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Abstract: Fused-in sarcoma (FUS) gene mutations have been implicated in amyotrophic lateral
sclerosis (ALS). This study aimed to investigate the impact of FUS mutations (R521H and P525L)
on the transcriptome of induced pluripotent stem cells (iPSCs) and iPSC-derived motor neurons
(iMNs). Using RNA sequencing (RNA Seq), we characterized differentially expressed genes (DEGs)
and differentially expressed lncRNAs (DELs) and subsequently predicted lncRNA–mRNA target
pairs (TAR pairs). Our results show that FUS mutations significantly altered the expression profiles
of mRNAs and lncRNAs in iPSCs. Using this large dataset, we identified and verified six key
differentially regulated TAR pairs in iPSCs that were also altered in iMNs. These target transcripts
included: GPR149, NR4A, LMO3, SLC15A4, ZNF404, and CRACD. These findings indicated that
selected mutant FUS-induced transcriptional alterations persist from iPSCs into differentiated iMNs.
Functional enrichment analyses of DEGs indicated pathways associated with neuronal development
and carcinogenesis as likely altered by these FUS mutations. Furthermore, ingenuity pathway
analysis (IPA) and GO network analysis of lncRNA-targeted mRNAs indicated associations between
RNA metabolism, lncRNA regulation, and DNA damage repair. Our findings provide insights into
potential molecular mechanisms underlying the pathophysiology of ALS-associated FUS mutations
and suggest potential therapeutic targets for the treatment of ALS.

Keywords: fused-in sarcoma (FUS); neurodegenerative disorders; induced pluripotent stem cells
(iPSCs); long non-coding RNAs (lncRNAs); RNA sequencing

1. Introduction

Neurodegenerative disorders, such as amyotrophic lateral sclerosis (ALS), pose signif-
icant challenges to our understanding of the molecular mechanisms that drive neuronal
dysfunction and degeneration. While 90% of ALS is sporadic (sALS), the remaining 10% of
patients suffer from the familial variant of the disease (fALS). One of the mutated genes
responsible for fALS is the fused-in sarcoma (FUS) gene, which has been identified as an
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important contributor to the pathogenesis of fALS [1,2]. FUS is an RNA/DNA-binding pro-
tein that plays a crucial role in various aspects of RNA metabolism, including transcription,
splicing, and transport, in addition to its role in DNA repair [3,4]. The dysregulation of
FUS due to mutations has been implicated in the pathogenesis of ALS, although the precise
molecular events leading to neurodegeneration remain unclear.

FUS mutations typically disrupt the nuclear localization signal (NLS) of the protein
and can affect its RNA-binding capacity. Key mutations in the FUS gene, such as R521H
and P525L, are located within the NLS domain and have been shown to promote the
mislocalization of FUS from the nucleus to the cytoplasm of motor neurons and glial cells
in ALS patients, leading to its aggregation [5]. This aberrant FUS localization results in
both the loss of its normal function in the nucleus and the gain of toxic properties in the
cytoplasm, suggesting that FUS mislocalization and aggregation plays a central role in
disease pathogenesis [6].

FUS-associated neurodegeneration is thought to be driven by a combination of loss
of nuclear function and cytoplasmic toxicity [7,8]. The loss of FUS function in the nucleus
may lead to impaired RNA processing and transcriptional regulation, as well as defective
DNA repair, thereby affecting neuronal survival and function [3,9–13]. On the other hand,
the accumulation of cytoplasmic FUS aggregates may disrupt cellular homeostasis by
impairing the function of other RNA-binding proteins and sequestering essential cellular
components [8,14]. This dual mechanism, involving both the loss of nuclear function and
the gain of cytoplasmic toxicity, may contribute to the complex pathophysiology of ALS.
Previous studies have implicated alterations in RNA metabolism, stress granule dynamics,
and DNA damage repair pathways in FUS-associated neurodegeneration [15–17]. However,
a comprehensive understanding of the transcriptional landscape and the affected pathways
in the context of FUS mutations is still lacking.

LncRNAs play a significant role in regulating gene expression, protein activity, and
chromatin structure. They can interact with DNA, RNA, and proteins and have been
shown to regulate various biological processes, including development, differentiation,
and diseases [18,19]. Altered RNA metabolism and regulation has been identified as a
critical factor in the pathogenesis of ALS. Many familial mutations associated with ALS
occur in DNA/RNA-binding proteins, such as FUS, TDP-43, and others [20]. In particular,
FUS has been shown to interact with a wide variety of RNAs, including mRNAs, miR-
NAs, and lncRNAs, and to play a multi-faceted role in lncRNA regulation [21]. FUS has
also been shown to be important for the localization of lncRNAs to specific subcellular
compartments, such as the nucleus or cytoplasm, with significant consequences for their
function. The lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) is one such
example, where FUS has been shown to bind to a specific region of NEAT1 and assist in
localizing it to nuclear paraspeckles, which are subnuclear bodies involved in regulating
gene expression [6,22]. Furthermore, FUS is necessary for the formation of these paraspeck-
les in some cells, suggesting that FUS-NEAT1 interactions play a role in the regulation of
this subnuclear structure. Interestingly, proteins enriched in the pool of proteins affected
by ALS-causative mutations are also found in paraspeckles.

