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Abstract: Colorectal cancer (CRC) is one of the most common cancers, and it frequently metastasizes
to the liver and lymph nodes. Despite major advances in treatment modalities, CRC remains a
poorly characterized biological malignancy, with high reported cases of deaths globally. Moreover,
cancer stem cells (CSCs) and their microenvironment have been widely shown to promote colon
cancer development, progression, and metastasis. Therefore, an understanding of the underlying
mechanisms that contribute to the maintenance of CSCs and their markers in CRC is crucial in
efforts to treat cancer metastasis and develop specific therapeutic targets for augmenting current
standard treatments. Herein, we applied computational simulations using bioinformatics to identify
potential theranostic markers for CRC. We identified the overexpression of vascular endothelial
growth factor-oc (VEGFA)/ 3-catenin/matrix metalloproteinase (MMP)-7/Cluster of Differentiation
44 (CD44) in CRC to be associated with cancer progression, stemness, resistance to therapy, metastasis,
and poor clinical outcomes. To further investigate, we explored in silico molecular docking, which
revealed potential inhibitory activities of LCC-21 as a potential multitarget small molecule for
VEGF-A/CTNNB1/MMP7/CD44 oncogenic signatures, with the highest binding affinities displayed.
We validated these finding in vitro and demonstrated that LCC-21 inhibited colony and sphere
formation, migration, and invasion, and these results were further confirmed by a Western blot
analysis in HCT116 and DLD-1 cells. Thus, the inhibitory effects of LCC-21 on these angiogenic and
onco-immunogenic signatures could be of translational relevance as potential CRC biomarkers for
early diagnosis.
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1. Introduction

Colorectal cancer (CRC) is the second most common cancer, with continually reported
cases and high mortality globally [1,2]. CRC is a heterogeneous disease with varying
molecular characteristics and clinical outcomes in patients; consequently, the cancer is
diagnosed in an advanced stage, and approximately 25% of patients present with localized
or distant metastasis [3—-6]. Amongst the most common clinical phenotypes of CRC are
cancer stemness angiogenesis, resistance to chemotherapy, and metastasis [7,8]. Despite
advanced molecularly stratified therapeutic interventions, including resection surgery,
radiation, chemotherapeutics, and targeted therapeutics, the 5-year overall survival rate
is still limited in CRC and is only 12% for metastatic (mCRC) patients [9-11]. In addition,
submucosal invasion was reported to metastasize to lymph nodes in more than 10% of
CRC cases [12]. Moreover, several studies have shown that CRC patients’” deaths were
associated with liver metastasis; however, the mechanisms leading to cancer metastasis
still remain to be fully explored [13-16].

CRC patients presently have far more treatment options and can produce remark-
able responses. Chemotherapy is still commonly used as the mainstream approach of
treatment [17,18]. 5-Fluorouracil (5-FU) was the first chemotherapy to exhibit satisfactory
activities against CRC. For patients with mCRC, a combination of 5-FU and oxaliplatin has
been used as first-line treatment; however, most patients become resistant to this treatment,
indicating the need for new therapies that can produce dramatic improvements [19-22]. In
addition to these combined chemotherapeutics for mCRC, targeted agents including anti-
vascular endothelial growth factor-o (VEGFA) agents (such as bevacizumab and sorafenib)
are used [23-25]. Angiogenesis is known to play an important role in the development of
tumor growth and metastasis [26]. Recently, VEGF, a potent cytokine, was explored as an
angiogenesis factor, commonly linked to CRC distant metastasis [16,27,28]. VEGF acts by
binding to the tyrosine kinase receptor, VEGF receptor (VEGFR), which is expressed by the
vascular endothelium [29,30].

Moreover, the activation of the signal transducer and activator of transcription-3
(STAT3), a member of the STAT family of transcription factors, which modulates various
biological processes and is an attractive treatment target in CRC [31], was shown to up-
regulate VEGF-A in primary and metastatic CRC, and signals a poor prognosis [32-36].
The Wnt/ 3-catenin signaling pathway plays a significant role in CRC tumorigenesis, stem-
ness, progression, and metastasis [37-39]. Accumulated studies have demonstrated that
the activation of $-catenin (CTNNB1) is associated with angiogenesis and cancer metas-
tasis by modulating the expression of VEGF and the matrix metalloproteinases (MMPs)
pathway in CRC [40,41]. MMPs are extracellular proteases that target cytokines and recep-
tors [42,43]; moreover, one member of the MMP family (MMP7) is widely overexpressed
in approximately 80% of CRC cases, and is associated with tumor neovascularization,
invasion, and distant lymph node metastasis [44—49]. Moreover, accumulating reports
have shown that MMP7 regulates VEGF pathways via the degradation of VEGFR1, which
subsequently promotes angiogenesis [50,51]. Inhibition of angiogenesis is considered to be
an effective approach to suppress tumor progression [52]. Furthermore, colorectal cancer
stem cells (CSCs) have been demonstrated to alter the tumor microenvironment (TME)
by regulating expression angiogenesis factors, which ultimately increase neovasculariza-
tion outside the site of metastasis [8,53,54]. Therefore, to analyze further, we explored
single-cell RNA sequencing (scRNA-seq), which provides detailed characterization of tu-
mor heterogeneity and tumor-associated immune cells in CRC [55,56]. Accordingly, we
applied the publicly available multimodal omics scRNA-seq datasets and found a high
abundance of VEGFA/CTNNB1/MMP7/CD44 genes in CRC immune cells within the TME
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compared with the malignant cells and stromal cells. These results suggest that a link
among VEGFA/CTNNB1/MMP7/CD44 promotes cancer stemness, angiogenesis, metastasis,
and poor prognoses in CRC.

