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Abstract: Mitochondria are subcontractors dedicated to energy production within cells. In human
mitochondria, almost all mitochondrial proteins originate from the nucleus, except for 13 subunit
proteins that make up the crucial system required to perform ‘oxidative phosphorylation (OX PHOS)’,
which are expressed by the mitochondria’s self-contained DNA. Mitochondrial DNA (mtDNA)
also encodes 2 rRNA and 22 tRNA species. Mitochondrial DNA replicates almost autonomously,
independent of the nucleus, and its heredity follows a non-Mendelian pattern, exclusively pass-
ing from mother to children. Numerous studies have identified mtDNA mutation-related genetic
diseases. The consequences of various types of mtDNA mutations, including insertions, deletions,
and single base-pair mutations, are studied to reveal their relationship to mitochondrial diseases.
Most mitochondrial diseases exhibit fatal symptoms, leading to ongoing therapeutic research with
diverse approaches such as stimulating the defective OXPHOS system, mitochondrial replacement,
and allotropic expression of defective enzymes. This review provides detailed information on two
topics: (1) mitochondrial diseases caused by mtDNA mutations, and (2) the mechanisms of current
treatments for mitochondrial diseases and clinical trials.

Keywords: mitochondrial diseases; mitochondrial therapy; clinical trials

1. Introduction

Mitochondrial disease refers to conditions caused by mitochondrial dysfunction [1].
Due to the distribution of mitochondria in every cell of the body, organ defects and symp-
toms vary widely. However, there is one clear commonality: the inheritance of mutated
DNA that encodes major components of oxidative phosphorylation (OXPHOS), leading to
a loss of mitochondrial function [2]. Mitochondria are organelles composed of numerous
nucleus-encoded proteins with various roles [3–5], as well as 13 self-encoded proteins
crucial for OXPHOS, along with 2 self-encoded rRNAs and 22 tRNAs [6]. Because all mito-
chondrially encoded proteins play important roles in mitochondria, mutations in coding
genes within mitochondria can directly lead to mitochondrial dysfunction [7].

Unlike genetic disorders associated with nuclear genomes, the replication of mu-
tated mtDNA does not exhibit patterns of Mendelian inheritance due to the independent
fusion-fission activity of mitochondria. Mitochondrial DNA-related mitochondrial disease
does not require the 100% homoplasmy of mutated DNA in an organism. Despite the
heteroplasmic distribution being diverse across individuals and types of diseases, there is
considered to be a certain threshold of mtDNA mutation load required to exhibit symp-
toms of diseases [8,9]. Correlations between heteroplasmic levels and the expression of
symptoms have also been reported in case studies involving a large amount of screening of

Cells 2023, 12, 2494. https://doi.org/10.3390/cells12202494 https://www.mdpi.com/journal/cells

https://doi.org/10.3390/cells12202494
https://doi.org/10.3390/cells12202494
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0002-8787-6974
https://orcid.org/0000-0003-0941-806X
https://doi.org/10.3390/cells12202494
https://www.mdpi.com/journal/cells
https://www.mdpi.com/article/10.3390/cells12202494?type=check_update&version=1


Cells 2023, 12, 2494 2 of 25

mitochondrial disease patients [10,11]. DNA sequencing methods have rapidly advanced,
making it easier to find disease-inducing DNA mutations and even distinguish every
single mtDNA sequence in a cell [12]. Yet, due to the difficulty of isolating individual
mitochondria, there is a greater demand for studies to reveal the ambiguous dynamics of
the mitochondrial processing of mtDNA. One thing that is not ambiguous is the notable
prevalence of mitochondrial diseases [13–15]. Therefore, we are facing the need to solve
this threatening problem affecting our populations.

Because mitochondrial diseases involve different types of dysfunctions in mitochon-
dria, approaches for the treatment of mitochondrial diseases also vary. These approaches in-
clude replacing the cytoplasm containing defective mitochondria with healthy mitochondria-
containing cytoplasm through oocyte spindle transfer [16], targeting the underlying cause
of mitochondrial disease by converting pathogenic point-mutated mtDNA to normal
mtDNA [17–19], the use of chemical compounds to stimulate electron transfer chain in
OXPHOS by bypassing the malfunctioning complex [20,21], and even researching phe-
nolic compounds in our diet that have shown potential for reducing ROS through their
antioxidant activity [22–25].

Mitochondrial defect also affects the closely associated protein, AMPK [26]. This, in
turn, impacts the AMPK’s protein activity of regulating antitumor immunity [27,28]. In
terms of this, research is being conducted to induce OXPHOS depression in mitochondria,
which affects AMPK and further promotes cancer immunotherapy [29,30]. Studies to
control the population of dysfunctional mitochondria by utilizing the involvement of
AMPK protein in mitochondrial biogenesis are also in progress [31,32]. In the context of
mitochondria-related autophagic processes, which involve the regulation of dysfunctional
mitochondria populations, this approach holds the potential for treating mitochondrial
diseases and is actively being investigated [33–37].

Countless studies are being conducted in the field of mitochondrial disease, but only a
few studies have been completed with considerable efficiency in terms of restoring defective
mitochondria, and an even more limited portion of groups have reached clinical trials with
their treatments. This review focuses on treatments that are currently undergoing clinical
trials for mitochondrial disease, with initial explanations of several mitochondrial diseases.

2. Features of Mitochondrial Disease

One notable aspect of mitochondrial disease is that, despite its diverse causes at
the cellular level, symptoms are generally expressed through mitochondrial dysfunction.
Consequently, although the main symptoms of mitochondrial disease vary depending on
the type of disease, they appear to share common symptoms in the broader category of
encephalomyopathy. Therefore, it is important to identify the defective mechanisms at the
cellular level in order to understand the causes of mitochondrial disease.

Mitochondria are subcellular organelles known for producing ATP, which is used for
cellular energy, through OXPHOS. Mitochondrial disease occurs when there are defects
in the proteins involved in OXPHOS or other proteins related to mitochondrial function.
Researchers have shown a correlation between mitochondrial performance and high-energy
demanding cells, and mitochondrial proteome also varies depending on the tissue [38–46].
Therefore, mitochondrial dysfunction can be regarded as a deficiency in cellular energy,
which leads to energy deficiency in nerve cells or myocytes, appearing as the main cause
of mitochondrial disease. However, studies on patients with mitochondrial disease have
reported that the main cause is often associated with lactic acidosis. Dysfunction in the
electron transport chain leads to a decrease in ATP production, and low ATP level further
increase glycolysis, resulting in an overproduction of pyruvate, which can be further
reduced and converted to lactate [47–49].

