flowering plant native to East Asia) [52], and bimagrumab (activin
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receptor type-IIB (ActRIIB) inhibitor) [53]. Although there is currently no clinically ap-
proved drug for sarcopenia, much progress has been made in characterizing the cellular
mechanisms underpinning the development of sarcopenia (Figure 2 and reviewed in [54]),
and this has led to the discovery of many new drug candidates. This review will focus on
these recent advances in the pre-clinical development of these novel candidate drugs and
biological targets for the treatment of sarcopenia.
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Figure 2. The major sarcopenia-related signaling pathways in myofibers. Arrows designate pathway
activation and bars designate inhibition. Target genes that are linked to skeletal muscle wasting are
also shown. Abbreviations: MSTN: Myostatin, IGF-1: Insulin growth factor-1, IRS-1: Insulin receptor
substrate 1, PI3K: Phosphoinositide 3-kinase, mToR: mammalian target of rapamycin, P70S6K:
Ribosomal protein S6 kinase beta-1, 4EBP1: Eukaryotic translational initiation factor 4E-binding
protein 1, AMPK: AMP-activated protein kinase, ALK4/5: Activin receptor type-1B, FoxO1,3,4:
Forkhead box O1,3,4, PDK: 3-phosphoinositide-dependent protein kinase-1, TSC: Tuberous sclerosis
1, Rheb: Ras homolog enriched in brain, ATG13: Autophagy-related protein 13, Ulk1/2: Unc-51-like
autophagy-activating kinases 1 and 2, eIF4E: Eukaryotic translational initiation factor 4E.

2. Novel Candidate Drugs under Pre-Clinical Development
2.1. Mitochondria-Targeting Compounds

As the ‘powerhouses’ fueling contraction, the integrity of the mitochondrial network
has a critical influence on skeletal muscle function. Mitochondria in skeletal muscle form a
reticulum providing conductive pathways for energy distribution [55]. This reticulum is a
dynamic network regulated by fusion proteins, such as mitofusins 1 and 2 (Mfn1 and 2),
and fission proteins, such as dynamin-related protein 1 (Drp1) and mitochondrial fission 1
(Fis 1) [56–58]. Damaged mitochondria in healthy muscle are degraded in autophagosomes
via the process of mitophagy. The mitochondria pool is maintained via biogenesis regulated
by master genes, such as peroxisome proliferator-activated receptor gamma coactivator
1-alpha (PGC-1α) [59,60]. These quality control mechanisms fail in aging muscle and
dysfunctional mitochondria accumulate, resulting in decreased ATP production, altered
proteostasis, reduced calcium handling, elevated oxidative stress, and inflammation, all
of which contribute to muscle atrophy [61–63]. Therefore, drugs that target dysfunctional
mitochondria have the potential to ameliorate sarcopenia progression.
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Elamipretide (SS-31) is a tetrapeptide that targets mitochondria to reduce reactive
oxygen species (ROS) production and stabilize cardiolipin, which is a major component of
the inner mitochondrial membrane [64,65]. Campbell et al. administered SS-31 to aged mice
(26 months old; approximately equivalent to 88 years in human age [66]) for 8 weeks via
implanted osmotic minipumps [67]. Assessment of the gastrocnemius muscle indicated the
restoration of redox homeostasis compared to young mice (5 months old), as shown by the
reversal of cysteine S-glutathionylation post-translational modifications across the muscle
proteome [67]. Mitochondria quality was improved, and treated mice showed reduced
muscle fatigue in a treadmill running test [67]. These findings suggest that the drug
targeting of mitochondrial oxidative stress alone may be sufficient to prevent aging-related
muscle dysfunction.

BAM15 is an orally available mitochondrial-targeted furazano [3,4-b] pyrazine proton-
ophore that selectively lowers respiratory coupling and protects against diet-induced
obesity [68]. Dantas et al. tested BAM15 in a model of sarcopenic obesity (80-week-old
mice fed a high-fat diet (HFD) for 10 weeks) [69]. BAM15 increased muscle mass, strength,
and locomotor activity [69]. These beneficial effects were due to enhanced mitochondrial
function and quality control, along with reduced endoplasmic reticulum (ER) misfolding
(indicating lower ER stress) [69].

A number of mitochondria-targeting drugs have shown effectiveness in other models
of skeletal muscle atrophy. For example, the cellular levels of NAD nicotinamide ade-
nine dinucleotide (NAD(+)) are important for mitochondria function [70]. Pirinen et al.
demonstrated that small-molecule MRL-45696, a pan inhibitor of NAD(+) consuming
poly(ADP-ribose) polymerases (PARPs), increased the amount of mitochondrial respira-
tory complexes, enhanced respiratory capacity, and boosted exercise endurance in adult
mice [71]. Improved mitochondrial function was also observed in myotubes derived from
obese humans with type 2 diabetes (T2DM) [71].

Mitoquinone mesylate (MitoQ) is a mitochondria-targeting antioxidant [72]. MitoQ
is a synthetic analogue of coenzyme Q10 with superior bioavailability and mitochondrial
penetration. Pin et al. showed that oral administration of MitoQ to tumor-bearing mice pre-
vented skeletal muscle wasting, improved strength, and downregulated the expression of
the wasting-related atrogenes atrogin-1 and MuRF-1 [73]. These beneficial effects occurred
without influencing tumorigenesis.

Mito-TEMPOL is a mitochondria-targeting superoxide dismutase mimetic that com-
bines the antioxidant moiety TEMPOL (also known as 4-hydroxy-TEMPO) with the
lipophilic cation triphenylphosphonium to facilitate permeability through lipid bilayers
and accumulation in mitochondria [74]. Supinski et al. demonstrated that the intraperi-
toneal (IP) delivery of Mito-TEMPOL was effective in preventing diaphragm atrophy in a
murine model of sepsis (critically ill patients, such as those with sepsis, commonly develop
intensive care unit-acquired muscle weakness) [75,76]. Mito-TEMPOL treatment improved
diaphragm force generation, mitochondrial function, and myosin heavy chain (MHC)
content and lowered proteolytic enzyme activities [75]. Furthermore, Liu et al. tested
the protective effect of Mito-TEMPOL in a murine chronic kidney disease (CKD) model
of uremia-induced skeletal muscle atrophy [77]. Analysis of the gastrocnemius muscle
showed that Mito-TEMPOL treatment increased muscle mass, increased mean myofiber
CSA, and reduced the expression of atrogenes atrogin-1, MuRF-1, and myostatin ((GDF8),
a myokine and member of the transforming growth factor (TGF)-β family that suppresses
muscle growth) [77]. Transmission electron microscopy also revealed improvements in
mitochondrial dysfunction [77]. These changes were reflected by increased grip strength
in the Mito-TEMPOL-treated mice [77]. It should be noted that these beneficial effects of
Mito-TEMPOL in this study may also be due to improvements in renal function in addition
to direct effects on skeletal muscle.