Here, we employed RNA-Seq to examine the effects of neurodegeneration-linked
FUS mutations (R521H and P525L) on the transcriptional profiles of iPSCs and assessed
whether any of these changes persisted into the differentiated motor neuron state. We
first analyzed the expression profiles of both mRNAs and long non-coding RNAs (lncR-
NAs) in control and FUS-mutant iPSCs and used software tools to predict the interaction
between lncRNAs and their putative target mRNA transcripts. Using these datasets, we
identified the top differentially regulated lncRNAs and mRNAs that were predicted to
have a functional relationship and confirmed their expression trends using RT-PCR in
iPSCs. We also tested these targets in induced motor neurons (iMNs) using RT-PCR and
discovered a set of three TAR pairs for each FUS mutant that reliably exhibited differential
expression with important links to neuropathology. Furthermore, these data allowed us to
identify significant biological processes involving RNA metabolism, lncRNA regulation,
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and DNA damage repair using ingenuity pathway analysis (IPA) and GO network analysis
on lncRNA-targeted mRNAs.

This study helps shed light on potential lncRNA-mediated molecular mechanisms
underlying mutant FUS-induced pathology in neurodegenerative disease and may help
improve understanding for new therapeutic targets for ALS.

2. Methods
2.1. Cell Culture

The control human induced pluripotent stem cells (iPSCs) used in this study were
obtained from ATCC (#KYOU-DXR0109B). The FUS mutant patient-derived iPSCs and
their isogenic controls were generously provided by VIB-KU Leuven [3,23]. All iPSCs
were cultured on Geltrex LDEV-free hESC-qualified basement membrane matrix, supple-
mented with 1X Essential 8 supplement. Colonies were regularly passaged using 0.5 mM
EDTA (15575-020, Invitrogen, Waltham, MA, USA) in Dulbecco’s phosphate-buffered saline
(DPBS). The cultures were routinely monitored for mycoplasma contamination by PCR.
Motor neurons were generated from the iPSC lines following a previously published
protocol [24]. Briefly, iPSC clones were suspended using collagenase and transferred to
a T-25 flask with neuronal basic medium. Cells were then cultured for 48 h in the pres-
ence of a 5 µM ROCK inhibitor (Y-27632, RI, Millipore, Burlington, MA, USA), a 40 µM
TGF- β inhibitor (SB 431524, SB, Tocris Bioscience, Bristol, UK), a 0.2 µM bone morpho-
genetic protein inhibitor (LDN-193189, LDN, Stemgent, Beltsville, MD, USA), and a 3 µM
GSK-3 inhibitor (CHIR99021, CHIR, Tocris Bioscience). The cells were then suspended
and incubated with a neuronal basic medium containing 0.1 µM retinoic acid (RA, from
Sigma, St. Louis, MO, USA) and 500 nM Smoothened Agonist (SAG, from Merck Milli-
pore) over 4 days. The media was then changed, and the cells were incubated for 48 h in
neuronal basic medium containing RA, SAG, 10 ng/mL brain-derived neurotrophic factor
(BDNF, Peprotech, Rocky Hill, NJ, USA), and 10 ng/mL glial-cell-derived neurotrophic
factor (GDNF, Peprotech). Cell spheres were then dissociated in neuronal basic medium
containing trypsin (0.025%) for 20 min at 37 ◦C, before being separated into single cells
with trypsin-inhibitor-containing medium (1.2 mg/mL). The cells were quantified and
distributed onto laminin (Life technologies, Carlsbad, CA, USA)-coated dishes according
to manufacturer’s instruction and incubated for 5 days in neuronal basic medium with
RA, SAG, BDNF, GDNF, and 10 µM DAPT. The media was then changed to neuronal basic
medium with BDNF, GDNF, and a 20 µM γ-secretase inhibitor (DAPT, Tocris Bioscience)
for 48 h. These were then used for motor neuron differentiation by maintaining the cells
for 7 days in medium containing BDNF, GDNF, and 10 ng/mL ciliary neurotrophic factor
(CNTF, Peprotech).

2.2. RNA Isolation, Library Construction, and Sequencing

Approximately 2 × 106 cells were collected and centrifuged at 4 ◦C at 2000 rpm for
3 min for the extraction of RNA. Total RNA was isolated using Trizol (Thermo Scien-
tific, Waltham, MA, USA) according to the manufacturer’s instruction. RNA purity and
quantification was determined using a NanoDrop 2000 spectrophotometer (Thermo Fisher
Scientific, Waltham, MA, USA). The extracted RNA was sent to BGI (Shenzhen, China) for
transcriptome library construction and data analysis. During this process, RNA quality
was measured using an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CS,
USA). The RNA samples were further purified using a Ribo-Zero rRNA Removal Kit before
fragmentation occurred. Random primers and a TruSeq reverse transcriptase kit were used
for first-strand cDNA synthesis, followed by DNA polymerase I and RNaseH for double-
stranded cDNA synthesis. The library was then sequenced using BGISEQ-500. Low-quality
reads, adapter contamination, and unknown N bases were filtered. The remaining clean
reads were mapped to the reference genome (GRCh37) using HISAT (v2.0.4) with default
parameters. The resulting transcripts were assembled using StringTie (v1.0.4). lncRNA
transcripts were further annotated using the NONCODE [25] database.
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2.3. Coding Ability Prediction