Mitochondrial proteins can be encoded by both nuclear DNA and mtDNA, thus
mitochondrial disease can also result from mutations in either or both types of DNA.
The inheritance of mitochondrial diseases caused by nuclear DNA mutation can be easily
identified by examining family histories, as the symptoms follow the rules of Mendelian
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inheritance. However, mitochondria have their own autonomous process of duplication and
DNA replication. Therefore, mutated mtDNA can exist in a state of heteroplasmy, leading to
cellular dysfunction and an increase in the expression of mitochondrial disease symptoms.
The manifestation of these symptoms is expected to depend on a certain threshold of
heteroplasmy, which varies depending on the type of disease and the individual carrying
the mutated mtDNA [50–52]. Case studies have shown that the amount of mutated mtDNA
can vary among patients with the same symptoms, and higher levels of heteroplasmy do
not always correlate with the severity of symptoms. Even in the case of monozygotic
twins with mitochondrial disease, different symptoms can be observed, suggesting that
there are additional factors beyond DNA mutations that contribute to the expression of
symptoms [53].

In case studies involving large amounts of patient data, a convincing correlation was
found between heteroplasmy level and the age of onset [10,11], but no correlation was
observed between symptoms. Due to the elusive nature of mitochondrial pathologies, it is
important to understand the mechanisms and causes that trigger them.

3. Types of Mitochondrial Disease

Since mitochondrial diseases tend to have numerous causes beyond their prominent
cause, this paper only focused on major types of disease-causing mutations. The description
of mitochondrial disease with notable symptoms and case studies is given below (Table 1,
Figure 1).
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Figure 1. Symptoms and causes of mitochondrial diseases. The upper side of the figure displays
commonly diagnosed symptoms, with symptoms affecting the entire body placed on the left and
organ-specific symptoms on the right. As mitochondrial diseases have various causes, only well-
known pathogenic mtDNA mutations are listed. A line and brief illustration indicate a correlation
between pathogenic mutations and the affected sites. Details can be found in Table 1, Section 3.
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Table 1. Known diseases with mitochondrial malfunction.

Disease Main Symptoms Case Reports References Cause

LHON
(Leber hereditary optic

neuropathy)

Vision loss (retinal ganglion
cells and axon loss)

Significant decrease in visual acuity,
dyschromatopsia [54–56]

m.T14484C
(Complex1 ND6)

m.G3460A
(Complex1 ND1)

m.G11778A
(Complex1 ND4)

MERRF
(Myoclonic epilepsy

with ragged red fiber)

Myoclonus, generalized
epilepsy, ataxia, myopathy,

exercise intolerance

Bilateral primary optic atrophy, sensorineural
hearing loss, gait unsteadiness [57]

m.A8344G
(tRNA lysine)

Slurred speech, fatigue, hearing loss, limb
weakness [58]

m.G8363A
(tRNA lysine)

Dysphonia, memory loss, stroke-like episode [59] m.A3243G
(tRNA leucine)

MELAS
(Mitochondrial

encephalomyopathy with
lactic acidosis and

stroke-like episodes)

Muscle weakness in whole
body, dementia, aphasia,

myoclonus, ataxia

Developing diabetes, hearing loss,
progressively deteriorating functional status [60]

m.A3243G
(tRNA leucine)

Aphasia, subtle loss of muscle strength in right
arm [61]

Migraine-like headaches, muscle damage [62]

disturbances of consciousness,
ventilatory failure [63]

Aeizures, transient sensory disturbances,
weakness, visual impairment, cognitive

impairment [64]

m.G13513A
(Complex1 ND5)

Maternally inherited
diabetes and deafness

(MIDD)

Chronic kidney disease,
deafness, loss of oral

sensation,
neuropathy, hearing loss,

myopathy

Proteinuria, glomerular abnormality progressive
renal failuare [65]

m.A3243G
(tRNA leucine)

Hearing loss, loss of oral sensation,
dysarthria, drolling [66]

Hearing loss, central nervous system diseases,
myopathy, cardiac disease, nephropathy,

underweight [10]

Pearson syndrome Failure to thrive,
malabsorption

Refractory anemia, digestive system failuare, bone
marrow failure, metabolic disorders,

gastrointestinal symptoms, renal disorders,
pancreatic exocrine insufficiency [11]

Large deletion of mtDNA

Malabsorption, lactic acidemia, sideroblasts on
bone marrow evaluation, microcephaly [67]

Kearns–Sayre syndrome
(KSS)

Heart block, growth
retardation, external

ophthalmoplegia,
vestibular dysfunction

Vision loss, progressive external ophthalmoplegia,
retinitis pigmentosa, heart block, vestibular

dysfunction, growth retardation [68] Large deletion of mtDNA
Photophobia, nystagmus, sensorineural hearing

loss, tremor, progressive cerebellar ataxia [69]

Chronic progressive
external ophthalmoplegia

(CPEO)

Loosing control of eyelids
and eye movements, ptosis

Central neurogenic hyperventilation, restriction of
eye movement and ptosis [70] Multiple deletion of mtDNA

Low birth weight and congenital deafness [71]

Hemifacial weakness, dysarthria, mental
retardation, sensorineural hearing loss [72]

mtDNA mutation with
mitochondrial

protein-encoding nuclear
DNA mutations [73]

Ophthalmoplegia, strabismus, loosing control of
extraocular muscles [71]

Leigh syndrome
Neurological symptoms,

cardiac dysfunction,
dyspraxia

Blepharoptosis, ptosis, inability to walk, sensory
deficits, fever [74]

m.T9176C
(MT-ATP6)

Delay of psychomotor development,
cardiomyopathy [75]

m.A14453G
(Complex1 ND6)

Bilateral exotropia, nystagmus bilateral,
childhood-onset neuromuscular regression [76]

Nuclear NDUFAF5 gene
mutation,

(Complex 1 NDUFAF5)
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Table 1. Cont.

Disease Main Symptoms Case Reports References Cause

Barth syndrome Heart failure Left ventricular hypertrophy, heart failure with
metabolic crisis [77]

Nuclear TAZ gene
C640T

(mitochondrial acyl chain
composition remodeling

enzyme)

Friedreich’s ataxia
Ataxia, gait unsteadiness,

cardiomyopathy

Chest pain, dyspnea, palpitation, left ventricular
hypertrophy [78]

Nuclear FAZ gene
(mitochondrial iron

metabolism related enzyme)Blindness, sensorineural deafness [79],

Leber hereditary optic neuropathy (LHON) is known to exhibit eye-related symp-
toms, such as sequential vision loss and dyschromatopsia. Patients with LHON also
have a higher likelihood of experiencing neurological abnormalities, including peripheral
neuropathy and myopathy, similar to other mitochondrial diseases, compared to the gen-
eral population [80–82]. However, these symptoms do not manifest as a chain of events.
Consequently, LHON is more commonly diagnosed based on optic neuropathy-related
symptoms.