Although MRL-45696, MitoQ, and Mito-TEMPOL have not been assessed in models
of sarcopenia, their effectiveness in other types of skeletal muscle atrophy suggest that they
may be attractive candidates for testing in aging models. A number of novel targets related
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to mitochondria have also been identified that may be suitable for future drug development.
For example, Kimoloi et al. demonstrated that a dominant–negative variant of mitochon-
drial helicase produced muscle atrophy and increased the proportion of cytochrome c
oxidase-negative myofibers in aged (24 months old) mice [78]. Histological analysis also
revealed the presence of ragged red fibers with clumps of diseased mitochondria accumu-
lated in the subsarcolemmal area [78]. Satellite cell function was severely compromised,
and degenerated fibers were replaced with fibrotic and adipogenic tissue [78]. Recently,
Koh et al. reported that the expression of PGC-1α4 (an isoform of the master regulator
of mitochondrial biogenesis (PGC-1α)) increases in response to RE in humans, regulates
myofiber hypertrophy, and enhances glycolysis to supply ATP for muscle contractions [79].
The role of PGC-1α4 in muscle adaptation to RE was observed in both younger and older
subjects [79]. Thus, the authors speculated that PGC-1α4 can be a therapeutic target to
develop exercise mimetics for sarcopenia patients that cannot participate in RE programs
or suffer from anabolic resistance [79].

The studies described above indicate that strategies to reduce oxidative stress and
maintain the mitochondrial network in skeletal muscle may be beneficial to prevent aging-
related weakness. In this regard, indicators from human studies in research fields such as
sports physiology could be useful for selecting compounds that reduce oxidative stress in
aging muscle (see Braakhuis and Hopkins for a review [80]). For example, the antioxidant
N-acetylcysteine has been shown to delay skeletal muscle fatigue in healthy subjects, and in-
travenous administration in athletes produced improvements in sprint performance [81,82].
In addition, spirulina (an extract of blue-green algae containing numerous antioxidants)
is believed to have been consumed by the Cuban and Chinese Olympic teams to enhance
their response to training [80,81].

These results from targeting mitochondria (summarized in Table 1) also indicate the
importance of glucose metabolism (a mitochondrial function) in the maintenance of skeletal
muscle function and the potential negative effects of diabetes. The next section of this
review will discuss studies of anti-diabetes drugs in skeletal muscle aging.

Table 1. Mitochondria-targeting compounds.

Drug Target/Mechanism Experimental System Further
Development? Ref.

Elamipretide
(SS-31)

Reduce ROS and
stabilize cardiolipin

Female C57BL/6Nia
mice (26 mo)

Endurance
tested (no grip

strength)
[68]

BAM15
Lowers respiratory

coupling and
anti-obesity

Male C57BL/6
mice (80 wo) with
HFD (10 weeks)

Suitable for
sarcopenic

obesity
[70]

MRL-45696 Pan PARP inhibitor
Male C57BL/6

mice (10 wo) with
HFD (5 days)

Endurance
tested (no grip

strength)
[72]

Mitoquinone
mesylate
(MitoQ)

Synthetic antioxidant
analogue of coenzyme

Q10

Male CD2F1
C26 tumor bearing

mice (11 wo)

Not yet tested in
aged mice [74]

Mito-TEMPOL Superoxide dismutase
mimetic

(1) Male ICR(CD-1)
mice with

CLP surgery
(2) Male C57BL/6J

mice with
CKD surgery

Not yet tested in
aged mice [76–78]

2.2. Potential Utilizatioin of Anti-Diabetes Drugs for Sarcopenia

Skeletal muscle is a major site of postprandial glucose uptake and an important tissue
for the systemic utilization of free fatty acids (FFAs) [83]. Type 2 (adult onset) diabetes
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(T2DM) is characterized by insulin resistance and high blood glucose and FFA levels [84].
T2DM is associated with skeletal muscle atrophy due to factors such as increased oxidative
stress and inflammatory signaling mediated by nuclear factor kappa-light-chain enhancer of
activated B cells (NF-κB) and the c-Jun N-terminal kinases [85]. Therefore, it is reasonable
to hypothesize that anti-T2DM drugs could be employed as preventative or treatment
therapeutics for sarcopenia, because aging is generally associated with increased levels of
insulin resistance [86]. Both pre-clinical and clinical data can be used to assess the potential
of the different classes of anti-T2DM drugs for sarcopenia treatment.

Metformin (also known as Glucophage, Fortamet) is a first-line drug treatment for
T2DM and is generally well tolerated [87]. The mechanism is not fully characterized
but is known to involve the AMP-activated protein kinase (AMPK) pathway that also
regulates the skeletal muscle response to exercise [88,89]. Clinical data of the effects of
metformin on skeletal muscle in T2DM patients have shown mixed results [90]. Musi et al.
and Wang et al. showed no effect of metformin on lean body mass in T2DM patients
after metformin treatment for 10 weeks or 6 months, respectively [91,92]. In contrast,
J R Rodríguez-Moctezuma et al. reported that metformin increased lean mass in patients
at risk of developing T2DM [93]. Thus, further experiments are required to clarify the effect
of metformin treatment on aging-related muscle wasting and may focus on assessments
of skeletal muscle performance (e.g., grip strength or rotarod in mice). As noted above,
muscle strength declines more rapidly than mass in sarcopenia. Previous laboratory-based
studies suggest that metformin may actually exacerbate aging-related muscle weakness [90].
Hindlet et al. showed that metformin reduced intestinal peptide absorption in mice via
downregulation of the H(+)/peptide cotransporter 1 [94]. A recent study by Kang et al.
in mice found that metformin reduced muscle fiber CSA and upregulated the expression
of myostatin [95]. Interestingly, grip strength was not significantly affected by metformin
treatment [95].