Novel transcripts were assessed for their coding ability to distinguish mRNA from
lncRNA. The software tools CPC (Coding Potential Calculator) [26], txCdsPredict [27], and
CNCI (Coding Non Coding Index) [2] were used to score the coding capacity of novel
transcripts, requiring CPC and CNCI scores of <0 and txCdsPredict scores of <500. These
results were also queried against the database pfam [28] to identify known protein-coding
domains. Novel transcripts were designated as lncRNA or mRNA when at least three of
the prediction methods were in agreement.

2.4. Identification of Differentially Expressed lncRNA and mRNA

lncRNA and mRNA expression levels were calculated using the fragment per kilobase
of transcript per million mapped reads (FPKM). To calculate the differential expression
analysis of genes and transcripts, Bowtie2 was used to align clean reads to the reference
sequence, and then RSEM was used to calculate gene and transcript expression levels. Sub-
sequently, the PossionDis tool (PossionDisFoldChange ≥ 2.00 and FDR ≤ 0.001) was used
to analyze the significance of differentially expressed lncRNAs (DELs) and differentially
expressed mRNAs (DEGs) between the SA (control) samples and the SB (FUS-P525L) and
SC (FUS-R521H) samples. Initial screening identified DELs and DEGs as those transcripts
with p-values of <0.05 and an absolute log2 fold change of ≥1.5.

2.5. lncRNA Target Gene Prediction

To better understand the potential functional roles of DELs, mRNA target gene pre-
diction was used. The analysis methods used in this study included calculating Spearman
and Pearson correlation coefficients of the expression values of DELs and mRNA. Genes
for which Spearman_cor ≥ 0.6 and Pearson_cor ≥ 0.6 were selected as interaction pairs.
These pairs were then classified as cis or trans. Any lncRNA in the 10 kB upstream or 20 kB
downstream of the putative mRNA was designated as cis. Targets beyond this range were
identified by binding the energy of lncRNA and mRNA using RNAplex.

2.6. Functional Enrichment of DEGs and Target Genes of DELs

The datasets of DEGs, DELs, and DEL targets were cross examined to identify TAR
pairs containing DELs predicted to target DEGs; these pairs were further refined such
that each DEL and DEG pair exhibited a 5-fold or greater increase/decrease relative to
the control. These pairs were then selected for further study. Furthermore, the datasets
of DEGs and DEL target genes were used for functional enrichment analysis using gene
ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analysis, and ingenuity pathway analysis (IPA—QIAGEN). GO, KEGG, and IPA terms for
which p < 0.05 were accepted as significant.

2.7. qRT-PCR Validation of Differentially Expressed lncRNAs and mRNAs

The validity of the results was determined by RT-PCR using primers selected for
certain highly differentially expressed DELs and their DEG targets. Using iPSC cell lines
separate from those used for RNA-Seq, the total RNA of each cell line was extracted
using Trizol reagent (Invitrogen, Carlsbad, CA, USA), according to the manufacturer’s
instructions. The total RNA was reverse transcribed into cDNA using the Super Script
Vilo Kit (Thermo Scientific, Waltham, MA, USA). qRT-PCR amplification was performed in
triplicate using the ABI 7500 (Applied Biosystems, Foster City, CA, USA) and the PowerUp
SYBER Green Master Mix (Thermo Scientific, Waltham, MA, USA). Multiple housekeeping
genes were utilized as an internal control and included the HPRT and GAPDH genes. All
RT-PCR reactions were conducted in triplicate. Primers for the lncRNAs and mRNAs were
purchased from Sigma and are shown in Supplementary Table S1. The relative expression
of each validated gene was determined using the 2−∆∆Ct method. Student’s t-test was
performed and results for which p < 0.05 were accepted as significant.
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3. Results
3.1. Results of Sequencing and Characteristics of Transcripts

The overall design of this study is depicted in Supplementary Figure S1. Human
derived iPSCs were grown under standard conditions before total RNA isolation. After
verifying the quality of the extracted RNA, sequencing libraries were prepared (BGI).
Short-read sequencing was used to analyze the transcriptomes of iPSCs derived from ALS
patients carrying the FUS P525L or FUS R521H mutations and compared to control iPSCs.
A total of 106,975,508 reads were collected from control samples, and 108,244,484 and
92,527,778 reads were collected from the P525L and R521H mutants, respectively (Table 1).
These data were then filtered to remove low-quality reads and adaptor sequences, which
yielded a total of 99,081,102 clean reads for the control and 99,842,418 and 85,427,768 clean
reads for the R521H and P525L mutants, respectively. We observed mapping rates of
these clean reads to the reference transcriptome (GRh37) of 92.25% for control and 93.48%
and 94.21% for R521H and P525L, respectively. Over 80% of all reads mapped to a single
location in the reference transcriptome, indicating that the data were acceptable for accurate
differential gene expression analysis. Additional general characteristics of the mapped
reads are summarized in Supplementary Figures S2 and S3.