Natural compounds have led to great advancements in the development of anticancer
drugs, with potential to inhibit tumorigenesis and metastasis through targeting several
signaling pathways, with low toxicity against normal cells [57-61]. Previously in our
lab, a series of new 5-(2’,4’-difluorophenyl)-niclosamide derivatives were synthesized
and evaluated for their anticancer activities. The development of 5-(2’ 4’-difluorophenyl)-
niclosamide derivatives based on difluorobiphenyl and niclosamide scaffolds were synthe-
sized as previously described in a detailed protocol [62,63]. Two of these are NSC765689
(N-(4-cyanophenyl)-2’,4’-difluoro-4-hydroxy-[1,1"-biphenyl]-3-carboxamide), a closed ring
structure, and its predecessor NSC828787 (N-(3-cyanophenyl)-2’,4’-difluoro-4-hydroxy-
[1,1’-biphenyl]-3-carboxamide), an open ring structure, which consists of functional frag-
ments of magnolol, 2,4-difluorophenyl, and niclosamide. In this study, we evaluated the
anticancer activities of a novel small molecule, NSC765689 (LCC-21), as a target drug for
VEGFA/CTNNB1/MMP7/CD44 in CRC (Figure 1).
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Figure 1. Schematic diagram representing the study design.
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Chemical Synthesis of the Novel Multi-Target Small Molecules NSC828787 (LCC09) and
NSC765689 (LCC-21)

The title compounds were synthesized from 3-aminobenzonitrile as previously de-
scribed in a detailed protocol [62,64]. Briefly, a solution of 0.95 g in 30 mL of anhydrous
tetrahydrofuran (THF) was added dropwise to thionyl chloride 1 mL (SOCI,). The mixed
solution was refluxed under nitrogen atmosphere for eight hours, allowed to cool at room
temperature, and immediately steamed. The residue was directly mixed with 0.5 mL of
4-chloro-2-fluoroaniline in 30 mL of anhydrous THF for 14 h. The THF was further re-
moved, and the ethyl acetate was used to wash and extract the crude product. The product
was further washed with 15 mL of 10% Sodium bicarbonate, 25 mL of water three times, and
10 mL brine, and it was then dried over anhydrous MgSOj,. The crude product was purified
by crystallization from hot EtOH and pure compounds were obtained as beige powder
(yield 51%) for N-(3-cyanophenyl)-2’,4’-difluoro-4-hydroxy-[1,1"-biphenyl]-3-carboxamide
(NSC828787) and yellowish powder (yield 54%) for N-(4-cyanophenyl)-2’,4’-difluoro-4-
hydroxy-[1,1"-biphenyl]-3-carboxamide (NSC765689) [65] (Figure 2).
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Figure 2. Chemical synthesis of the Novel Multi-Target small molecules NSC828787 (LCC09) and
NSC765689 (LCC-21): (A) several novel series of 5-(2/ 4, -difluorophenyl)-niclosamide derivatives
based on difluorobiphenyl and niclosamide scaffolds, and (B) novel small molecule LCC-21 and
LCC-09 consisting of magnolol, 2,4-difluorophenyl, and niclosamide functional fragments.

2. Materials and Methods
2.1. Microarray Dataset Extraction

A total of two (2) gene expression datasets (GSE81558 and GSE110223) were retrieved
from the National Center for Biotechnology Information (NCBI), Gene Expression Omnibus
(GEO; https:/ /www.ncbi.nlm.nih.gov/geo/ 26 April 2022) [66,67]. GSE81558 contained
51 samples, including 19 CRC live metastasis samples and 23 primary CRC tumor and
normal samples [68], and GSE110223 contained 26 samples, including 13 CRC cancer
samples and 13 adjacent noncancerous samples [69]. The obtained datasets were further
analyzed by GEO2R. The adjusted p value (adj.p) to control the false-discovery rate (FDR)
and detection of possible false positives, as well as the identification of significant genes,
was made using the Benjamin-Hochberg method. The fold-change (FC) threshold was set
to 2 and adj. p < 0.05 was considered significant. Venn diagrams were constructed using
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the Bioinformatics & Evolutionary Genomics (BEG) online tool (http:/ /bioinformatics.psb.
ugent.be/webtools/Venn/ 22 May 2022).

2.2. Analysis of Pharmacokinetic (PK), Drug-Likeness, and Medicinal Chemical Properties of
NSC765689 (LCC-21)

The pharmacokinetics (PK), drug-likeness, absorption, distribution, metabolism, and
excretion (ADME) of NSC765689 were assessed using the SwissADME bioinformatics tool
(http:/ /www.swissadme.ch/ 23 May 2022) [70]. The criteria used for drug-likeness in drug
discovery was evaluated based on the Lipinski (Pfizer) rule-of-five [71]. Furthermore, we
predicted the blood-brain barrier (BBB) by utilizing the online (BBB) Prediction Server
(https:/ /www.cbligand.org/BBB/ 23 May 2022) [72]. To analyze further, we predicted the
target genes for NSC76589 compound by using the Swiss target prediction tool (http://
www.swisstargetprediction.ch/ 23 May 2022). The data used were collected from different
public servers, including ChEMBL and PubChem, and all predictions were based on
“probability” obtained from the target score to assess the plausibility of the predicted target
being accurate [73].