Sulfonylurea (such as glibenclamide (Diabeta)) and meglitinide/glinides (such as
Prandin and Starlix) are anti-T2DM drugs that work by enhancing insulin secretion from the
pancreas via the inhibition of ATP-sensitive K+ (KATP) channels [90,96]. KATP channels are
also expressed in skeletal muscle and preclinical evidence suggests that drugs targeting this
channel produce muscle atrophy and apoptosis [97,98]. This was also supported by a meta-
analysis of the clinical data, which reported a 12-fold higher incidence of muscle atrophy in
patients prescribed glibenclamide compared to non-sulfonylureas or glinides [99].

Thiazolidinedione-based drugs, such as pioglitazone (Actos) and lobeglitazone (Du-
vie), induce glucose uptake from the bloodstream by activating peroxisome proliferator-
activated receptor (PPAR) nuclear receptor proteins [90]. Clinical trials reported lower
lean leg mass after pioglitazone treatment in patients with prediabetes, along with acute
rhabdomyolysis in T2DM patients prescribed pioglitazone or troglitazone [100–102]. Thus,
thiazolidinediones should be prescribed with caution in patients with aging-related muscle
wasting.

Sodium-glucose co-transporter 2 (SGLT2) inhibitors, dipeptidyl peptidase IV (DPP-
IV) inhibitors, and glucagon-like peptide-1 (GLP-1) analogs are T2DM medications with
conflicting reports on skeletal muscle wasting [90,103]. Sano et al. reported increased grip
strength in male and female T2DM patients treated with the SGLT2 inhibitor empagliflozin,
whereas a meta-analysis by Pan et al. reported that these drugs reduce skeletal muscle
mass [104,105]. In murine studies, the DPP-IV inhibitor vildagliptin was shown to switch
lipid accumulation from the liver and skeletal muscle to adipose tissue, which is in line
with the reduced skeletal muscle mass decline observed in T2DM patients [103,106]. How-
ever, toxicology studies in monkeys showed that high-dose vildagliptin can increase the
serum levels of creatine kinase (an indicator of skeletal muscle degeneration), although
this response may be species-restricted [107]. The GLP-1 analog liraglutide produced a
reduction in fat mass and increase in fat-free mass in obese TD2M patients after 12 weeks
of treatment [108]. In contrast, a recent meta-analysis of randomized trials concluded that
the GLP-1 analog semaglutide reduced both fat mass and fat-free mass [90,109]. Murine
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studies showed that semaglutide was effective in a male C57BL/6 mouse HFD model of
sarcopenic obesity via modulation of the skeletal muscle metabolome to increase path-
ways related to amino acids instead of lipids and organic acids [110]. The GLP-1 analog
dulaglutide has also recently shown promise as a promoter of skeletal muscle function in
aged (24-month-old) C57BL/6J male mice and as an inhibitor of inflammation-associated
myofiber injury in a male db/db mouse model of diabetic sarcopenia [111,112].

In summary, the T2DM drugs sulfonylureas and thiazolidinediones may not be suit-
able to treat sarcopenia due to documented negative effects on skeletal muscle. It may
also be advisable to monitor the development of muscle atrophy in patients prescribed
these drugs. The T2DM drugs metformin, SGLT2 inhibitors, DPP-IV inhibitors, and GLP-1
analogs may have the potential to treat aging-related skeletal muscle atrophy, but the
reported clinical and pre-clinical data are currently inconclusive and require further investi-
gation in models of muscle aging (Table 2).

Table 2. Anti-diabetes drugs.

Drug Target/Mechanism Experimental System Further Devel-
opment? Ref.

Metformin Involvement of the
AMPK pathway

T2DM patients and
mice

Inconclusive
results [91–96]

Sulfonylurea,
meglitinide/

glinides

ATP-sensitive K+

channel inhibitors
Meta analysis in

patients Not suitable [100]

Pioglitazone,
lobeglitazone PPAR activators T2DM patients Not suitable [101–103]

Glibenclamide SGLT2 inhibitor T2DM patients Inconclusive
results [105,106]

Vildagliptin DPP-IV inhibitor T2DM patients and
monkeys

Inconclusive
results [107,108]

Liraglutide,
semaglutide,
dulaglutide

GLP-1 analogs T2DM patients,
HFD-fed or aged mice

Inconclusive
results [109–113]

2.3. Non-Coding RNAs as Potential Drug Targets

Non-coding RNAs (ncRNAs) are RNAs that are not translated into proteins and
possess biological functions. The ncRNAs can be broadly divided into two classes: small
RNAs (such as microRNAs, piRNAs, and scaRNAs) and long RNAs (including Xist and
HOTAIR) [113]. Numerous studies have linked ncRNAs to aging-induced skeletal muscle
atrophy. From a drug discovery perspective, modulation of the activity of these ncRNAs
can be a strategy for developing therapeutics. This can be achieved at different points in
the pathways that regulate ncRNAs. For example, the biogenesis of the ncRNA of interest
could be downregulated or its function can be inhibited. ncRNA replacement could also
be employed to suppress biological activity [114]. Targeting ncRNA biogenesis would
be a suitable approach for developing small molecule-based drugs, whereas functional
inhibition or replacement could be achieved by AntimiRs, miRNA sponges, miRNA masks,
or miRNA mimics [114]. These drug development strategies are only applicable for ncRNAs
that promote, rather than ameliorate, aging-related skeletal muscle atrophy. Some recent,
prominent reports of ncRNA activity in sarcopenia are discussed below (a recent review is
also provided by Lee and Kang [115]).

There is increasing appreciation that the regenerative capacity of satellite cells becomes
compromised with aging. Shao et al. investigated the miRNA types differentially expressed
in small extracellular vesicles (sEVs) released from myotubes derived from aged mice with
muscle atrophy [116]. Compared to normal myotubes, the myotubes from aged mice
secreted sEVs with increased levels of miR-690. This miRNA was also found to be elevated
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in human skeletal muscle aging [116]. miR-690 treatment was shown to inhibit satellite cell
proliferation by targeting the myocyte enhancer factor 2 group of transcription factors that
are known to promote myogenesis [116,117]. miR-690 silencing in aged mice alleviated
muscle atrophy and enhanced satellite cell proliferation [116].