Table 1. Summary of reads after quality control. Raw and filtered reads obtained from BGISEQ-
500 platform.

Samples Total Raw Reads Total Clean Reads Total Clean
Reads Ratio

Total Mapping
Reads

Uniquely Mapping
Reads

Control 106,975,508 99,081,102 92.620% 92.25% 80.16%

FUS R521H 108,244,484 99,842,418 92.238% 93.48% 80.24%

FUS P525L 92,527,778 85,427,768 92.327% 94.21% 80.90%

Following transcriptome assembly across all samples, transcripts identified as novel
were merged and simultaneously assessed for protein coding capacity using four predictive
software tools. This analysis step identified 1795 novel lncRNAs (1703 in the control,
1716 in R521H, and 1697 in P525L), and 5986 novel mRNAs (4035 in the control, 4033 in
R521H, and 4034 in P525L) across all samples combined (Figure 1A,B). A summary of the
quantitative analysis is given in Table 2. Only known mRNA transcripts mapping to the
reference sequence and lncRNAs identified in the NONCODE database were used for the
downstream analysis of differential expression.

Table 2. Summary of identified mRNA and lncRNA transcripts in human iPS cells. Quantitative
analysis of all transcripts separated by sample.

Sample Known lncRNA Known mRNA Novel lncRNA Novel mRNA

Control 11,399 15,274 1703 4035

FUS R521H 11,516 15,177 1716 4033

FUS P525L 11,098 15,163 1697 4034

Additional characteristics of the mapped transcripts are shown in Figure 1. Expectedly,
analysis of the distribution of exon number across the transcripts revealed that lncRNAs
tended to have two exons, while mRNAs contained more than ten (Figure 1C,D). Similarly,
transcripts with a length of 2–2.5 kb made up the majority of mRNAs, while predicted lncR-
NAs were comprised mostly of transcripts between 0 and 500 bp (Figure 1E). Additionally,
when we analyzed the number of DEGs and DELs between each comparison group, we
discovered that FUS-P525L mutant cells contained 58% more DEGs and 31% more DELs
than FUS-R521H mutant cells, relative to the controls (Figure 1F,G).
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classification. (E) A statistical figure showing RNA length, including mRNA and lncRNA; X-axis:
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and R521H over WT.



Cells 2023, 12, 2461 7 of 20

3.2. Differential Expression Analysis

LncRNA and mRNA expression levels were calculated using the fragment per kilo-
base of transcript per million mapped reads (FPKM). To perform a differential expression
analysis of the genes and transcripts, Bowtie2 [29] was used to align clean reads to the
reference sequence, and then RSEM [30] was used to calculate gene and transcript expres-
sion levels. Subsequently, the PossionDis [31] tool (PossionDisFoldChange ≥ 2.00 and
FDR ≤ 0.001) was used to analyze the significance of DELs and DEGs between the control,
P525L, and R521H. The analyses of DEGs and DELs are depicted in Figure 2A–D. In total,
1734 significantly differentially expressed mRNAs and 1239 lncRNAs were identified in
the control as compared to the P525L samples, while 1317 mRNAs and 1041 lncRNAs
were detected in the control as compared to the R521H samples. Interestingly, there was
significant overlap between the most upregulated genes in the comparisons between the
control and each mutant. Of the top ten most upregulated genes, comparisons between
the control and each mutant shared six commonly identified targets. These included
RPS4y1, DDX3Y, MXLOC_037825, EIF1AY, RPL17-C18orf32, and n379185. Evaluation of
the most downregulated genes revealed slightly less concordance, with each comparison
between control and mutant sharing only three of the top ten most downregulated genes.
These included MXLOC_016157, MAGEA12, and LXLOC_037100. With respect to the total
number of differentially expressed genes, the control vs. P525L and control vs. R521H
comparisons yielded 711 and 593 upregulated targets, respectively. The same analysis of
downregulated genes revealed 839 and 637 targets for the control vs. P525L and control vs.
R521H comparisons, respectively. Supplementary Tables S2 and S3 contain a list of all of
the differentially regulated mRNA transcripts and predicted lncRNAs for the control vs.
P525L and control vs. R521H comparisons, respectively. Overall, these findings suggest
that while each of the two different mutations in the same FUS protein exerted similar
effects on the transcriptional landscape of iPSCs, there are important differences to consider
in future work.