2.3. Validation of Differentially Expressed Genes (DEGs) in Colorectal Cancer Cohorts

To validate the expression of the target oncogenes, we applied the Starbase online
platform (https:/ /starbase.sysu.edu.cn/ 26 May 2022) [74]. We further determined the
survival probability ratio between CRC patients with low and high gene expressions
using the DrugSurv online tool (http:/ /www.bioprofiling.de/ 28 May 2022). For further
analysis, we investigated the correlation among the expressed target genes using the
STRING database (https:/ /stringdb.org/ 28 May 2022), which allowed us to predict the
protein—protein interactions (PPIs), and we further predicted the gene—gene interactions
(GGI) using the Gene-mania tool (https://genemania.org/ 28 May 2022), under high
confidence (with a minimal interaction score of 0.700) Furthermore, we explored the
TMN plot (https://tnmplot.com/analysis/ 4 June 2022) to compare the expression of these
oncogenes in tumor and metastatic CRC samples from RNA sequencing data (RNAseq), but
using the Kruskal-Walls test to compare data, and finally identified the correlations among
the target gene signatures using the cBioPortal (https://www.cbioportal.org/ 5 June 2022)
online platform.

2.4. Functional Enrichment Analysis

Interactive networks obtained from STRING analysis were used to process the func-
tional enrichment analysis, which included enriched biological processes and biological
pathways. These enrichment analyses were performed using the DAVID bioinformatics
webtool (https://david.ncifcrf.gov/tools.jsp 12 June 2022) [75], and further visualized
by FunRich software (http://www.funrich.org/ 12 June 2022) [76]. To analyze further,
we employed NetworkAnalyst, a comprehensive gene expression profiling and network
visual analytics [77], using the SIGnaling Network Open Resource (SIGNOR 2.0) and
selected the KEGG database to analyze enriched co-expressed genes from the platform
(https:/ /www.networkanalyst.ca/ 12 June 2022) [78], with p < 0.05 considered significant.

2.5. Analysis of Genomic Alterations of Targeted Genes and Immune infiltration in CRC

The genomic alterations of targeted oncogenic signatures were analyzed using the
Oncoprint feature of cBioportal software. Moreover, we utilized the tumor infiltrating
immune cells tool (TIMER) (http://timer.cistrome.org/ 24 June 2022) [79] to analyze and
visualize the effects of targeted gene mutations on immune cell infiltration in CRC and
further applied TIMER 2.0 software (https:/ /www.cistrome.shinyapps.io/timer 24 June
2022) [80] to identify the relationship between targeted gene expressions with selected
immune cells; we applied a correlation analysis between these oncogenes and immune
infiltration cells.
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2.6. Bioinformatics Approaches to Single-Cell RNA-seq (scRNA-seq) Analysis

Single cell RNA sequencing of human CRC, HCC, was based on previously pub-
lished scRNA-seq datasets [81]; herein, we explored publicly available scRNA-seq datasets
and single-cell RNA sequencing (scRNA-seq) datasets of CRC (https://www.ebi.ac.uk/
arrayexpress/ 26 June 2022), which included M-E-MAT-8410 and (9 patients; GSE144735)
CRC tumors. We also matched adjacent normal colon tissue for the purpose of generating
a cellular map of CRCs and their tumor microenvironment.

2.7. In Vitro Screening of LCC-21 against Full National Cancer Institute (NCI) Panels of
Colorectal Tumor Cell Lines

LCC-21 was screened for anticancer activities on a panel of six (6) CRC tumor cell
lines, including COLO205, HCC-2998, HCT-116, HCT-15, KM12, and SW620 from NCI,
according to the outlined protocol of NCI (https:/ /dtp.cancer.gov/ 28 June 2022) [82-85].
The compound was first evaluated for its antiproliferative and cytotoxic activities with an
inijtial single dose of 10 uM, which was further administered, in a dose dependent manner,
on the CRC cell line. We further explored the online expression atlas database tool, using
the RNA-Seq mRNA baseline.

2.8. Receptor-Ligand Interaction Analysis

Molecular docking analysis was performed to determine the receptor-ligand inter-
actions; briefly, we used ChemDraw Ultra 12.0 to construct the 3D structure of LCC-21
small molecules in mol2 format (https:/ /ChemDraw Ultra 12.0/ 30 May 2022) [86]. The
structure was later converted from mol2 into PDB formal using Pymol visualization soft-
ware (https://pymol.org/2/ 30 May 2022) [87]. To analyze further, we utilized the protein
databank website (https://www.rcsb.org/ 30 May 2022) to download the crystal structures
of the target receptors: VEGFA (PDB:JO2B), CTNNB1 (PDB: 1JDH), MMP7 (2Y6C), and
CD44 (PDB:1UUH). The structures were retrieved in PDB format. Th docking process
requires PDBQT file format; accordingly, we converted all the PDB files, i.e., receptors and
ligand, to PDBQT file format using autodock tools, and proceeded to perform docking
analysis [87].

2.9. Cell Culture and Reagents

Both DLD-1 and HCT116 human colon cancer cell lines were purchased from the
American Type Culture Collection (ATCC, Manassas, VA, United States of America). Briefly,
each cell line was cultured, then passaged at 90% cell confluency in Dulbecco’s Modified
Eagle Medium (DMEM) (Invitrogen, Life Technologies, Carlsbad, CA, USA); cells were
then stored under standard incubator conditions (in 5% humidified CO, at 37 °C).