Synaptopodin-2 intron sense-overlapping lncRNA (SYISL) is known to regulate myo-
genesis in mice [118]. Jin et al. validated SYISL expression in humans and pigs and
demonstrated that SYISL knockdown alleviated muscle atrophy in murine models of sar-
copenia [119]. SYISL promoted muscle atrophy via the sponging of particular miRs via
contain complementary binding sites, such as miR-23a-3p, which are known to reduce the
activity of atrogenes MuRF-1 and atrogin-1 [119,120]. Overexpression of human SYISL in
the skeletal muscle of aged mice accelerated mass loss through conserved atrophy path-
ways regulated by the master atrogene forkhead box O3 (FoxO3a) that lies upstream of
MuRF-1 and atrogin-1 [119,121].

These examples of ncRNAs upregulated in conditions of muscle atrophy (such as
miR-690 and SYISL) may be utilized as potential targets for candidate drugs that reduce
their biogenesis or functional activity to mitigate sarcopenia progression. This strategy
was recently validated by Lui et al. for the microRNA (miR)-29b, which was shown
to be involved in multiple types of muscle atrophy [122]. Using virtual screening, an
in-house library of 3000 compounds was assessed for binding interactions with the well-
characterized three-dimensional structure of the hairpin precursor pre-miR-29b [123]. From
the ten best hits, the five-membered ring compound TGP-29b-066 was most effective at
specifically reducing miR-29b expression in C2C12 myotubes [123]. TGP-29b-066 prevented
myotube atrophy using the angiotensin II, dexamethasone, and TNF-α treatment models,
along with downregulating atrogin-1 and MuRF-1 expression [123]. This research could
pave the way for future small-molecule drug development that specifically targets atrophy-
related ncRNAs.

2.4. Development of Protein Therapeutics

Protein-based drugs have been successful in the clinic for the treatment of various
diseases, including cancer, multiple sclerosis, and infections (reviewed in [124]). Examples
include Bevacizumab (also known as Avastin), which is a humanized IgG for VEGF that
is used to treat cancer, and Etanercept (also known as Enbrel), an Fc-conjugated TNFR2
extracellular domain protein used to treat immune diseases. However, new methodological
developments may be necessary to overcome some challenges associated with protein
drugs, such as resistance and individual variations to therapy [124]. Nevertheless, over
200 genuine and modified therapeutic proteins have been approved for clinical use that
generate sales in excess of USD 100 billion [124].

Protein-based drugs are under development that may have applications for sarcope-
nia. Recently, Lee et al. built upon their previous studies of the myokine, meteorin-like
(METRNL), which was shown to be released from infiltrating immune cells after skele-
tal muscle injury to promote myogenesis [125,126]. In aged mice (24–27 months old),
adeno-associated virus (AAV)-mediated METRNL delivery via tail vein administration
or recombinant rMETRNL treatment via intramuscular (IM) injection enhanced skeletal
muscle regeneration after chemical injury with barium chloride [126]. Mechanistically,
single-cell RNA analysis demonstrated that METRNL triggered tumor necrosis factor
(TNF)-dependent apoptosis of fibro/adipogenic progenitor cells (FAPs) in the regenerating
muscle, producing a microenvironment that favors myogenesis over fibrosis [126]. As a
further study, it would be interesting to assess whether rMETRNL therapy can prevent the
myofiber atrophy and fiber-type switching that occurs in aging muscle without chemical-
induced injury, because FAPs are also implicated in the increased fibrosis, fatty infiltration,
and low-grade inflammation associated with aging muscle [127].

Growth differentiation factor 11 (GDF11), also known as bone morphogenetic protein
11 (BMP-11), is a member of the TGF-β family, with an identical structure in humans
and rodents [128]. GDF11 is a homolog of myostatin, and both can activate the ActRII
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receptor that blocks skeletal muscle growth [129]. It should be noted that there are some
reports that GFD11 administration can rejuvenate skeletal muscle, although these have
been considered to be controversial (discussed in [130]). Jin et al. assessed the effects of
GDF11 propeptide-Fc (GDF11PRO-Fc), which inhibits GDF11 and myostatin signaling,
on skeletal muscle in adult mice [129,131] Human GDF11PRO-Fc was delivered by AAV-
packaging and IM injection or tail vein delivery. In adult mice, GDF11PRO-Fc IM delivery
produced regions of localized myofiber hypertrophy and increased grip strength [131]. In
the mdx model of muscular dystrophy, tail vein delivery produced myofiber hypertrophy,
reduced fibrosis, increased grip strength, and improved endurance [131]. As a next step,
it would be interesting to test the effect of GDF11PRO-Fc treatment on myofiber atrophy
and functional decline in aged mice. It should also be noted that whilst GDF11PRO-Fc is a
promising protein therapeutic for muscle atrophy, high levels of GDF11 in some diseases
are associated with improved prognosis, such as pancreatic cancer [132].

In summary, there have been interesting recent developments in protein therapeutics
for skeletal muscle atrophy. Although these have yet to be fully tested in models of aging-
related muscle atrophy, the mechanisms involved (enhanced satellite cell function or ActRII
receptor blockade) suggest potential for sarcopenia drug development (Table 3).

Table 3. Protein therapeutics.

Drug Target/Mechanism Experimental System Further
Development? Ref.

METRNL Enhances
myogenesis

(1) BaCl2 TA muscle
injury model

(2) Aged male C57BL/6J
mice (24–26 mo)

Not assessed in
aged mice

without injury
[127]

GDF11PRO-Fc GDF11 and
myostatin inhibitor

(1) Adult male mice the (2)
mdx model of Duchenne

muscular dystrophy

Not assessed in
aged mice [132]

2.5. Natural Products and Extracts

Natural products are defined as molecules produced by living organisms and, for drug
development, are usually restricted to organic compounds and secondary metabolites [133].
Natural products may possess some advantages compared to synthetic molecules because
they accumulate inside living cells, such as reduced side effects [134]. Alternatively, thera-
peutics from natural sources may be prepared as extracts, which can be sourced in large
numbers from plant materials and include both primary and secondary metabolites, such
as proteins, fats and oils, dietary fibers, carbohydrates, and antioxidants [135]. Some
recent advances in the development of natural compounds for treating sarcopenia are
described below.