In LHON, up to 90% of clinical cases are associated with three mutations: m.G11778A
(MT-ND4), m.A3460G (MT-ND1), and m.T14484C (MT-ND6). Among these mutations,
m.G11778A is the most dominant [83]. ND1–6 are the components of the NADH-ubiquinone
oxidoreductase complex (complex 1), and therefore, mutations associated with LHON cause
defects in complex 1, which has the function of catalyzing reactions in the electron transport
chain.

Patients with LHON have high levels of mutated DNA heteroplasmy, almost reaching
the level of homoplasmy [83,84]. Also unaffected carriers of LHON-inducing mtDNA
mutations can be easily found in the families with LHON patients [85–88], from which
could be further inferred that LHON-inducing mtDNA mutations do not seem to be critical
for the functioning of mitochondria. Therefore, several studies have been conducted to
discover the triggers of symptom expression [89–94], but the underlying factors of LHON
remain elusive.

The LHON mutation-derived mitochondrial defects mostly result in optic neuropathy,
affecting optic nerve, axons, retinal ganglion cells, and photoreceptor cells [83,95]. Case
studies have revealed affected retinal nerve fiber layers and impaired photoreceptor func-
tions. Therefore, ocular symptoms are experienced, such as sequential loss of visual acuity
and dyschromatopsia [54–56].

Myoclonic epilepsy with ragged red fiber (MERRF) is a multi-system disease charac-
terized by progressive myoclonus and seizures [96]. One of the most common mutation
among the patients with different types of mtDNA mutations is m.A8344G, which affects
the mitochondrial tRNA lysine [97–101]. Another prominent mutation in the same gene is
m.G8363A, along with the m.A3243G, m.G3255A, and m.T3291C mutations, which have
also been reported to cause MERRF with a defects in tRNA leucine [57–59,99,102,103]. Mu-
tations in tRNA-coding genes induce the global impairment of mtDNA-encoded proteins
rather than affecting certain complexes or pathways [101,104,105]. This can result in the
overall dysfunction of mitochondria. In case studies involving MERRF patients with tRNA
lysine mutations, various symptoms were reported, such as unsteadiness of gait, optic
atrophy, slurred speech, sensorineural hearing loss, and limb weakness [57–59].

One well-known mitochondrial disease is mitochondrial encephalomyopathy with
lactic acidosis and stroke-like episodes (MELAS). It is also caused by a mutation in the
mitochondria-encoded tRNA leucine, specifically the m.A3243G mutation, which leads
to mitochondrial dysfunction and similar effects as MERRF, affecting the synthesis of all
mtDNA-encoded proteins [106–109].

MELAS is a multi-systemic disease; therefore, misdiagnosis was common until the
utilization of DNA analysis on relatives or families of the patients. In one case study, a
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patient was initially diagnosed with diabetes at an early age, but the cause of the gradual
development of diabetes remained elusive until the patient’s sister was diagnosed with
maternally inherited diabetes and deafness (MIDD) [60]. Subsequent medical studies
were then conducted, resulting in the diagnosis of MELAS. In total, it took 25 years from
the initial diagnosis of diabetes for the patient to be diagnosed with MELAS. Stroke-like
episodes are one of the main aspects used to diagnose MELAS [60,61,110], and symptoms
of MELAS are commonly considered to begin before the age of 40 [111]. Recent studies have
revealed that the disease can develop after the age of 40 in a small number of patients [112],
and adult-onset cases of MELAS have also been reported [62,113–116]. In cases of late onset
of the disease, most patients have low levels of heteroplasmy or significant variations in
various tissues. Similar to other mitochondrial diseases, the improvement of symptoms is
rare, and in most cases, the symptoms deteriorate rapidly.

Maternally inherited diabetes and deafness (MIDD) is caused by the same mutation as
MELAS (m.A3243G). Since both diseases show a broad spectrum of symptoms, it is hard to
differentiate between them. However, MIDD is characterized by sensorineural hearing loss
and decreased insulin secretion [117–119]. A case study conducted with 161 patients with
MIDD revealed a correlation between the age of onset of diabetes and the heteroplasmy
level of the mutated mtDNA (m.A3243G).

There remains a question regarding the different consequences of MELAS and MIDD
despite being associated with the same mutation. Previous case studies have shown
that MIDD patients are likely to exhibit a low heteroplasmy of mutated DNA [120–122];
however, apart from this finding, no other direct evidence has been found to provide a
clear explanation.

Leigh syndrome seems to be caused by a lack of energy in nerve cells [123], resulting
in the failure of neuronal morphogenesis and maturation [124,125]. Numerous pathogenic
mutations, more than 75 in mtDNA and nuclear DNA, have been reported [126,127].
Of the various causes, a characteristic mutation in mtDNA that is typically observed in
Leigh syndrome is the mutation in the MT-ATP6 coding gene, and numerous types of
mutations have been identified as pathogenic [128,129]. The defect in MT-ATP6 leads to the
dysfunction of mitochondrial complex 5, which converts ADP to ATP, eventually resulting
in a lack of energy.

Typical symptoms of Leigh syndrome include motor development delay, muscle
disorder, and cardiac dysfunction. Case studies have shown that Leigh syndrome also
exhibits a wide spectrum of mitochondrial disease-associated symptoms [130]. Although
one of the main symptoms of Leigh syndrome is delayed development, some case studies
have reported patients with a late onset of the first symptom [74,131,132].

Pearson syndrome, Kearns–Sayre syndrome (KSS), and chronic progressive external
ophthalmoplegia (CPEO) are mtDNA deletion-induced mitochondrial diseases. Unlike
other mitochondrial diseases, which show an increased distribution of mutated mtDNA in
offspring, mtDNA deletion-related diseases appear to have less dependency on maternal
inheritance [133–135]. Yet, the dynamics of mtDNA deletions are not fully understood, and
there are potential hypotheses and supportive studies on the mechanisms [136,137].