3.3. Identification of Differentially Regulated lncRNA–mRNA Target Pairs

One of the mechanisms by which lncRNAs can alter gene expression is through cis- or
trans-acting effects with target mRNAs (Figure 3A). To this end, we questioned whether
any relationship existed between the DEGs and DELs identified between the control and
FUS mutant iPSCs. To accomplish this, we cross-referenced datasets containing lists of
DEGs and DELs against a list of software-generated predictions of lncRNA–mRNA target
pairs (TarPairs) classified as cis/trans-acting (Supplementary Table S4) and overlapping
(Supplementary Table S5). The results of this analysis are summarized in Figure 3B. We
refined the list of 7764 TarPairs by filtering those pairs whose members were differentially
regulated by a factor of two or greater in either direction. This filtering step resulted in
the identification of 100 significantly regulated TarPairs between the control and the P525L
mutant, and 312 between the control and the R521H mutant. Figure 3C,D show selected
TarPairs exhibiting at least a fivefold expression difference between the control vs. P525L
and control vs. R521H comparisons. The selected TarPairs for the control vs. R521H
comparison included lnc-GPR149/GPR149, lnc-ERMN/NR4A, and lnc-LMO3/LMO3. The
selected TarPairs for the control vs. P525L comparison included lnc-TMEM132D/SLC15A4,
lnc-ZNF404/ZNF404, and lnc-PDCL2/CRACD. In many cases, the direction of mRNA
target expression change was congruent with its putative interacting lncRNA. In other
cases, such as the ZNF404 TarPair, the expression change direction was inversed.
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mRNAs within 20 kB of the lncRNA) or a trans manner (i.e., predicted based on calculated binding
energy between the TAR pair). (B) Venn diagram outlining the results of the manual annotation of
raw data sets. A total of 1734 and 1317 well-annotated DEGs and 1239 and 1042 DELs were identified
and cross-referenced against a total of 7764 predicted TAR pairs. The data sets were further refined to
reveal 100 and 312 TAR pairs wherein each lncRNA and mRNA target were differentially regulated
by twofold or greater. (C,D) Three differentially regulated TAR pairs were selected and the log2 fold
expression was visualized. The lncRNA fold expression vs. the control is shown in red. The target
mRNA fold expression vs. the control is shown in blue. The TAR pairs are juxtaposed along the
X-axis. AB: control vs. P525L; AC: control vs. R521H; DEG: differentially expressed genes referencing
mRNAs; DEL: differentially expressed lncRNAs; TF: transcription factor.

3.4. RT-PCR Confirmation of TarPairs in iPSC and Motor Neuron Cell Cultures

To validate our sequencing results, six TarPairs were selected for RT-PCR analysis.
New iPSC cell cultures were grown and total RNA isolates from each new cell culture were
used to conduct validation experiments. As shown in Figure 4, the expression patterns of
the DELs and their predicted target DEGs in iPSCs remained consistent with our sequencing
data. Given the disease relevance of FUS P525L and R521H mutations for ALS pathogenesis,
we questioned whether these effects persisted in motor neurons. To answer this question,
we removed a subset of iPSCs and differentiated them into terminally differentiated motor
neurons using the methods previously described [24]. RNA samples from these motor
neurons were then evaluated by RT-PCR, and the results are shown in Figure 4. Interestingly,
each of the selected TarPairs maintained the differential expression pattern observed in
their iPSC precursor. In a final step, we further confirmed these expression differences by
performing RT-PCR using RNA isolated from isogenic controls for each FUS mutant cell
line, R521R vs. control, and P525P vs. control (Supplementary Figure S4). In each case, the
isolated correction of the FUS mutant abrogated the observed expression differences. Taken
together, these data suggest that at least some of the FUS mutant associated alterations in
lncRNA and mRNA expression persist across cell development.

3.5. Functional Enrichment Analysis of mRNAs Co-Expressed with lncRNAs

Multiple network and functional pathway analysis tools were used to infer the func-
tional consequences of the differentially expressed genes observed in FUS mutant iPSCs
compared to the control. The potential function of the FUS P525L and R521H mutations
were studied using gene ontology (GO) annotation and enrichment analysis. For the
GO enrichment analysis of differentially expressed genes between samples, targets were
classified into three general categories of biological processes, molecular function, and
cellular component (Figure 5A,B). Within the biological process class, terms with the great-
est number of associated genes found in both mutants included response to stimulus
(GO:0050896), regulation of biological process (GO:0048519), cellular process (GO:0009987),
and biological regulation (GO:0065007). We also analyzed functional enrichment analysis
using the Kyoto Encyclopedia of Genes and Genomes (KEGG) tool (Figure 5C,D). Interest-
ingly, we observed that functional enrichment included multiple nervous-system-related
terms, including neuroactive ligand–receptor interactions, axon guidance, and cell adhe-
sion molecules. Additionally, we observed functional enrichment around transcriptional
misregulation in cancer, a function that might be expected given the strong association of
FUS with neoplastic pathologies. We observed similar functional enrichment in the control
vs. R521H comparison. Finally, we complemented these two approaches with ingenuity
pathway analysis (QIAGEN) performed on DEGs identified between each mutant compari-
son (Figure 6A,B). Despite these analyses being conducted in iPSCs, we again observed the
network effects associated with the nervous system, including CNS development in the
control vs. P525L comparison and neuronal differentiation and signaling in the control vs.
R521H comparison. Finally, we conducted GO analysis using the predicted mRNA targets
of the identified lncRNAs (Figure 7). Given the general function of FUS as a regulator of
RNA function, we observed significant GO terms indicating noncoding RNA processing
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(GO:0006396) and metabolic processes (GO:0034660). Additionally, we observed the sig-
nificant terms of DNA damage signaling and repair (GO:0006302), and lncRNA metabolic
process (GO:0034660).
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Figure 4. RT-PCR validation of RNA-Seq results. Selected differentially regulated TAR pairs identified
in iPSC lines by RNA-Seq are confirmed by RT-PCR. The expression of the same TAR pairs was
also tested by RT-PCR using RNA isolated motor neurons induced from separate cultures of the
same iPSC lines. (A) Validation experiments for the three key TAR pairs identified in the FUS R521H
cell line. (B) Validation experiments for three key TAR pairs identified in the FUS P525L cell line.
RNA expression of the control iPSC and mutant iPSC are shown in blue and red, respectively. The
RNA expression of the control and mutant induced motor neurons are shown in green and purple,
respectively. iPSC: induced pluripotent stem cell; MN: motor neuron. p-values 0.0332 (*), 0.0021 (**),
0.0002 (***), <0.0001 (****).
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Figure 6. IPA network analysis. Ingenuity pathway analysis (QIAGEN) of DEGs revealed both
inferred and direct effects of network connections involved in the development of the CNS and
neural signaling (outlined in red). IPA analysis performed on DEGs identified from comparisons
of (A) control vs. P525L and (B) control vs. R521H. Key terms related to neuronal development or
function are outlined in red.
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4. Discussion