2.10. Cell Viability Assay

The cell viability assay was performed using sulforhodamine B (SRB) reagent (Sigma-
Aldrich, Taipei, Taiwan), as described previously [88]. Briefly, DLD-1 and HCT116 cells
were harvested at 90-95% confluency, and 8000 cells/well were seeded in 96-well plates for
a period of 24 h, followed by dose-dependent concentration treatment of LCC-21. After
48 h of treatment, 10% trichloroacetic acid (TCA) was added to cells and they were stored
at 4 °C for one hour. Cells were further washed twice with distilled water and stained with
0.4% SRB, then stored for 30 min at room temperature. Excess stain was removed from
the plates by washing with 1% acetic acid twice. The plates were air-dried overnight. The
protein-bound stain was solubilized with a 20 mM Tris-buffer solution for 15 min on an
orbital shaker. The absorbance was measured with a microplate reader at a wavelength of
560 nm (Molecular Devices, Sunnyvale, CA, USA).

2.11. Cell-Migration Assay

CRC cells (HCT116 and DLD-1) were seeded into two-well (10° cells in 100 uL me-
dia/well) well plates with a silicon insert in place and incubated for 24 h. After incubation,
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the medium was siphoned off and the insert was carefully removed, followed by the addi-
tion of fresh media (1.5 mL) containing LCC21 (1.25 um). The wound was photographed
under a microscope (Olympus CKX53 Cell Culture Microscope, Japan) immediately after
treatment (0 h) and after 24 h, and wound closure was quantified with the aid of National
Institutes of Health (NIH) Image] software (https://imagej.nih.gov/ij/ 12 July 2022).

2.12. Colony-Formation Assays

To assess the effects of LCC-21 treatment on the colony formation ability of colon
cancer cell lines, we performed colony formation assay in accordance with the previously
described protocol by Franken et al. [88]. In short, 400 cells were seeded in Corning®
6 well plates (Sigma-Aldrich) and treated with LCC-21 (at the equivalence of 40% inhibitory
concentration (IC49) values of HCT116 and DLD-1). Cells were allowed to grow for at least
1 week. Colonies were quantified using a Cell3iMager neo-scanner, and inhibitory effects
of the drug on colonies as compared to control colonies were calculated in percentages (%).

2.13. Sodium Dodecylsulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) and Immunoblot
Analysis

Both the DLD-1 and HCT116 cell line groups treated with LCC-21 and the control
group were harvested by trypsinazation. The total protein lysates of treated and untreated
cells were then collected using a protein lysis buffer (RIPA buffer). Furthermore, 20 pg
of total lysates were separated by SDS-PAGE using the Mini-Protean III system (Bio-Rad,
New Taipei city, Taiwan) and transferred into polyvinylidene difluoride membranes using
the Trans-Blot Turbo Transfer System (Bio-Rad) [88]. Membranes were then incubated
with primary antibodies to react overnight at —4 °C. The following day membranes were
incubated with secondary antibodies for 1 h. Proteins of interest were detected using
enhanced chemiluminescence (ECL) detection kits (ECL kits; Amersham Life Science,
California, CA, USA). Images were captured and analyzed by BioSpectrum® Imaging
System (Upland, CA, USA).

2.14. Tumor-Sphere Formation

Tumor spheres of HCT116 and DLD-1 cells were generated under serum-deprived
culture conditions according to the method described by Dotse et al., 2016 [88]. In short,
2000 cells/well of colon cancer cells were seeded in six-well ultra-low-attachment plates
(Corning, Corning, NY, USA), in serum-free media. Cells were allowed to aggregate and
grow for 7 days. Those that were considered tumor spheres had a diameter of more than
50 uM and were characterized as dense, non-adherent spheroid-like masses. The spheres
were counted using an inverted phase-contrast microscope.

2.15. Data Analysis

Statistical analyses were performed using Spearman and Pearson correlations to assess
correlations between the target gene expressions in CRC. A Kaplan-Meier curve was used
to present patient survival in CRC cohorts, with p < 0.05 accepted as being statistically
significant.

3. Results
3.1. Identification of Differentially Expressed Genes (DEGs) in CRC

Differentially expressed genes obtained from CRC samples and adjacent noncancerous
samples were extracted from the microarray datasets tallied from various studies. The
results obtained from GSE81558 and GSE110223 datasets exhibited 51 and 26 CRC samples
and normal samples, respectively. To further analyze using Venn diagrams, 110 overlapping
upregulated genes from the two datasets were obtained (Figure 3A). The red and blue
color in the volcano plot and heatmap diagram, respectively, show overexpressed and
downregulated genes (Figure 3B-D). The volcano plot and heatmap revealed the statistical
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significance in the differential expression of tumor samples as compared to normal samples,
denoted by —log10 (p-value) and —log (fold change), respectively.
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Figure 3. Microarray data mining of gene expression profiling in colorectal cancer (CRC). (A) Venn
diagram showing overlapping genes obtained from the GSE81558 and GSE3110223 microarray
datasets. (B,C) Volcano plots showing downregulated and upregulated genes in normal and tumor
samples, respectively (at p < 0.05). (D) shows the heatmap of overexpressed overlapping genes
in CRC.