The positions of mtDNA deletions are random, and the deletions are usually large,
leading to overall mitochondrial dysfunction [133,138,139]. Three conditions share similar
phenotypes, but in the case of Pearson’s syndrome, severe symptoms usually begin in
infancy and causing death before the age of four [140]. Children who survive develop
Kearns–Sayre syndrome (KSS) eventually experience a reduced quality of life and sudden
death [141]. KSS and CPEO can be referred to as KSS minus or CPEO plus based on
the severity of symptoms [142]. KSS also exhibits symptoms of progressive external
ophthalmoplegia (PEO), but if a patient expresses isolated symptoms of PEO, they are
referred to as CPEO [142]. Ultimately, since both diseases are associated with the same
mtDNA deletion, a patient diagnosed with CPEO could experience a spectrum of symptoms
in a multi-systemic disease and therefore become a patient with KSS [143,144].
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Previously described mitochondrial diseases are mainly caused by mutations in
mtDNA. There are also diseases that can result from both nuclear and mitochondrial
mutations, such as Leigh syndrome and CPEO. Barth syndrome and Friedreich’s ataxia
are mitochondrial diseases caused by mutations in nuclear DNA. Mutations in both cases
do not disrupt the mitochondrial electron transport chain complexes, as they do not affect
the composing subunits. Instead, these mutations affect proteins regulating the overall
dynamics of mitochondria. Hence, they also result in the same dysfunctions observed in
other mitochondrial diseases.

Due to the lack of treatments for mitochondrial diseases, the clinical approach in
case studies typically involves a combination of known antioxidants, coenzyme Q10, and
vitamins. Hence, there have been no significant improvements in the severe symptoms,
except in the specific cases of LHON, which predominantly exhibits symptoms related to
optic neuropathy, and other mitochondrial diseases exhibiting similar symptoms in the
spectrum of encephalomyopathy. Therefore, a single treatment can potentially be applicable
to various diseases if the restoration of disordered mitochondria can be demonstrated.

4. Clinical Approach with Treatments Involving Chemical Compounds

Intracellular interactions of disease-targeting molecules often affect various cellular
mechanisms in addition to their primary target pathway. As a result, diverse clinical
approaches can be conducted using the same treatment. This review specifically focuses on
treatments aimed at rescuing dysfunctional mitochondria that are currently undergoing
trials (Table 2, Figure 2).

Table 2. Drugs for clinical trials for treating mitochondrial diseases.

Treatment Mechanisms Target Disease Clinical Trial
/NCT Number

Coenzyme Q10

Diffusible electron carrier of the mitochondrial
respiratory chain [145],

lipid peroxidation interfering antioxidants
[146,147]

Mitochondrial diseases Phase 3 (Completed)
/NCT00432744

RAXONE
(Idebenone)

Transfer electrons directly
to complex III by bypassing

malfunctional complex I [148–151]

LHON
(Leber hereditary optic

neuropathy)

Phase 4 (Completed)
/NCT02774005

Vatiquinone
(EPI-743, PTC-743)

Inhibiting 15-lipoxygenase (15-LO) [152]
leads to increased GSH levels and
decreased oxidized GSH [153,154]

Friedreich ataxia Phase 3 (Active)
/NCT05515536

Mitochondrial disease
with refractory epilepsy

Phase 2/3 (Active)
/NCT04378075

Mitochondrial respiratory
chain diseases

Phase 2 (Active)
/NCT01370447

Nicotinamide Riboside
(NR)

Precursor of Nicotinamide adenine
dinucleotide (NAD+);

increasing intracellular NAD+ level increases
mitochondrial function and mitochondrial

number [155–158]

Mitochondrial myopathy
disorder

Phase 2 (Active)
/NCT05590468

KL1333
Interacts with NQO1 and acts as precursor of
NAD+, recovers deficiency of mitochondrial

respiratory chain [159]
Mitochondrial disease Phase 2 (Active)

/NCT05650229

Sonlicromanol
(KH176)

ROS-redox modulator through interaction with
the Thioredoxin System, which is

a major antioxidant and
redox signaling cellular system [160]

m.A3243G causing
mitochondrial diseases

Phase 2 (Completed)
/NCT04165239
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Table 2. Cont.

Treatment Mechanisms Target Disease Clinical Trial
/NCT Number

Bocidelpar
(ASP0367)

Agonist of PPARδ,
enhances fatty acid oxidation, mitochondrial
respiration and oxidative metabolism, which
further leads to increment of skeletal muscle

genes expression [161–163]

Primary mitochondrial
myopathy

Phase 2/3 (Active)
/NCT04641962

Mavodelpar
(REN001, HPP593)

Agonist of PPARδ upregulates oxidative stress
defense genes, contributes to

attenuating oxidative stress [164]

Primary mitochondrial
myopathy

Phase 2 (Active)
/NCT04535609

Elamipretide
(SBT-272)

Binding mitochondrial inner membrane
cardiolipin; rescues dysmorphology of

mitochondria [165,166]

Primary mitochondrial
myopathy

Phase 3 (Active)
/NCT05162768

Barth syndrome Phase 3 (Completed)
/NCT03098797

Mitochondrial
dysfunction in age-related

macular degeneration

Phase 2 (Completed)
/NCT03891875

Friedreich Ataxia Phase 1/2 (Active)
/NCT05168774

Skyclarys
(Omaveloxolone)

Nrf2 degradation inhibitor; upregulates the
expression of antioxidant gene, downregulates
the expression of pro-inflammatory genes, and
enhances mitochondrial biogenesis [167,168]

Friedreich’s ataxia FDA approved

Deoxynucleosides
Pyrimidines

(Deoxycytidine dC and
Deoxythymidine dT)

Enhances mtDNA maintenance by bypassing
malfunctional mitochondrial

pyrimidine salvage pathway [169]

Mitochondrial depletion
syndromes with

neurological phenotypes
dysfunction

Phase 2 (Active)
/NCT04802707
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Table 3. Non-chemical clinical treatments for mitochondrial diseases.

Treatment Mechanisms Target disease Clinical trials

LUMEVOQ
(GS010, rAAV2/2-ND4),

MT-ND4 deficiency rescue via allotopic
expression of normal

MT-ND4 using
recombinant AAV [170–172]

LHON
(Leber hereditary optic

neuropathy)

Phase 3 (Active)
/NCT03293524

NR082
(rAAV2-ND4),

Phase 2/3 (Active)
/NCT03153293

ScAAV2-P1ND4v2

MT-ND4 deficiency rescue via allotopic
expression of normal

MT-ND4 using
self-complementary AAV [173]

Phase 1 (Active)
/NCT02161380

Mitochondrial
augmentation

Replacement of dysfunctional mitochondria
with healthy-exogenous donor mitochondria

using in vitro uptake [174]

mtDNA depletion disease
(Pearson syndrome)

Phase 1/2 (Active)
/NCT03384420

Mesoangioblasts (MABs)

Intra-arterial injection of in vitro cultured
patient-autologous mesoangioblasts, which

harbor far fewer mtDNA mutations despite a
much higher mutation load in patient [175,176]