In this study, we identified differentially expressed genes, lncRNAs, and predicted
lncRNA–mRNA target pairs (TAR pairs) associated with R521H and P525L FUS muta-
tions in patient-derived iPSCs and iMNs. Our study demonstrates the impact of the
neurodegeneration-associated FUS mutations R521H and P525L on the transcriptional
landscape in iPSC cells and indicates that these changes may persist into the terminally
differentiated state. By conducting RNA-seq analysis, we characterized the expression
profiles of both mRNAs and lncRNAs in control and FUS mutant iPSCs. Our findings
revealed significant changes in the expression profiles of distinct lncRNAs in FUS mutant
iPSCs. Notably, these differentially expressed lncRNAs were correlated with a similar
change in the expression of their putative target mRNAs. Unlike conventional RNA-Seq
studies that primarily focus on changes in the landscape of mRNA or non-coding RNAs in
isolation, our study is unique in that we have identified and validated the co-expression of



Cells 2023, 12, 2461 14 of 20

several predicted lncRNA–mRNA TAR pairs in FUS mutant iPSCs that carried over into
the iMN state. Moreover, we verified the direct impact of mutant FUS by analyzing the
expression of select lncRNAs in mutation-corrected isogenic iPSC lines. While our study
was limited to six TAR pairs, we believe these confirmed interactions positively contribute
to the field’s understanding of how FUS mutations affect the development and function
of neural cells. Here, we will review what is known about each differentially expressed
mRNA target and discuss how their dysfunction may contribute to the development of
FUS-linked neurodegenerative disease.

Our study identified three differentially expressed targets associated with transcrip-
tional regulation: LMO3, ZNF404, and NR4A2/Nurr1. LMO3 (LIM domain only 3) is a
neuronal basic helix-loop-helix transcriptional regulator involved in cell fate determination
and differentiation during embryonic development [32]. LMO3 plays a role in the neuronal
differentiation of dopaminergic neurons of the substantia nigra, and neurons of the globus
pallidus externus and has been utilized as a marker of interneuron development [33–36].
LMO3 is specifically involved in the development of dopaminergic neurons by acting as a
transcriptional co-activator of Pitx3, ALDH1A1, and genes required for retinoic acid and
GABA synthesis [33]. LMO3 is likewise preferentially expressed in the substantia nigra
medial dopaminergic neurons [34], where its downregulation has been associated with
Parkinsons’s disease (PD) neurodegeneration [35]. LMO3 expression is also maintained
in motor neurons and has been shown to be downregulated and alternatively spliced
in SHSY cell lines expressing ALS-associated G93A-SOD1 mutations and in SHSY cell
lines treated with neurotoxic pesticide Paraquat [37]. Loss of LMO3 has also been shown
to induce the adoption of depressive and anxiety-like behavioral phenotypes in LMO3
knockout mouse models and to alter animal response to ethanol administration [38]. Fi-
nally, LMO3 has been implicated in neuroblastoma progression, where the overexpression
of LMO3 caused rapid and aggressive tumor growth and was subsequently associated
with decreased patient survival [39]. These reports suggest a critical role for LMO3 in
neurodevelopment and subsequent cellular behavior, with upregulation underpinning
cancer cell growth and downregulation promoting neurodegeneration. Our results indicate
that FUS mutants induce the downregulation of lncLMO3 and its putative target LMO3.
This finding correlates well with previous reports that identified the downregulation of
LMO3 in SOD1 ALS cell lines. The reports of LMO3 downregulation in PD are also of
interest. While FUS mutations have not been strongly linked to PD, both PD and FUS
ALS-affected neurons share similar histopathological characteristics, including cytosolic
protein inclusions and increased genomic instability [40]. This further supports the notion
that LMO3 downregulation contributes to a neurodegenerative phenotype. Based on our
data, further investigation into the full impact of LMO3 on neural cell differentiation and
subsequent motor neuron health seems warranted.