D-allulose is a naturally occurring monosaccharide sugar mainly produced from corn
that possesses 70% of the sweetness of sucrose and is inert in energy metabolism [136].
D-allulose has been shown to have numerous health properties, such as anti-oxidative,
anti-obesity, and neuroprotective effects [136]. Kim et al. fed 48-week-old male C57BL/6J
mice with the AIN-93G diet (which promotes weight gain and hepatosteatosis similar to
the HFD [137]) containing allulose for 12 weeks [138]. Allulose-fed mice showed increased
quadriceps muscle mass and grip strength compared to controls [138]. RNA sequencing
analysis revealed that allulose affected the expression of more than 40 genes related to
protein synthesis in the gastrocnemius skeletal muscle, including downregulated myostatin
and upregulated insulin-like growth factor-1 (IGF-1; a major promoter of skeletal muscle
hypertrophy [139]) [138]. Additionally, allulose was shown to alleviate dysregulated
autophagy and increase antioxidant enzyme activity [138].

Hesperidin is a flavanone glycoside that occurs in citrus fruits and is involved in plant
defense [140]. Hesperidin is known to possess both antioxidant and anti-inflammatory prop-
erties [141]. Oh et al. assessed the effect of hesperidin on skeletal muscle aging in female
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C57BL/6J 22–26-month-old mice via 5 mg/kg/day oral administration for 8 months [142].
Increased mass and CSA of the quadriceps and gastrocnemius muscles were observed in
the treated mice [142]. Hesperidin also increased grip strength and reduced inflamma-
tion, as shown by flow cytometry assessment of the M1 (inflammatory)/M2 (regenera-
tive) macrophage ratio [142]. Western blotting demonstrated that hesperidin ameliorated
muscle atrophy by activating the hypertrophy-associated IGF-1/Akt/mTOR signaling
pathway [142].

Luteolin is a flavone compound and the principal yellow molecule from the plant
Reseda luteola (yellow weed) that is known to produce antioxidant and anti-obesity effects in
liver and adipose tissue [143,144]. Kim et al. assessed the effect of luteolin supplementation
on sarcopenic obesity in the C57BL/6J murine HFD model [145]. After 20 weeks of feeding,
luteolin suppressed lipid infiltration into the gastronemius muscle and downregulated
inflammatory factors, atrogenes, and p38 mitogen-activated protein kinase (MAPK) activ-
ity [145]. These effects produced a reduction in protein degradation and improvement in
muscle function measured via grip strength.

Fisetin is a flavonol compound found in fruits and vegetables. Interestingly, fisetin
has been identified as a senolytic agent that selectively kills senescent cells [146]. In light
of the increased numbers of senescent cells found in aging tissues, Liu et al. tested fisetin
in the Z24−/− mouse model of Progeria syndrome (premature aging) via oral gavage for
4 weeks [147]. Fisetin treatment reduced the number of senescent FAPs, which influence
the coordination of skeletal muscle regeneration [148], and increased the number of muscle
stem cells in the gastrocnemius muscle [147]. Muscle pathology was also improved, as
demonstrated by increased myofiber CSA and reduced fibrosis [147].

The plant-based Mediterranean diet is rich in olive oil and has been consistently linked
with reduced rates of noncommunicable diseases, such as heart disease and cancer [149].
Although this diet has been shown to produce beneficial effects on skeletal muscle mass,
there is no evidence of a positive effect on sarcopenia [150]. González-Hedström et al.
further investigated components of the olive plant as possible treatments for sarcopenia by
focusing on the leaf extract that is known to be rich in phenolic compounds [151]. Thus,
24-month-old Wistar rats (equivalent to 60 years in humans) were treated with 100 mg/kg
olive leaf extract dissolved in drinking water for 21 days. Extract treatment increased
protein content in the gastrocnemius muscle and downregulated myostatin expression.
Insulin sensitivity was increased in the gastrocnemius via activation of the PI3K-Akt
pathway and anti-inflammatory effects [151].

Coffee silver skin (the thin layer that covers coffee seeds) is known to possess an-
tioxidant and neuroprotective properties [152,153]. With the aim of characterizing novel
natural products with the potential to treat sarcopenia, Kim et al. applied activity-guided
fractionation to coffee silver skin extracts [154]. Only the ethanol extract was effective
at myostatin inhibition in a cell-based assay using HEK293 cells. Further, 6-week-old
ICR outbred male mice were orally administered the ethanol extract diluted in saline for
29 days, which produced increases in grip strength and forelimb muscle mass (calculated
by subtracting bone mass from the weight of the forelimbs). Solvent partitioning, chro-
matography, and HPLC were used in conjunction with the myostatin inhibition assay to
characterize two active compounds in the extract: βN-arachinoyl-5-hydroxytryptamide
and βN-behenoyl-5-hydroxytryptamide [154].

As an alternative to the plant-derived natural products described above, Okamura et al.
tested Brazilian green propolis (a resinous mixture produced by honey bees to build hives)
in a model of sarcopenic obesity [155]. Propolis has previously been shown to improve
lipid metabolism, insulin resistance, and obesity in humans [156]. The db/db T2DM
and obesity mouse model was fed the chow diet supplemented with propolis powder
from 8 to 16 weeks of age. Propolis-fed mice showed greater grip strength and increased
mass of the soleus (slow twitch type I) and plantaris (fast twitch type II) muscles [155].
The accumulation of saturated fatty acids was also inhibited in the soleus muscle, along
with reduced expression of genes associated with inflammation and atrophy [155]. The
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beneficial effect of propolis on sarcopenic obesity was linked with improvements in the
gut microbiota, which is known to influence skeletal muscle physiology (reviewed by
Liu et al. [157])

Farnesol is a natural acyclic sesquiterpene alcohol and building block for steroid pre-
cursors in plants, animals, and fungi [158]. Bae et al. identified farnesol as a potent inducer
of PGC-1α expression by high-throughput screening in C2C12 myoblasts [159]. Oral admin-
istration of farnesol to female 26-month-old C57BL/6J mice for 1 month produced increases
in soleus muscle force, stronger grip strength, and enhanced energy expenditure [159].
Parkin-interacting substrate (PARIS/Zfp746) is a transcriptional repressor of PGC-1α that
was found to be upregulated in aged skeletal muscle. Farnesol treatment induced PARIS
farnesylation (a type of prenylation) that alleviated PARIS-mediated PGC-1α suppression
in the aging muscle [159].