Mitochondrial myopathy
with m.A3243G mutation

Phase 2 (Active)
/NCT05962333

Until now, the most widely used chemical compound in diseases caused by mitochon-
drial dysfunction has been coenzyme Q10. Coenzyme Q10 is a self-generated resource and
also an FDA-approved dietary supplement [177,178], which is well-known for its role as a
powerful antioxidant in cells [146,147]. Self-generated coenzyme Q10 serves as a diffusible
electron carrier in the mitochondria. Based on the known functions of coenzyme Q10,
various research studies have analyzed and reported the potential of coenzyme Q10 for
therapeutic application in mitochondrial diseases [179,180]. A phase 3 clinical trial for
mitochondrial disease was conducted and completed in 2013 (NCT number, NCT00432744).
However, coenzyme Q10 still lacks evidence of significant results in restoring mitochon-
drial dysfunction, and its therapeutic effect remains elusive. In a phase 3 clinical trial for
Parkinson’s disease, which can also be regarded as a pathology related to mitochondrial
dysfunction [181], no beneficial evidence was found for rescuing defective mitochondria.
Due to its limited success in clinical approaches for diseases, coenzyme Q10 is not yet
FDA-approved for medical treatment of disease [178,182,183]. Although coenzyme Q10
(CoQ10) cannot be used to treat any medical condition, there is no issue regarding its use
as a nutrient supplement. Therefore, it is often used as part of a cocktail of nutritional
supplements, mixed with other vitamins for mitochondrial diseases.

Based on the partially beneficial effects of coenzyme Q10, related chemical compounds
are being developed for treatments. Idebenone is the most recognized drug for mitochon-
drial diseases. Idebenone is a short-chain hydrosoluble quinone [184], which overcomes the
disadvantage of insoluble coenzyme Q10 and has demonstrated strong antioxidant activity.
It also functions as an electron carrier in the mitochondrial electron transfer [148–151,183].
Further studies have found that Idebenone can overcome complex 1 deficiency in patients
with LHON by directly transferring electrons to the complex 3, bypassing complex 1.
This restores the function of the electron transfer chain and normalizes the production
of cellular energy [148–151]. Considering that almost all mitochondrial diseases have
defects in complex 1 or the overall electron transfer chain, Idebenone could be used for
the direct treatment of complex 1 defect, and it also shows promise for treating electron
transport chain dysfunction. Clinical studies for various mitochondrial diseases are cur-
rently ongoing [185]. For the medical treatment of LHON patients, a phase 4 clinical trial
has been completed (NCT02774005) and Raxone (Idebenone) has been approved by the
European Medicines Agency (EMA) for use with LHON patients (product number for
EMA, EMEA/H/C/003834). However, it has not received approval from the FDA.

Vatiquinone is a quinone-based molecule that shares structural similarities with coen-
zyme Q10 and Idebenone but exhibits a higher level of protectant activity against oxidative
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stress [186]. Further studies have revealed that Vatiquinone modulates the inflammation
process and depletes glutathione (GSH) at the cellular level by acting as an inhibitor of
15-lipoxygenase (15-LO) [152]. The reduction in ROS activity has also been demonstrated
in human samples from patients with Leigh syndrome and healthy subjects. Vatiquinone
increased GSH levels and decreased oxidized GSH levels, leading to a significant reduction
in ROS levels [153,154,187].

With promising results in the performance of defected mitochondria, clinical trials
have progressed. Several supporting results were found in a trial of patients considered
to be within 90 days of end-of-life [188]. Visual improvement was confirmed in a young
patient with Leigh syndrome [189]. Furthermore, a phase 2/3 clinical trial for mitochondrial
disease with refractory epilepsy was conducted (NCT04378075), but it was announced
to have failed to achieve its primary endpoint of reducing observable motor seizures.
However, phase 3 clinical trials for the safety study of other symptoms are currently
ongoing. There is a trial underway with Vatiquinone-exposed patients for the treatment of
Friedreich ataxia (NCT05515536) and another trial for the broad aspects of mitochondrial
diseases (NCT05218655).

NAD+ is an important factor in the energy production by the mitochondria. The
study of NAD+ precursors has shown potential in enhancing mitochondrial functions. In
addition, a decrease in NAD+ levels is observed in mitochondrial diseases, which is caused
by deficiencies in the mitochondrial electron transfer chain. This decrease in NAD+ causes
a disruption in redox homeostasis and energy metabolism, ultimately affecting various
signaling pathways in cells [156,190]. Various studies have shown that an increase in intra-
cellular NAD+ levels can lead to an improvement in mitochondrial number and oxidative
capacities [156]. Nicotinamide riboside (NR), a precursor of NAD+, has been studied for
its potential to enhance mitochondrial function. It was expected to improve adiposity
but failed to do so [191,192]. However, a few short-term follow-up studies reported the
possibility of NR supplementation leading to physical performance improvements and the
alleviation of minor symptoms related to circulatory system [191,192]. NR research in mice
has focused on its effects on mitochondria, showing that it increases mitochondrial function,
extends the lifespan of mice, and helps retain neuropathy [155,157,158]. In a human trial,
the number of mitochondria increased, and the broad upregulation of NAD+ metabolism
resulted in various enhancements of disease symptoms [193]. Currently, a phase 2 clinical
trial is ongoing for patients with mitochondrial myopathy disorders.

KL1333 is a compound that acts as a NAD+ precursor through interaction with
NAD(P)H quinone oxidoreductase 1 (NQO1), which is a NADH-to-NAD+ conversion
enzyme [159]. It increases NAD+ levels and leads to enhancements. Currently, a phase
2 clinical study for mitochondrial disease is in progress (NCT05650229).

Peroxisome proliferator-activated receptors (PPARs) are transcription factors located
in the nucleus that modulate several pathways through gene expression. PPARδ is a sub-
type of PPARs that is known to be highly expressed in skeletal muscle cells compared
to other PPAR subtypes. It has a preference for increasing fatty acid oxidation and en-
hancing mitochondrial biogenesis [161–164,194]. Thus, in cases of mitochondrial disease
where symptoms are observed in skeletal muscle, the use of PPARδ agonists could be a
therapeutic option, which may increase bioenergetics in skeletal muscle. For the primary
mitochondrial myopathy, which exhibits mitochondrial dysfunction-related symptoms
especially in skeletal muscles, bocidelpar (ASP0367, clinical trial phase 2/3, NCT04641962)
and mavodelpar (REN001, clinical trial phase 2, NCT04535609) are currently undergoing
clinical trials as PPARδ agonists.