ZNF404 is another differentially expressed gene associated with mutant FUS. ZNF404
is a nuclear zinc finger protein that is predicted to be involved in the negative regulation of
RNA polymerase II transcriptional activity, in addition to other cellular processes, such as
DNA binding and protein–protein interactions [41]. Mutations in ZNF404 have also been
recognized in transcriptional analyses of breast cancer and as a regulating factor in gingival
progenitor cells [42,43]. The role of ZNF404 in neural development and neurodegeneration
remains unknown. However, given the central role of altered transcriptional regulation
and protein–protein interaction in the pathogenesis of ALS, it seems plausible that ZNF404
may contribute to disease progression, possibly through the nonspecific dysregulation
of whole gene networks. Our data indicate that FUS may indirectly regulate LMO3 and
ZNF404 functionality via lncRNAs. These observations expand what is known regarding
the mechanisms of how FUS regulates transcriptional activity. Within the context of ALS,
the FUS-mutant-induced loss of LMO3 likely plays a role in the degeneration of motor
neurons, while increases in lnc-ZNF404, with the subsequent downregulation of ZNF404
mRNA, exacerbate wide-scale perturbations in diseased motor neuron transcriptomes. It is
important to note, however, that the mechanisms underlying these FUS-induced alterations
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persist from iPSCs to motor neurons. How this specificity is achieved remains unknown
and should be the subject of further studies.

NR4A2/Nurr1 is a nuclear receptor and transcription factor that has been associated
with dopaminergic neuron differentiation, dopaminergic signaling, and the modulation
of microglial- and astrocyte-mediated inflammation [44]. NR4A2 has been best studied in
the context of PD, where its expression levels have been found to be diminished in both
post-mortem tissues and living PD patients [45,46]. NR4A2 has been found to inhibit the
expression of proinflammatory mediators and has been linked to a protective role against
inflammatory neuron cell death [47]. In fact, the knockdown of NR4A2 exaggerated the
inflammation responses of microglia and astrocytes, which in turn contributed to the demise
of dopaminergic neurons [48]. While the role of NR4A2 in PD has been best described, more
recent reports have demonstrated its role in Alzheimer’s disease, multiple sclerosis, stroke,
depression, and intellectual disability [44,49–51]. For example, in rat models of ischemic
stroke, NR4A2 was found to be regulated by miR-145-5p, and anti-miR-145-5p treatment
enhanced neurological recovery following reperfusion [52]. Interestingly, NR4A2 levels
have also been found to be decreased in the post-mortem tissues of aged brains, suggesting
that NR4A2 may contribute to the aging brain [53]. Another recent report connected NR4A2
to cognitive ability. Specifically, it was found that long-lasting changes in synaptic plasticity
within the hippocampus are regulated by NR4A2 [54]. Based on these documented roles,
gene- and cell-based therapies targeting NR4A2 have become promising candidates for
the treatment of neurodegenerative disease [55]. Here, we show that mutant FUS may
also contribute to the regulation of NR4A2, possibly via the downregulation of lnc-ERMN.
Whether the resulting downregulation of NR4A2 is a compensatory response to cell stress or
is working in new ways to advance the disease process remains unknown. Taken together,
our data add to the growing body of evidence linking NR4A2 to neurodegenerative disease
and highlight two novel means by which disease progression may be targeted via FUS
and lnc-ERMN.

CRACD (capping protein inhibiting regulator of actin dynamics) is involved in the
negative regulation of actin filament capping within the cytosol. This process occurs
through direct interactions with actin-capping proteins, resulting in a decreased affinity for
actin. This negative regulation prevents the addition of a protective cap onto the barbed end
of actin filaments, thereby enabling filament elongation or degradation [56]. It is known
that actin filament regulation is critical for neurons as it regulates growth, axon stability,
and synaptic function [57–59]. CRACD downregulation has been strongly associated
with various types of cancer and metastasis, including small-cell lung carcinoma [60] and
colorectal cancer stem cells [61]. Haplotypes of CRACD have been linked to opioid use
in patients, as indicated by a recent genome-wide association study (GWAS) [62]. During
development, CRACD is expressed during early timepoints and is thought to play a role
in tissue differentiation, particularly in the heart and both the peripheral and central
nervous systems. However, its expression is typically lost in most terminally differentiated
adult tissues [63]. Interestingly, our findings show the upregulation of CRACD in both
iPSCs and terminally differentiated motor neurons. While the exact role of CRACD in
neurodegeneration remains unexplored, cytoskeletal dyshomeostasis is a known factor in
ALS pathogenesis. For example, mutations in profilin 1 (pfn1), another regulator of actin
polymerization, are a known cause of familial ALS [64]. Specifically, it has been shown that
motor neurons with pfn1 mutations contained decreased levels of pfn1-bound actin with
subsequently smaller growth cones and a reduced F-/G-actin ratio, indicating significant
cytoskeletal perturbations [64]. Another example is the ALS2 protein, which regulates
actin-based neurite outgrowth via the Rab5 GTPase signaling [59,65,66]. These proteins act
to regulate actin polymerization and have been associated with early endosome dynamics.
Mutations in ALS2 are also a rare cause of juvenile ALS, where it is believed that it causes the
unlinking of ALS2 and Rab5, leading to altered actin-based cargo movement and excitatory
synaptic signaling [59,67]. Importantly, reports have shown that neurons lacking ALS2
demonstrate greater numbers of glutamate receptors and sensitivity to oxidative stress—
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both factors which are partially regulated by actin filament dynamics [59,68–73]. Based on
these reports, it appears that the regulation of actin lies at the crossroads of several different
disease-contributing pathways in ALS-affected motor neurons. The fact that our data show
the upregulation of CRACD suggests that mutant FUS may exert currently unknown and
potentially significant effects on cytoskeletal homeostasis. Therefore, CRACD involvement
in neurodegeneration may prove to be a fruitful avenue for additional investigation.