3.2. LCC-21 Successfully Meets Required Drug-Likeness Criteria

The identification of potential drug candidates in the initial stages of drug discovery
is dependent on the specific criteria based on the concept of drug-likeness [89]. Herein,
we obtained all of the six physicochemical properties required for drug-likeness from
SwissADME, which are represented on the bioavailability radar. Based on the results, LCC-
21 successfully passed the minimum requirements of drug-likeness. These were based on
the molecular weight (MW) of the compound (376.31 g/mol), lipophilicity (XLOGP3 = 4.31),
polarity (TPSA = 76.00 A2), solubility (ESOL = —5.34), saturation (fraction Csp3 = 0.11),
and flexibility (number of rotations = 2) (Figure 4A). The standard criteria are as follows:
molecular weight of a compound (Mw: <500 g/mol), flexibility (number of rotations: <10),
solubility (log S (ESOL): <0-6), saturation (fraction Csp3: <1), polarity (TPSA: <140 A2),
and lipophilicity (XLOGP3: <0.7-5), all of which are recommended values. For further
analysis, we applied the BOILED-egg prediction and estimated the BBB permeability of the
compound. Based on the results, LCC-21 exhibited higher probability of BBB permeation,
with the score of 0.02 (Figure 4B). Furthermore, we used a target prediction tool to identify
all the target genes for LCC-21 (Table 1).
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Figure 4. LCC-21 small molecules passed the minimum requirements for drug-likeness, medicinal
chemistry, and ADME. (A) Physiochemical properties of LCC-21 represented on a bioavailability
radar. (B) BBB permeability of LCC-21 (with 0.02 score). Table 1. Shows the specific protein targets of
LCC-21.

Table 1. Common names, Uniprot and ChEMBL identifications (IDs), and target classes of specific
protein targets of LCC-21.

Target Common Name Uniprot ID ChEMBL ID Target Class
Cyclin-dependent kinase 9 CDKO9 P50750 CHEMBL3116 Kinase
Tyrosine-protein kinase JAK3 JAK3 P52333 CHEMBL2148 Kinase
Vascular endothelial growth factor-« VEGFA P00533 CHEMBL203 Kinase
Glycogen synthase kinase-3(3 GSK3p3 P49841 CHEMBL262 Kinase
Mitogen-activated protein kinase MAPK14 Q16539 CHEMBL260 Kinase

Signal transduce.r apd activator of STAT3 P40763 CHEMBLA4026 Transcription

transcription 3 factor

Cyclin-dependent kinase 1 CDK1 P06493 CHEMBL308 Kinase
Catenin 31 CTNNB1 P36861 CHEMBL309 Kinase
MYC proto-oncogene MYC P35557 CHEMBL3820 Enzyme
Matrix metalloproteinase 7 MMP7 P14780 CHEMBL321 Enzyme

3.3. VEGFA/CTNNB1/MMP7/CD44 Oncogenic Signatures Are Overexpressed in CRC and
Associated with a Poor Prognosis

Our computer-based analysis revealed that the messenger (m)RNA levels of VEGFA,
CTNNB1, MMP7, and CD44 oncogenic signatures were upregulated in tumor samples
compared to normal samples of patients with CRC tissues, with significant p values
(<0.05) (Figure 5A-D). In further analyses, we found that the high expression levels of
VEGFA /CTNNB1/MMP7/CD44 signatures were associated with significantly shorter sur-
vival times compared to those of patients with lower expression levels of these oncogenes
(Figure 5E-H). Furthermore, we explored the TMN plot to compare VEGFA, CTNNB],
MMP7, and CD44 oncogenes in tumor and metastatic CRC samples from RNA sequencing
data (RNAseq). Using the Kruskal-Walls test to compare data, we found that overexpres-
sion of VEGFA, CTNNB1, MMP7, and CD44 genes promoted primary tumor and cancer
metastasis in CRC tissues (Figure 5I-L). We further investigated the correlations among
VEGFA /CTNNB1/MMP7/CD44 signatures and found that, when all four oncogenes were
combined for analysis, the predicted results showed positive correlations in the range
of r = 0.16~0.27 of VEGFA with CTNNB1 and MMP7 in CRC patients (Figure 5M-0),
with positive Spearman and Pearson correlation coefficients and p < 0.05 considered
statistically significant.
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Figure 5. VEGFA/CTNNB1/MMP7/CD44 oncogenic signatures are overexpressed in CRC and
associated with a poor prognosis. Vascular endothelial growth factor-o« (VEGFA)/beta catenin
(CTNNB1)/matrix metalloproteinase (MMP)-7/cluster of differentiation 44 (CD44) oncogenic mRNA
levels were overexpressed in colorectal cancer (CRC) tumor cohorts compared to normal samples with
significant p values (A-H). Elevated mRNA levels of VEGFA/CTNNB1/MMP7/CD44 were found to be
associated with shorter survival times in CRC patients using the Wilcoxon test. (I-L) Upregulated
gene expression of VEGFA, CTNNB1, MMP7, and CD44 genes promoted primary tumor and cancer
metastasis in CRC tissues. (M-0O) The combination of all the four genes showed positive correlations
in the range of r = 0.16~0.27 of VEGFA with CTNNB1, VEGFA with CD44, and CTNNB1 with MMP7
in CRC patients. Pearson correlation coefficients of p < 0.05 were considered statistically significant.