Elamipretide (SBT-272) has a distinct activity in restoring defective mitochondria com-
pared to other chemical compounds described previously. The target of Elamipretide is the
cardiolipin of the mitochondrial inner membrane [165], which has a role in maintaining the
architecture and morphology of the mitochondria [166]. The proper structure of mitochon-
dria is important for the proper functioning of mitochondrial proteins. Therefore, a defect
in cardiolipin could lead to the impairment of mitochondrial structure, resulting in neural
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diseases [195–197]. Few studies have reported evidence that the recovery of cardiolipin
levels could improve neuropathy [195,197], and more beneficial effects for mitochondrial
disorders and heart failure have been observed [198–200].

Barth syndrome is a mitochondrial disease known to be caused by a defect in the
Tafazzin protein, which further leads to cardiolipin abnormality [201]. In a preclinical
study of Elamipretide, the network of mitochondria cristae was remedied, resulting in
the improvement of bioenergetics dysfunction in rats [202]. The phase 3 clinical trial of
Elamipretide in Barth syndrome (NCT03098797) has been completed, and another approach
for recovering mitochondrial dysfunction is currently underway for primary mitochondrial
myopathy, which is now in phase 3 of clinical trials (NCT05162768).

The disorder of cells caused by an increase in ROS is a direct result of mitochondrial
defects. Sonlicromanol (KH176) is a compound that reduces ROS levels. It is a derivative of
Trolox (water soluble Vitamin E) and possesses enhanced antioxidant properties [203,204].
Sonlicromanol mediates redox biology through its interaction with one of the major cellular
signaling systems involved in antioxidant and redox processes, namely the thioredoxin
system [160].

The successful rescue of a neural network within a high heteroplasmy load has been
shown using patient-induced stem cells by modulating the neuronal transcriptome [205].
A clinical trial was conducted to rescue MELAS in a patient with the m.A3243G mutation
(NCT04165239), and phase 2 of the trial has been completed.

Omaveloxolone (SKYCLARYS) is the only treatment with FDA approval for use in
patients with mitochondrial disease (Friedreich’s ataxia). Friedreich’s ataxia is a disease
characterized by defective Frataxin expression caused by a pathogenic repeat in the Frataxin
coding gene, resulting in iron accumulation in mitochondria and increased oxidative stress
in cells [167,168]. Omaveloxolone, which is a synthetic derivative of oleanolic acid, binds to
Kelch-like ECH-associated protein 1 (Keap1), preventing the degradation of nuclear factor
erythroid-2-related factor 2 (Nrf2). Nrf2 is a transcription factor that mediates antioxidant
gene expression, represses pro-inflammatory gene expression, and enhances mitochondrial
biogenesis. Thus, the application of Omaveloxolone restores cellular defects by protecting
Nrf2. Omaveloxolone has shown a restoring effect on the disorder in electron transfer chain
complex 1, rescuing mitochondrial functions [206,207]

Omaveloxolone is currently being used to treat patients with Friedreich’s ataxia. The
FDA’s approval of Omaveloxolone may seem to indicate a greater pharmacological efficacy
compared to other drugs currently under development for mitochondrial diseases. Even
Raxone (Idebenone), which has demonstrated therapeutic effects for LHON disease in
numerous case studies, has not yet received FDA approval. While Omaveloxolone is the
first FDA-approved treatment for mitochondrial disease, there are conflicting opinions on
its clinical effects, and the strength of the supporting efficacy data is still debatable [208].

Due to the approaches of drug treatments for mitochondrial diseases, most of the
clinical effects occur at the level of defected pathways and do not affect DNA mutations,
which are the original cause. Therefore, efficacy can vary among individuals, and the
application of treatment needs to be continued throughout a lifetime.

5. Clinical Approach Using Non-Chemical Treatments

In terms of non-chemical treatments for mitochondrial diseases, there is a tendency to
address the pathology by transferring healthy mitochondria or normal mitochondrial gene
into cells with dysfunctional mitochondria, rather than targeting mitochondrial pathways
(Table 3, Figure 2).

In the field of gene therapy, the adeno-associated virus (AAV) is known as a ve-
hicle that can transduce packaged DNA (~4.7 kb) and enable allotropic expression in
organisms [170,209–211].

A clinical approach for LHON patients, who have dysfunctional MT-ND4 in complex
1, involved a pre-clinical study using allotropic expression of normal MT-ND4 through
mRNA delivery. A rodent model of LHON showed enhanced visual deficits, and the rescue
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of ATP synthesis was observed in patient-derived fibroblasts [170–172]. Subsequently, gene
delivery using AAV was performed to achieve similar results through allotropic expression,
resulting in certain improvements in a mouse model of LHON [171,212].

In the history of LUMEVOQ for LHON (rAAV2/2-ND4, GS010), a preclinical study
was conducted using recombinant AAV serotype 2, which is commonly employed for
transducing to retinal ganglion cell nuclei and does not cause retinal injury [172]. Ap-
plication in human patients was carried out through the intravitreal injection (IVT) of
human wild-type ND4-packaged rAAV2. Currently, a phase 3 clinical trial is underway for
LHON patients with the m.G11778A mutation (NCT03293524), and some of the prelimi-
nary results are already providing evidence of improved visual acuity [213]. Additionally,
evidence of contralateral improvement was found in unilateral treatment. Accordingly,
viral gene transfer approaches are under research [214]. A group, using the same method
of treatment for LHON, is currently in their clinical trial phase 2/3 (NR082, NCT03153293).
Another group, using a slightly different approach with self-complementary AAV for pack-
aging the vehicle [173], is currently conducting a phase 1 clinical trial (ScAAV2-P1ND4v2,
NCT02161380).

Mitochondrial augmentation (MAT) is a therapeutic method that involves transferring
normal exogenous mitochondria into cells with disordered mitochondria. Mitochondrial
transfer between cells to restore respiration capability has been demonstrated by using
mtDNA-mutated cells (A549) with hMSC or skin fibroblasts [215]. Further research found
more evidence of mitochondrial transfer [216–218]. In addition, experiments have suc-
cessfully restored mitochondrial defects via the ex vivo augmentation of patient-derived
hematopoietic stem and progenitor cells (HSPCs) with normal donor exogenous mitochon-
dria [174]. MAT treatment has also been conducted in human patients using patient-derived
autologous CD34+ hematopoietic cells reinserted through intravenous infusion. Based
on previous MAT treatments, a decrease in mtDNA heteroplasmy level was observed in
the peripheral blood of patients (4/6), and some patients showed improvement in some
parameters of physical examination [219].