Computational approaches have been applied to natural-product-based drug dis-
covery for sarcopenia. In a recent example, Ali et al. used computational screening to
identify small-molecule inhibitors of myostatin in a library of approximately 38,000 com-
pounds from a traditional Chinese medicine database [160]. Two compounds (termed
ZINC85592908 and ZINC85511481) were identified based on high binding affinity and
specificity. The authors recommended ZINC85592908 for further development as a myo-
statin signaling inhibitor due to its greater stability [160]. Similarly, Ahmad et al. screened
2000 natural compounds for myostatin inhibition using the freely available PatchDock
algorithm [161]. Dithymoquinone (a bioactive compound from the flowering plant Nigella
sativa) showed the most favorable binding free energy. Molecular dynamics analysis in-
dicated that dithymoquinone blocks the myostatin-dependent activation of the ActRIIB
receptor [161].

Overall, these recent examples of natural product development, from plant or animal
sources, show that this continues to be a productive research area for discovering novel
therapeutics for sarcopenia (Table 4). Computational-based approaches can also be uti-
lized to identify natural-product-based candidates for further validation in cell-based and
animal models.

Table 4. Natural products and extracts.

Drug Target/Mechanism Experimental System Further Development? Ref.

D-allulose
Anti-oxidative,

anti-obesity, and
neuroprotective effects

Male C57BL/6J
mice (48 wo) with

AIN-93G diet
(12 weeks)

Not assessed in aged
mice [139]

Hesperidin Antioxidant and
anti-inflammation

Female C57BL/6J
mice (22–26 mo) Suitable [143]

Luteolin Antioxidant and
anti-obesity

Male C57BL/6J
mice (5 wo) with
HFD (20 weeks)

Not assessed in aged
mice [146]

Fisetin Senolytic agent Male Zmpste24−/− (Z24−/−) mice
(4 mo)

Not assessed in
naturally aged mice [148]

Olive leaf extract
Reduced rates of

noncommunicable
diseases

Elderly aged
over 65 yo;

Male Wistar
rats (24 mo)

Functional data
required [151,152]

Coffee skin silver
skin extracts

Antioxidant and
neuroprotection

Male ICR mice
(6 wo)

Not assessed in aged
mice [155]

Brazilian green
propolis

Improves lipid
metabolism, reduces

insulin resistance

Male db/db mice
(8 wo)

Not assessed in aged
mice [156]

Farnesol Inducer of PGC-1α Female C57BL6/J mice (23–26 month) Suitable [160]
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2.6. Drug Repositioning

A significant advantage of drug repositioning compared with traditional drug discov-
ery methodologies is that the repositioned compound has already been characterized in
other disease context(s) and clinical trials [162]. A number of successes using this approach
have confirmed its public health benefits and market value [163]. Additionally, high-profile
novel sarcopenia drug development failures in the pharmaceutical industry have generated
interest in drug repositioning as an alternative approach [164]. The anti-diabetes drugs
tested in models of skeletal muscle atrophy described above can also be considered as
examples of repositioning. Drugs developed for disorders other than diabetes have also
been tested as repositioning candidates. Some recent examples are described below.

Losartan is a hypertension medication that works by blocking activation of the an-
giotensin II receptor. Heart failure patients treated with losartan also show improved
skeletal muscle function [165]. Kang et al. tested the effect of losartan in a rat model
of sarcopenia. Male 4-week-old F344xBN rats were administered 0.6 g/L losartan di-
luted in drinking water over a period of 18 months [166]. Average muscle mass of the
tibialis anterior (TA), soleus, and peroneus longus muscles was increased by losartan treat-
ment combined with an exercise program, compared to exercise alone [166]. Interestingly,
soleus (slow twitch type I) and peroneus longus (fast twitch type II) muscle mass was also
increased without the need for an exercise program. Protein concentration assessment
showed elevated levels of mTOR, Akt, and extracellular signal-regulated kinase (ERK, a
branch of MAPK signaling [167]) in all muscles analyzed [166].

Lithium (Li) is a gold-standard therapy for bipolar disorder and has been shown to pre-
vent muscle cell death in a cell-based model of oculopharyngeal muscular dystrophy [168].
However, Li is also associated with a number of side effects and toxicity burden [169].
One of the biological targets of Li is inositol monophosphatase (IMPase). Lee at al. in-
vestigated the effects of ebselen, an IMPase inhibitor with reduced toxicity, in a glycerol
treatment model that models the skeletal muscle fat cell accumulation observed in sarcope-
nia [170,171]. Ebselen improved muscle performance, as measured by latency to fall in the
rotarod test, increased myofiber CSA in the gastrocnemius muscle, and downregulated
atrogin-1 and MuRF-1 expression [172].

Malotilate is a clinically safe drug developed to promote liver regeneration [173].
The biological target is arachidonate 5-lipoxygenase (Alox5), which has been implicated
in numerous diseases [174]. Kim et al. treated 21-month-old male C57BL/6J mice with
malotilate via oral administration for 4 weeks [175]. Malotilate produced increases in the
gastrocnemius and soleus mass, along with a reduction in gonadal adipose tissue mass.
Grip strength was improved, and immunohistochemical analysis showed an increase in the
CSA of type II myofibers. RNA sequencing revealed an upregulation of IGF-1 in murine
C2C12 myotubes treated with malotilate [175].

Trametinib (brand name Mekinist) is an orally bioavailable drug used to treat melanoma
by the inhibition of dual specificity mitogen-activated protein kinase kinase 1 (MEK1) and
MEK2 [176]. The Raf–MEK–ERK phosphorylation cascade is also involved in myostatin
and GDF11 signaling. Masuzawa et al. treated aged mice with trametinib and observed
downregulated ERK activity in skeletal muscle [177]. This was accompanied by increased
myofiber CSA compared to the vehicle-treated aged mice [177].

Etanercept (brand name Enbrel) is a biopharmaceutical drug used to treat rheumatoid
arthritis, plaque psoriasis, and ankylosing spondylitis [178]. It is a fusion protein of the
TNF receptor to the constant end of the IgG1 antibody. Sciorati et al. treated 16-month-old
female C57/BL6 mice with weekly doses of etanercept delivered subcutaneously until the
mice reached 28 months old [179]. Etanercept improved skeletal muscle performance, as
measured by the hanging wire test, and increased myofiber CSA in the gastrocnemius
muscle. Etanercept significantly increased the proportion of type II myofibers, and immuno-
histochemical analysis of CD3 (a lymphocyte marker) and CD68 (a macrophage marker)
indicated that etanercept treatment also reduced muscle inflammation [179].
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Computational-based methodologies have been applied to drug repositioning for
sarcopenia. A recent example was provided by Liang et al. based on the analysis of skeletal
muscle transcriptomic sequencing data in humans and mice to obtain the Gene Signature
of Sarcopenia, coupled with literature validation [180]. This led to the identification of
vorinostat (brand name zolinza, a histone deacetylase inhibitor used to treat cutaneous T
cell lymphoma [181]) as the top-ranking drug. The potential of vorinostat to treat sarcopenia
was assessed in murine C2C12 myotubes. Vorinostat increased myotube differentiation,
diameter, and MHC levels [180].