3.4. Protein—Protein Interaction (PPI) Network Construction and Functional Enrichment Analysis

The high expression levels of VEGFA/CTNNB1/MMP7/CD44 oncogenic signatures,
which are associated with shorter survival times in CRC, suggest the predictive power
of this signature. To explore further, we predicted the PPIs among these proteins. Based
on the results, VEGFA/CTNNB1/MMP7/CD44 oncogenes were found to be co-expressed
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and correlated within the same clustering network, and these correlation networks were
based on curated data, co-expression, correlation, and experimentally validated data, which
existed among all four of these oncogenes. (Figure 6A). Moreover, we analyzed the protein
expression profiling by exploring network analyst, which is an online visual analytics
platform. We selected the signaling network of KEGG pathway enrichment using the
SIGnaling network platform. Interestingly, the enriched pathways displayed co-expression
of VEGFA/CTNNB1/MMP7/CD44 gene signatures within the same cluster when analyzed
using the Igraph R package (Figure 6B). In addition, further analysis was performed on the
enriched gene ontology (GO), including biological processes and biological pathways, with
the criterial set to p < 0.05 (Figure 6C,D).
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Figure 6. Correlation analysis network among Vascular endothelial growth factor-« (VEGFA)/beta
catenin (CTNNB1)/matrix metalloproteinase (MMP)-7/cluster of differentiation 44 (CD44) oncogenic
signatures. Protein—protein interactions (PPIs) are displayed after considering the gene neighborhood,
gene co-occurrence, and co-expression of the clustering network. (A) Gene-gene interactions (GGI)
between VEGFA with CTNNB1, VEGFA with MMP7, VEGFA with CD44, CTNNBI with MMP?7,
CTNNB1 with MMP7, and CD44 with MMP7. (B) KEGG pathway enrichment analysis from signaling
network analysis. (C) Top 8 enriched biological processes. (D) Top 8 affected biological pathways,
with p-value < 0.05 considered significant.

3.5. VEGFA/CTNNB1/MMP7/CD44 Genes Are Altered in CRC Tissues and Immune Cells

We applied the Oncoprint feature of cBioportal software, which revealed a volcano
plot displaying overexpressed genes in CRC altered and unaltered cohorts, including
(Figure 7A), we further explored the oncoprint to determine genetic mutations of the target
oncogenes; VEGFA/CTNNB1/MMP7/CD44, which was based on percentages of separate
genes due to amplification. Results of the analysis were as follows: GSK3 (2%), MYC (9%),
CTNNBI1 (4%), MMP?7 (2.4%), CD44 (2.2%), KRAS (9%), and VEGFA (2.4%) (Figure 7B). In
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a further analysis, we explored the tumor infiltrating immune cells tool to analyze and
visualize the effects of gene mutations on immune cell infiltration in CRC. The analyzed
results showed the mutation frequency of VEGFA/CTNNB1/MMP7/CD44 genes displayed
by the violin plots of immune infiltration distribution, including CD4" T-cells, CD8" T-cells,
and macrophages in the wild-type compared to mutant tumors (Figure 7B-J).
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Figure 7. Vascular endothelial growth factor-« (VEGFA)/beta catenin (CTNNBI)/matrix metallopro-
teinase (MMP)-7 / cluster of differentiation 44 (CD44) oncogenes were altered and amplified in colorectal
cancer (CRC). (A) volcano plot showing upregulated genes in CRC altered and unaltered cohorts
(B) Oncoprint analysis showed amplification (marked with *) of VEGFA/CTNNB1/MMP7/CD44
based on percentages of separate genes, with GSK3B (2%), MYC (9%), CTNNB1 (4%), MMP7
(2.4%), CD44 (2.2%), KRAS (9%), and VEGFA (2.4%) in CRC. (C-J) Mutation frequency of
VEGFA/CTNNB1/MMP7/CD44 Genes shown by the violin plots of immune infiltration distribution
including CD4* T-cells, CD8" T-cells, and macrophages in the wild-type compared to mutant tumors.
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3.6. VEGFA/CTNNBICTNNB1/MMP7/CD44 Oncogene Expressions Are Correlated with
Immune Cell Infiltration and Worse Prognosis in CRC

We further investigated the association between VEGFA /CTNNB1/MMP7/CD44
oncogenic expressions with selected immune cells in the tumor microenvironment (TME).
Herein, we explored the correlation analysis between VEGFA, CTNNB1, MMP7, and CD44
oncogenes, and the immune infiltration cells (CD8+ T cells, CD4+ T cells, and macrophages).
Interestingly, the results showed specific correlations of immune cell markers in colorectal
adenocarcinoma (COAD), with lower infiltration levels CD8+ T cells, CD4+ cells, and high
M2 macrophages (Figure 8A-D), with p < 0.05 considered significant.
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Figure 8. Correlation of vascular endothelial growth factor-o« (VEGFA)/beta catenin
(CTNNB1)/matrix metalloproteinase (MMP7)/cluster of differentiation 44 (CD44) expression with
immune infiltrating cells in (COAD). (A) VEGFA, (B) CTNNBI, (C) MMP?7, (D) CD44, and expression
levels display associations with tumor purity and were positively correlated with lower infiltrating
levels of CD8" T cells and CD4" cells, and a high infiltration level of M2 macrophages. The infiltration

level was compared to the normal level using a two-sided Wilcoxon rank-sum test; p values of <0.05
were deemed significant.
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3.7. VEGFA/CTNNB1/MMP7/CD44 Gene Expression Influence the Immune Landscape within the
TME of Colorectal Cancer