MAT is a therapy that replaces disordered mitochondria in cells with normal mitochon-
dria and is not limited to correcting specific pathogenic mutations. MAT (NCT03384420)
for Pearson syndrome, which is caused by large and random mtDNA deletions, is currently
undergoing phase 1/2 clinical trials.

Another therapy option for the direct replacement of defective mitochondria is the use
of patient-autologous mesoderm-derived stem cells, known as mesoangioblasts (MAB).

In a previous study, it was observed that MAB has low heteroplasmy loads despite
having high loads of mutated mtDNA in skeletal muscle cells [176]. Mutated mtDNA
seems to show a tendency to decrease in cultured satellite cells [175,220,221]. It has the
advantage that when it is intra-arterially administrated to patients systemically and fused
with damaged muscles, it contributes to inducing muscle regeneration due to its high myo-
genic potential [222,223]. In the first phase of the clinical trial, treatment with autologous
MAB was conducted accompanied by ex vivo cultured patient-derived MAB. Currently, it
is in a phase 2 clinical trial for the treatment of mitochondrial myopathy in patients with
the m.A3243G mutation (NCT05962333).

For the treatment of unborn children whose parents have mitochondrial disease, mito-
chondrial replacement techniques (MRT, not listed in the table) are promising procedures,
which can be used to replace almost all disordered mitochondria with healthy ones in
human oocytes or zygotes [224,225]. Except for the fertilization process, various types of
MRTs involve replacing the maternal nuclear DNA with the nuclear DNA in the donor’s
cells. Despite the successful results of MRT operations [16], there have been debatable
outcomes, such as the reversion of mutated DNA [226,227] and other ethical concerns [228].
Ultimately, the FDA has announced that performing MRT is not permitted in the USA.

Although clinical approaches using non-chemical treatments demonstrate their effect
through numerous case studies, restoring efficiency remains elusive. Nevertheless, their
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approach towards achieving permanent effects, as opposed to chemical treatments, holds
promise for a potential cure for mitochondrial diseases.

6. Targeted Genome Editing

In the field of clinical approaches for genetic diseases caused by nuclear DNA, there
are exceptional genetic editing tools with CRISPR-Cas-based technology, which can target
any sequence using target-complementary guide RNAs. In research on CRISPR-Cas-based
base editors, which can edit single pathogenic base pairs with Cas protein and connected
deaminase proteins [229], clinical trials are currently underway (NCT05456880, clinical
study phase 1/2; NCT05885464, also phase 1/2).

In the case of mutations in mtDNA, the CRISPR-Cas system appears to be ineffec-
tive due to the mitochondrial import dynamics that prevent the transport of the guide
RNA [230]. As a result, the current methods for targeted base editing of mutated mtDNA
rely on approaches used prior to the development of the CRISPR-Cas system.

The transcription activator-like effector nuclease (TALEN) uses an array of TALE
proteins to target specific sequences. Each TALE protein can recognize three nucleotides
based on its RVD motifs [231–233]. Since TALE is formed by proteins, it can be transported
to mitochondria using mitochondrial targeting signal amino acid sequences. Previous
methods focused on TALEN for cutting DNA. Base editing with TALE array was not
conducted before the emergence of CRISPR-Cas-related base editors (Figure 3).

Cells 2023, 12, x FOR PEER REVIEW 13 of 26 
 

 

it is in a phase 2 clinical trial for the treatment of mitochondrial myopathy in patients with 
the m.A3243G mutation (NCT05962333). 

For the treatment of unborn children whose parents have mitochondrial disease, mi-
tochondrial replacement techniques (MRT, not listed in the table) are promising proce-
dures, which can be used to replace almost all disordered mitochondria with healthy ones 
in human oocytes or zygotes [224,225]. Except for the fertilization process, various types 
of MRTs involve replacing the maternal nuclear DNA with the nuclear DNA in the donor’s 
cells. Despite the successful results of MRT operations [16], there have been debatable 
outcomes, such as the reversion of mutated DNA [226,227] and other ethical concerns 
[228]. Ultimately, the FDA has announced that performing MRT is not permitted in the 
USA. 

Although clinical approaches using non-chemical treatments demonstrate their effect 
through numerous case studies, restoring efficiency remains elusive. Nevertheless, their 
approach towards achieving permanent effects, as opposed to chemical treatments, holds 
promise for a potential cure for mitochondrial diseases. 

6. Targeted Genome Editing 
In the field of clinical approaches for genetic diseases caused by nuclear DNA, there 

are exceptional genetic editing tools with CRISPR-Cas-based technology, which can target 
any sequence using target-complementary guide RNAs. In research on CRISPR-Cas-
based base editors, which can edit single pathogenic base pairs with Cas protein and con-
nected deaminase proteins [229], clinical trials are currently underway (NCT05456880, 
clinical study phase 1/2; NCT05885464, also phase 1/2). 

In the case of mutations in mtDNA, the CRISPR-Cas system appears to be ineffective 
due to the mitochondrial import dynamics that prevent the transport of the guide RNA 
[230]. As a result, the current methods for targeted base editing of mutated mtDNA rely 
on approaches used prior to the development of the CRISPR-Cas system. 

The transcription activator-like effector nuclease (TALEN) uses an array of TALE pro-
teins to target specific sequences. Each TALE protein can recognize three nucleotides 
based on its RVD motifs [231–233]. Since TALE is formed by proteins, it can be transported 
to mitochondria using mitochondrial targeting signal amino acid sequences. Previous 
methods focused on TALEN for cutting DNA. Base editing with TALE array was not con-
ducted before the emergence of CRISPR-Cas-related base editors (Figure 3). 

 
Figure 3. Currently developed mitochondrial base editor. Identical proteins are displayed with the 
same shape and color. Target and edited nucleotides are marked using boxes, with the edited nu-
cleotides shown in orange. An arrow indicates another form of the same base editor with different 
deaminase activity. Further details can be found in Section 6. 

The first application of base editing in mitochondria was conducted using a combi-
nation of bacterial cytidine deaminase toxin and TALE array [17]. In the progress of 

Figure 3. Currently developed mitochondrial base editor. Identical proteins are displayed with
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The first application of base editing in mitochondria was conducted using a com-
bination of bacterial cytidine deaminase toxin and TALE array [17]. In the progress of
producing a mitochondrial cytosine base editor, the DddA toxin was divided in half to
eliminate toxicity and become active after recruitment at the target site. Additionally, an
uracil glycosylase inhibitor (UGI) was used to inhibit the repair mechanism of cytosine
deamination. These modified DddA toxins are referred to as DddA-derived cytosine base
editors (DdCBEs). After successfully applying targeted base conversion in mitochondria
using DdCBEs, an in vivo mouse model with an induced pathogenic mutation of mtDNA
was generated [234].