The above studies of drug repositioning for sarcopenia show that different drug classes
with varying mechanisms of action have the potential to be effective for this disorder
(Table 5). An effective method for identifying repositioning candidates is to select drugs
that target mechanistic pathways which overlap with the original disease application and
the development of sarcopenia.

Table 5. Drug repositioning.

Drug Target/Mechanism Experimental
System

Further
Development? Ref.

Losartan Angiotensin II receptor
inhibitor

Male F344xBN
rats (4 wo)

Functional test
required [167]

Ebselen IMPase inhibitor

Male C57BL/6J
mice (13 wo):

Dexamethasone
and glycerol

atrophy models

Not assessed in
aged mice [171]

Malotilate Alox5 inhibitor Male C57BL/6J
mice (21 mo) Suitable [176]

Trametinib MEK1 and MEK2
inhibitor

Male C57BL/6J
mice (24 mo)

Functional test
required [178]

Etanercept TNF signalling inhibitor
Female

C57BL/6J
mice (28 mo)

Endurance tested
(no grip strength) [180]

Vorinostat Histone deacetylase
inhibitor C2C12 myotubes Not assessed in

aged mice [181]

3. New Drug Targets

Due to the lack of approved drugs for sarcopenia, a pivotal aspect of drug development
is the characterization of new targets and related pathways. There have been a number of
recent papers describing novel factors that may be applicable for drug development. These
are summarized in Table 6.

Table 6. Recently reported factors linked to sarcopenia that may be applicable for drug development.

Factor Role Experimental System Reference

Platelet glycoprotein
4 (CD36)

Fatty acid import and
metabolism; Inflammatory

responses

Geriatric assessment of frail
older humans [182]

N-
Oleoylethanolamide

Circulating and peripheral
endocannabinoid system Aged rats [183]

Eukaryotic
translation initiation

factor 4E-binding
protein 1 (4EBP1)

mTOR complex 1
(mTORC1) regulation of

mRNA translation

Transgenic mouse strains
(TSC1mKO, S6K1mKO,

S6K1-TSC1mKO,
4EBP1mt-muscle and
4EBP1mt-TSC1mKO)

[184]
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Table 6. Cont.

Factor Role Experimental System Reference

Interferon-inducible
guanylate-binding

protein

Cell-autonomous
immunity

Senescence-accelerated
mouse model [185]

Ubiquitin protein
ligase E3 component

n-recognin 4
E3 ubiquitin-protein ligase Drosophila melanogaster

and aged mice [186]

Hydroxyprostaglandin
dehydrogenase

15-(NAD) (15-PGDH)

Regulation of
prostaglandin expression Aged mice [187]

TNF superfamily
member 12 Facilitation of apoptosis Mendelian Randomization

in aged Europeans [188]

Hepatocyte growth
factor

Paracrine regulation of cell
growth, motility and

morphogenesis

Mendelian Randomization
in aged Europeans [188]

α-Klotho Regulation of TGF-β
signaling Aged mice [189]

Leukocyte
immunoglobulin-like
receptor subfamily B

member 2 (CD85)

Antigen-dependent
immune response

Mendelian Randomization
of sarcopenia-related traits

(UK Biobank)
[190]

Asporin Cartilage matrix
Mendelian Randomization
of sarcopenia-related traits

(UK Biobank)
[190]

Contactin-2 Cell adhesion
Mendelian Randomization
of sarcopenia-related traits

(UK Biobank)
[190]

Ecto-ADP-
ribosyltransferase 4

Unknown
(ADP-ribosylation

not detected)

Mendelian Randomization
of sarcopenia-related traits

(UK Biobank)
[190]

Superoxide
dismutase 2

Clearance of
mitochondrial ROS

Mendelian Randomization
of sarcopenia-related traits

(UK Biobank)
[190]

4. Future Challenges

Sarcopenia drug development is challenging, and there is no clinically approved drug
for this disease. However, the potential global market value for sarcopenia therapeutics was
estimated at USD 2.71 billion in 2021 and is expected to reach USD 3.9 billion in 2028 due
to factors such as demographic aging in developed countries [191]. The major challenges
associated with sarcopenia drug development include the complexity of aging-related
conditions in older persons and issues that may confound the parameters of physical frailty
and sarcopenia, such as sarcopenic obesity [192].

From the pre-clinical standpoint presented in this review, there is no shortage of new
drug candidates and target pathways reported in the recent research literature. One issue is
the identification of those drug candidates that would be most likely to succeed in clinical
trials. This may especially be an issue for academic research, where there may not always
be the incentive for researchers to carry their work to the ‘next step’ of commercialization.
One solution may be to further build collaborations between academia and industry, or the
utilization of ‘technology institutes’ within academic institutions to provide support and
guidance on issues such as patenting and technology transfer to companies [193].

Another potential problem impeding drug development is our incomplete understand-
ing of the disease process. As mentioned above, sarcopenia is a complex, multifactorial
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disorder. Even in animal models, these disease mechanisms are not yet fully characterized.
For example, a number of studies covered in this review used atrogin-1 and MuRF-1 down-
regulation as an indicator of drug effectiveness. However, a recent integrated genomic
and proteomic analysis of different types of murine skeletal muscle atrophy models by
Hunt et al. showed that protein levels of atrogin-1 and MuRF-1 were not increased, and
mRNA levels were only upregulated in glucocorticoid or cancer-induced muscle atrophy
but not in atrophy caused by aging [194]. The authors demonstrated that protein levels of
the lysosomal protease cathepsin L were upregulated in all three types of muscle atrophy
and may serve as a more robust marker of drug effectiveness. Ongoing basic research is still
required to increase our understanding of the disease processes underlying aging-related
skeletal muscle atrophy and to provide reliable markers for drug development.