GPR149, an orphan G-protein-coupled receptor (GPCR), has a limited documented
functional role [74]. Many orphan GPCRs, including GPR149, have been investigated as
potential drug targets due to their unknown ligands and functions [75]. Some studies have
reported that several orphan GPCRs are highly expressed in the prefrontal cortex of the
mouse brain, which is involved in learning and memory [76]. GPR149 is known to regulate
myelination and remyelination [77] and is enriched in oligodendrocyte precursor cells
(OPCs), where it negatively regulates OPC to oligodendrocyte differentiation as well as
myelination and remyelination. GPR149 deficiency promotes OPC-to-oligodendrocyte dif-
ferentiation and earlier myelin development. Blocking GPR149 may even promote myelin
repair in demyelinating diseases. GPR149 has also been implicated in neuroendocrine
signaling and was detected in the ventromedial hypothalamus transcriptome of mice,
where it is highly expressed in inhibitory interneurons. Gene variants of GPR149 have also
been reported in studies investigating migraine disorder susceptibility [78,79]. Overall,
our data show that cells carrying FUS mutants show an increase in lnc-GPR149 and in its
predicted mRNA target, GPR149. These increases in GPR149 are of particular interest given
its contribution to inhibitor interneurons and myelination, as excitotoxicity and myelina-
tion defects have been noted in some cases of ALS [80,81]. Overall, our findings present a
compelling case for further exploration of the role of GPR149 in neurodegeneration.

GO and KEGG enrichment analyses of DEGs indicated that FUS mutations likely affect
pathways related to neuronal development and carcinogenesis. These findings suggest
that FUS mutations might have broader implications in cellular processes beyond neu-
rodegeneration, especially in light of the fact that FUS itself is an oncogene. Furthermore,
IPA and GO network analysis of lncRNA-targeted mRNAs revealed significant biological
processes involving RNA metabolism, lncRNA regulation, and DNA damage repair. These
results support the idea that FUS mutations contribute to the pathophysiology of neurode-
generative diseases through multiple mechanisms, including the dysregulation of RNA
metabolism and impaired DNA repair.

It is important to note that while this study has identified some novel pathways involv-
ing lncRNAs in FUS-associated neurodegeneration, additional research will be required to
further elucidate how these interactions contribute to neurodegenerative disease. Taken
together, our data highlight the extensive and varied aberrations caused by mutant FUS.
While our data highlight several important aspects of neurodegenerative pathophysiology,
this study does have three main limitations. First, the iPSCs utilized in our research may not
completely represent the neuronal and glial environment in vivo, so future studies using
in vivo models could offer more comprehensive insights into the molecular repercussions
of FUS mutations. Second, our focus was primarily on the impact of FUS mutations on the
transcriptional landscape of iPSCs and the subsequent correlation with differentiated iMNs;
future work will include a full exploration of FUS-induced changes in the transcriptomic
landscape of these iMNs. Lastly, determining the functional implications of the discovered
TAR pairs and their potential contribution to neuronal dysfunction and degeneration will
be an important area of future inquiry.

5. Conclusions

In conclusion, our study provides additional insight into the molecular mechanisms
underlying the pathophysiology of FUS-associated neurodegeneration. By investigating
the impact of FUS mutations on the transcriptional landscape of iPSCs and their persistence
in differentiated motor neurons, our findings contribute to the growing body of knowledge
needed to develop effective therapies for these devastating disorders. Importantly, this
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study highlights the promise of the transcriptional profiling of FUS mutant iMNs, as our
data indicate that at least six genes critical to neuronal function and disease are dysregulated
at both the iPSC and motor neuron levels. Taken together, these data emphasize the
importance of understanding how lncRNAs act to modulate gene expression in each cell
differentiation state and how this intricate network of lncRNAs and mRNAs help explain
the complexity of neurodegenerative pathophysiology.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cells12202461/s1, Figure S1: Overview of experimental approach;
Figure S2: Expression density at transcript level; Figure S3: Statistics of different genes between
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