We explored publicly available scRNA-seq datasets and single-cell RNA sequenc-
ing (scRNA-seq) datasets of CRC, which included the M-E-MAT-8410 and (9 patients;
GSE144735) CRC tumors, and we also matched adjacent normal colon tissue for the pur-
pose of generating a cellular map of CRC and their tumor microenvironment [81]. Within
the CRC, a distinct population of malignant cells and multi-lineages revealed the presence
of abundant immune cells within the tumor microenvironment (TME), as compared to stro-
mal and malignant cells. Herein, we focused on cell types that were described as a putative
population. Interestingly, we identified distinct populations of regulatory T cells, mast cells,
macrophages, and myeloid cells; low expression levels of CD4*Tc and CD8"Tc cells; and
exhausted CD8 T cells with the TME of CRC patients (Figure 9A). When observing the
expressions of significantly regulated genes, which associates with the immune landscape
of CRC based on similarities with the control, we found VEGFA, CTNNB1, MMP7, and
CD44 to be overexpressed by the majority in the malignant cells. For further analysis,
merging expression patterns revealed distinct TME subpopulation with a high abundance
of VEGFA, CTNNB1, MMP7, and CD44 in regulatory T cells, mast cells, macrophages,
myeloid cells; a low expression level of CD4*Tc and CD8*Tc cells; and exhausted CD8 T
cells with the TME of CRC patients (Figure 9B-E).
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Figure 9. Single cell sequencing profiling of VEGFA/CTNNB1/MMP7/CD44 in the tumor microenvi-
ronment of primary CRC. (A) T-distributed stochastic neighbor embedding (t-SNE) plot of single-cell
RNA-seq data from M-E-MAT-8410 and (9 patients; GSE144735) CRC tumors. Proportions of the
immune cell types in CRC tissue and normal colon tissue on average (left). (B—E) The expression
distribution of VEGFA/CTNNB1/MMP7/CD44 in different cell types, including regulatory T cells, mast
cells, macrophages, myeloid cells; low expression level of CD4*Tc and CD8"Tc cells; and exhausted
CD8 T cells with the TME of CRC patients.
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3.8. In Silico Molecular Docking Showed Putative Binding of (NSC765689) LCC-21 with
VEGFA/CTNNB1/MMP7/CD44

In silico molecular docking analyses revealed the potential inhibitory effects of (NSC765689)
LCC-21 on oncogene markers, including VEGFA/CTNNB1/MMP7/CD44. Gibbs free en-
ergy results of protein-ligand interactions obtained through AutoDock Vina showed that
LCC-21 displayed the highest respective binding energies of A = —8.1, —8.2, —9.0, and
—8.0 kcal/mol, for VEGFA, CTNNB1, MMP7, and CD44, respectively (Figure 10A-D). For
further analysis, we used Pymol and Discovery Studio to visualize the analytical results.
The LCC-21/VEGFA, CTNNB1, MMP7, CD44 interactions were stabilized by conventional
hydrogen bonds, and their minimal distance constraints, van der Waals forces, carbon
hydrogen bonds, and pi—pi interactions, with their respective amino acids, are shown in
Figure 11A-D and Table 1.

VEGFA - LCC21 Complex CTNNB1 - LCC21 Complex
(G = - 8.1 keal/mol) B (AG = - 8.2 keal/mol)

CD44 - LCC21 Complex
(AG = — 8.0 kcal/mol)

Figure 10. LCC-21 was shown to be a potential small-molecule inhibitor of multi-oncogenic proteins.
(A-D) 3D structures of Vascular endothelial growth factor-o (VEGFA)/beta catenin (CTNNB1)/matrix
metalloproteinase (MMP)-7/cluster of differentiation 44 (CD44) oncogenes-interactions (left) in
complex with LCC-21, with the highest respective Gibbs free binding energies of (—(A = —8.1, —8.2,
—9.0, and —8.0 kcal/mol).
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Table 2. Analytical summary table showing interactions of LCC-21 with VEGFA/CTNNB1/MMP7/CD44.

VEGFA-LCC-21 Complex (A = —8.1 kcal/mol) CTNNB1-LCC-21 Complex (A = —8.2 kcal/mol)

Type of interactions and number of
bonds

distance of interacting Amino acids Type of mtemc;if:;sand number of distance of interacting Amino acids
ARG457 (117 A), THR418 (2.12
Conventional Hydrogen bond (5) A), ASN415 gl.87 A), TRP383°
ASN387 (3.17 A) TRP383 (2.17 A)

LEU (248 A), CYS61 (2.04 A),
ASP63 (2.39 A)

VAL33, LEU33, SER50, GLU64,

Conventional Hydrogen bond (3)

Van der Waals Forces ILE4S, LYS48, ASN62 Van der Waals Forces ILE460, GLU24, LYS348
Halogen GLY59 Carbon hydrogen bond GLY25
Pi—pi anion ASP34 Pi-cation ASP387
Amide pi-stacked ASP63 Pi-anion ARG386
Pi-Alkyl CYS51, CYS60
MMP7-LCC-21 Complex (A = —9.0 kcal/mol) CD44-LCC-21 Complex (A = —8.0 kcal/mol)

Type of mtemc;;z;;ldssund number of distance of interacting Amino acids Type of mtemcltjg):;sand number of distance of interacting Amino acids

LEU19 (2.24 A), TRY172 (1.29 A), ARGY0 (3.64 A), ASN94 (239 A),

Conventional Hydrogen bond (3) Conventional Hydrogen bond (3)

ALA186 (2.00 A) GLN113 (3.00 A)
Van der Waals Forces HISlcgi’Yl?;“(? %ﬁig;‘;{ 192, Van der Waals Forces CYs77, T}I;III;;S’ é)}{j{REliozl SER109,
Pi—pi cation PHE185 Halogens GLU?75, GLY73
A . B . Interactions
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Figure 11. Two-dimensional (2D) structural analysis using Discovery Studio showing (A-D) ligand—
receptor interactions between the atoms involved in H-bonding, amino acids and bond distances,
van der Waals forces, carbon hydrogen bonds, and pi—pi interactions, with their respective amino
acid of VEGFA/CTNNB1/MMP7/CD44-LCC-21 complexes using Discovery Studio (right). Table 2
summary of ligand-receptor interactions with their respective amino acids.