Although it was expected to be designed for the C-to-T base editor, the preference for
base conversion only occurs at the 5′ TC motif. To overcome this bias, an improved editor
called DddA11 with an expanded target range was developed [235]. Further development
was conducted to enhance efficiency using a nuclear export signal, taking advantage of its
preference to localize in the mitochondria rather than the nucleus [236].
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The mitochondrial base editor is commonly used to induce pathogenic mutations
in rodents to establish a mouse model of mitochondrial disease with disease pheno-
types [234,236–238]. The use of DdCBEs in an in vivo model is usually conducted through
microinjection at the zygote stage but cannot effectively target all mitochondria, resulting in
a heteroplasmic distribution of mutated mtDNA. Since a high mutation load is required for
the expression of mitochondrial diseases, there is a possibility of creating a mouse model
with higher heteroplasmy levels through the continuous breeding of mutant mice [239].
In terms of effectiveness, improvements should focus on enhancing the overall impact on
intracellular mtDNA.

After the demonstration of target-specific C-to-T base editing in mitochondria, an
A-to-G base editor was also engineered using bacterial tRNA adenosine deaminase (TadA),
which has shown its ability to mediate A-to-G conversion with the CRISPR-Cas
system [240,241]. The first mitochondrial TALE-based A-to-G base editor, TALE-linked
deaminases (TALED), uses an improved version of TadA, called TadA8e for base edit-
ing [18,242]. Since TadA lacks the ability to create a DNA bubble needed for its activity,
TALED uses DddAtox splits to prepare single strands for TadA deamination [18]. Toxicity
was the reason for splitting DddAtox in half. A monomeric form of TALED was also
produced by inactivating the full DddAtox, but this change did not increase base editing
efficiency.

One of the latest tools, mitochondrial DNA base editors (mitoBEs) uses mitochondria-
derived nickase protein to create a suitable DNA structure for deaminase activity [19].
Both C-to-T and A-to-G conversions have been demonstrated using the deaminase protein
rAPOBEC1 (for C-to-T) [229] and the TadA8e-V106W variant.

Given that researchers are discovering various editors using the CRISPR-Cas sys-
tem [243–245], the development of a base editor based on CRISPR-Cas for mtDNA seems
imminent. Improvements in mitochondrial DNA editing systems may lead to promising
treatments and a permanent cure for mitochondrial diseases. However, many obstacles
remain on the path to developing mitochondrial base editors for human clinical treatment.
Diverse types of mitochondrial base editors have shown inconsistent performances with
target-dependent efficiencies [17–19,235], as well as bystander editing within the target
window. Genome-wide off-target effects have been observed in human cells [246] and
mouse embryos [247], which is a major concern as it could lead to unexpected disorders.
In addition, without the cytosine base editor DdCBE, other base editors still lack stud-
ies on in vivo models for further research. Nevertheless, mitochondrial base editing is
still expected to be an attractive treatment method as it can correct mutations that cause
mitochondrial disease and restore normal function.

7. Conclusions

Patients diagnosed with mitochondrial diseases are extremely rare, making it difficult
to conduct sufficient case studies. Additionally, individuals with mitochondrial disease
exhibit fatal symptoms, which poses a challenge for researchers attempting to study them.
Therefore, it is a challenge to overcome these obstacles and develop effective treatments for
mitochondrial disease.

In the past, it was impossible to recognize the underlying causes of mitochondrial
disease. As a result, the approaches used to resolve it were also ambiguous, such as
advising mtDNA mutation-harboring patients to exercise more to regenerate muscles,
without considering their intolerance to physical activities [248,249]. While symptoms with
a small portion of mutant mtDNA or age-related gradual mitochondrial defection can be
managed with more nutritious diets or exercise, these methods cannot replace medical
treatments.

Today, there are no obstacles in identifying DNA mutations in patients to find the
underlying causes of mitochondrial diseases. Research on the dynamics of mitochondria
continues, which leads us to aim for more specific pathways. Pharmacological advances
are also leading to the discovery of new treatments for rare diseases.
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There are several ongoing research studies focused on rescuing dysfunctional mi-
tochondria that are not fully described in this review. For example, restoring mtDNA
depletion by treating with deoxypyrimidine (deoxycytidine and deoxythymidine) to by-
pass the pyrimidine salvage pathway of mitochondria [169,250] is one clinical approach
being used in human trials (NCT04802707, phase 2). OMT-28, a mitochondrial rescue agent
involving Omega-3 fatty acid-related activity, is also under investigation (NCT05972954,
Phase 2).

Although various drugs are currently undergoing human trials, many of them still
seem to be ambiguous in terms of their effects on mitochondrial diseases, due to their
indirect activities on the main causes. Mitochondrial diseases are inherited and permanent,
and the known drugs for mitochondrial diseases provide only temporary relief rather
than a cure. Therefore, a further approach to treatment should focus on addressing the
underlying causes permanently.

MAT, or treatments with autologous MABs, could be regarded as one of the ap-
proaches that are the closest to human treatments involving the permanent replacement
of defected mitochondria. While these therapies demonstrated notable effects in restoring
defective mitochondria-harboring cells, no sufficient changes in the mitochondrial popula-
tion that could completely cure mitochondrial diseases have been reported. AAV-mediated
gene therapy could also be a potential approach for the treatment of mitochondrial dis-
eases. Since spinal muscular atrophy, a genetic disease caused by nuclear DNA, has an
FDA-approved AAV-mediated treatment, Zolgensma (Onasemnogene abeparvovec; FDA
submission tracking number: 125694), and developing mitochondrial gene therapies using
AAV seems to be promising approach. Many of these types of non-chemical treatments have
been developed; however, they still have limitations in that their approach is more targeted
towards specific tissues with direct symptoms rather than the entire body’s mitochondria.
Mutated mitochondria are typically spread throughout the entire body in an individual,
rather than being tissue-specific. Therefore, even if mitochondrial populations in one tissue
are restored, it might lead to subsequent disorders in other tissues. Considering this, further
research is required.

Expressed symptoms of mitochondrial diseases usually result in fatal conditions.
However, current treatments for mitochondrial diseases are still considered remarkable if
they show any effects on disease or improve some parameters. Despite the rarity of patients
expressing severe symptoms, disease-inducing pathogenic mutations can be inherited
without symptoms by many individuals. Without analyzing mtDNA sequences, there is
a possibility that anyone could also be an unaffected carrier of mitochondrial diseases.
Therefore, more attention is needed in the research of mitochondrial diseases and the
clinical approaches to them.
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