This review focused on recent reports of sarcopenia drug candidates showing effec-
tiveness in cell-based and animal models. It should be noted that compounds which have
been reported to extend lifespan may also prevent sarcopenia by countering the aging
process in multiple tissues. One prominent example is the mTOR inhibitor rapamycin that
prevents aging-related skeletal muscle loss in mouse models [195]. Recently, MyMD-1 (a
synthetic derivative of alkaloid myosmine that inhibits TNF-α production) was shown
to extend lifespan in male and female 19-month-old C57BL/6 mice [196]. As part of the
analysis, MyMD-1 increased muscle strength in the treated mice. Thus, there is an overlap
between sarcopenia research and more generalized areas of aging, such as frailty. It may be
noted that cheap and simple indices of frailty have been developed for murine studies that
show high correlation with assessments of human aging [197,198]. These could be utilized
in sarcopenia drug discovery to ascertain whether the therapeutic of interest is primarily
affecting skeletal muscle or diverse tissues affected by the aging process.

The majority of studies discussed in this review relied on previous reports of bioactivity
(for example, anti-inflammation or antioxidant effects) followed by assessment in cell and
animal models of muscle aging. There appear to be relatively few reports of cell-based high-
throughput screening protocols for hit compound identification from chemical libraries.
One recent attractive example is the C2C12 myoblast PGC-1α expression system originally
reported by Kim et al. and followed-up by Bae et al. [159,199]. This allowed for the rapid
identification of two U.S. Food and Drug Administration-approved library compounds
with potential anti-sarcopenia activity (indoprofen and farnesol). It can be envisaged that
developing myoblast-based screening systems with expression constructs for other key
regulators of muscle atrophy, such as AMPK, p70S6 kinase, or FoxO3a, would also be
useful for the rapid selection of primary hit compounds.

Bioinformatics-based approaches are being increasingly utilized to identify new candi-
date drugs and targets. However, as mentioned above, these drugs are not always validated
by detailed assessment in animal models. This could provide an opportunity for increased
collaboration between ‘dry’ bioinformatics and ’wet’ skeletal muscle labs to fully validate
whether these new discoveries are suitable for clinical development.

Our survey of the literature revealed that the majority of new drugs undergoing pre-
clinical investigation are based on previously reported compounds. There was a relative
lack of novel chemical entities or structures being developed for anti-sarcopenia activity.
One recent example of novel compound development is a 16-mer d-peptide by Takayama
et al. that showed myostatin inhibitory activity [200]. An arginine-containing derivative
of the peptide (termed MID-35) was directly injected into the TA muscle of 8-week-old
male C57BL/6J mice. Thus, 28 days later, the TA muscle mass was significantly increased
compared to the vehicle-injected TA. As a next step, it would be interesting to assess the
effect of single-dose MID-35 delivery into the TA of aged mice.

Currently, the aged mouse (at least 18 months old or, ideally, older [201]) can be consid-
ered as the ‘gold standard’ of animal model validation for anti-sarcopenia drug candidates.
However, there is now greater appreciation of the complexity of aging-related skeletal
muscle atrophy in humans. For example, sarcopenia progression can be influenced by other
aging-related disorders, such as diabetes, heart failure, chronic obstructive pulmonary
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disease (COPD), Alzheimer’s disease, obesity, or CKD [202]. It may be rewarding to ad-
ditionally test candidate drugs in these models to gain further insight into their potential
to treat muscle wasting in the aged population. Example models that also show muscle
atrophy include the db/db type 2 diabetes mouse, intranasal elastase model of COPD, and
the HFD model of obesity.

Although the aged mouse is a preferred experimental model of sarcopenia, there can
be logistical problems associated with its use. From the authors’ own experiences, aged
mice are expensive to order from suppliers and are often in limited supply. Establishing
a colony of aged mice from young adults is also time consuming and expensive due to
animal housing costs. As an initial test of drug potential to treat sarcopenia, it may be
preferable to utilize alternative and readily available genetic models of aging, such as the
senescence-accelerated mouse P8 (SAMP8) or the Zmpste24−/− accelerated aging model
of progeria syndrome, as described by Liu et al. and Guo et al. [147,203].

As a final consideration, there is increasing appreciation that the highly complex
and multifactorial pathogenesis of sarcopenia will require therapeutic approaches to be
multimodal [204]. Therefore, rather than relying on a single drug treatment to alleviate
sarcopenia, it would be beneficial to assess novel candidates in the context of nutritional
and/or exercise protocols that have been previously established in aging models.

5. Summary and Concluding Remarks

Sarcopenia is a challenging disease for drug development, and there is currently no
clinically approved therapeutic. Outcomes in clinical trials depend on functional gains in
muscle performance, rather than just increases in mass, while also being well tolerated
with low side effects. Sarcopenia is also a complex multifactorial disorder, and the un-
derlying mechanisms are not fully understood. This review focused on pre-clinical drug
development for sarcopenia. Due to the lack of approved therapeutics and a large projected
market value, there are a large number and variety of different compounds and target
pathways/cellular mechanisms under investigation. A large proportion of current research
is focusing on natural compounds and extracts, due to their characterized biological activity
and advantages for further drug development. Much research effort is also focusing on the
role of ncRNAs in sarcopenia progression, which can provide targets for small molecules
currently under development for inhibiting ncRNA biogenesis. A number of type 2 di-
abetes drugs, such as SGLT2 inhibitors, DPP-IV inhibitors, and GLP-1 analogs, are also
being investigated for their effects on skeletal muscle mass in T2DM patients and animal
models. It will be important to consider whether these drugs can also be effective in the
context of pre-diabetes or normoglycemia. Mitochondria have a pivotal role in maintaining
muscle function and are known to become dysfunctional in aging. Mitochondria-targeting
drugs also hold great promise for treating sarcopenia and may utilize recent advances in
mitochondria drug delivery systems [205]. Drug repositioning strategies are also providing
clinically validated candidates with known pharmacokinetics in humans. These previously
characterized drugs can also provide new insights into the molecular pathways regulat-
ing skeletal muscle atrophy. A wider adoption of cell-based screening systems, based
on known master regulatory genes, such as PGC-1α, could accelerate throughput and
increase the number of hits for further analysis. Overall, much effort is being focused on
identifying drug candidates with promising pre-clinical therapeutic activity in sarcopenia
models, which raises the probability of successful drug development for this debilitating
and increasingly prevalent disease.
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