3.9. Docking Analysis of VEGFA/CTNNB1/MMP7/CD44 with Their FDA Approved Inhibitors

For further analysis, we compared the docking analysis results of LCC-21 with stan-
dard inhibitors, sorafenib, SFRP-1, and batimastat for VEGFA, CTNNB1, and MMP?7, respec-
tively. Interestingly, the results showed that LCC-21 exhibited the highest binding affinities
with VEGFA, CTNNBI1, and MMP7 of (—(A = —8.1, —8.2, —9.0 kcal/mol), respectively,
as compared to the sorafenib, SFRP-1, and batimastat for VEGFA, CTNNB1, and MMP7
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complexes, which displayed lower binding energies of (—(A = —7.3, —7.8, —8.6 kcal /mol),
respectively (Figure 12A—C). Collectively, these structural simulations predicted LCC-21 to
be a multi-target inhibitor with high confidence.
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Figure 12. Two-dimensional (2D) structural analysis of sorafenib, SFRP-1, and batimastat in complex
with VEGFA, CTNNBI1, and MMP7 (A-C), respectively.

3.10. NSC765689 (LCC-21) Exhibited Anti-Proliferative and Cytotoxic Effects in NC160 Human
Colon Cancer Cell Lines

An initial single dose treatment of 10uM exhibited anti-proliferative effects on COLO205,
HCC-2998, HCT-116, HCT-15, KM12, and SW620 cell lines and cytotoxic effects on HT29
(Figure 13A). Because the compound demonstrated potential anticancer activities on colon
cancer cell lines at an initial dose of 10uM, its further compound was administered in vitro
in a dose dependent manner to evaluate the (50%) growth inhibition (GI50) values, which
ranged between 1.2 and 5.13 uM, with HCT-15, HCT116, KM12, SW620, HCC-2998, HT29,
and COLO205 at 1.2 uM, 1.14 uM, 1.73 uM, 2.08 uM, 2.88 uM, 4.05 uM, and 5.13 uM. The
tumor growth inhibition (TGI) values were also measured and ranged from 6.01 to 31.1 uM,
with HCT-116, KM12, HCC-2998, HCT-15, HT29, COLO205, and SW620 at 6.01 uM, 7.13 uM,
7.9 uM, 10.7 uM, 15.1 uM, 17.9 uM, and 31.1 puM, respectively (Figure 13B, C). For further
analysis, we identified increased expression levels of VEGF-A, CTNNB1, CD44, and MMP7
oncogenic signatures in different colon cancer cell lines (Figure 13D).
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Figure 13. NSC765689 (LCC-21) demonstrates anticancer activities on colon cancer cell lines. (A) An
initial 10 uM single-dose treatment displayed anti-cancer effects of LCC-21 on colon cancer cell lines.
(B,C) LCC-21 was able to effect 50% growth inhibition (GI50) and tumor growth inhibition (TGI) at
dose-dependent treatment. (D) Overexpression of VEGF-A, CTNNB1, CD44, and MMP7 genes in
different colon cancer cell lines.

3.11. LCC-21 Decreases the Viability of CRC Cells through Modification of
VEGFA/CTNNB1/MMP7/CD44 Oncogenic Signatures

To validate the above predictions, we evaluated the therapeutic activities of LCC-
21 on the viability of CRC cell lines. The results showed that treatment with LCC-21
decreased the viability of HCT116 and DLD-1, with respective ICs( values of 3.2 and 2.8 pm
(Figure 14A). Furthermore, LCC-21 also demonstrated inhibitory effects on DLD-1 and
HCT116 migration and colony formation and effectively inhibited the sphere formation
of these cells (Figure 14B-D). A Western blot analysis indicated that LCC-21 significantly
decreased expression levels of VEGFA, CTNNB1, MMP7, and CD44. GAPDH was used as
an internal control (Figure 14E).
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Figure 14. LCC-21 treatment suppressed the viability of colorectal cancer (CRC). (A) A cell viability
assay demonstrated that LCC-21 effectively decreased the cell viability of CRC cell lines in dose-
dependent and time-dependent manners. The experiments were performed three times, each with
three replicates at each concentration The 50% inhibitory concentration (ICsp) values in the two cell
lines (HCT116 and DLD-1) are indicated. (B-D) LCC-21 inhibited migration, colony, and sphere
formation by DLD-1 and HCT116 cells. Images of the colony and spheroids are shown in the left
upper panel, with quantification of the results in the right panel. (E) Western blot analysis shows
that the LCC-21 significantly suppressed expression levels of vascular endothelial growth factor-o
(VEGFA)/beta catenin, (CTNNB1)/matrix metalloproteinase, (MMP)-7/cluster of differentiation
44 (CD44), compared to the untreated group. GAPDH was used as an internal control. * p < 0.05,
***p <0.01.

4. Discussion

CRC remains a poorly characterized malignancy, and the third leading cause of
cancer mortality rates globally [1]. Despite current treatment modalities, such as resection
surgery, radiation, and chemotherapy, the overall survival rate is still less than 5 years
for CRC [89,90]. The majority of CRC-related deaths are cases associated with cancer
recurrence and metastasis; accordingly, most studies have shown that approximately 60%
of CRC patients are expected to develop metastasis [91,92]. Therefore, in order to improve
clinical outcomes, it is imperative to understand the mechanisms of CRC stemness and
metastasis. Moreover, conventional chemotherapeutic strategies for CRC involve toxic
drugs with severe side effects, which highlights the need to identify novel biomarkers for
early diagnosis [93]. Additionally, combinations of molecular targeted agents have shown
significant results as treatments for colorectal cancer; however, due to its heterogeneity, CRC
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patients eventually exhibit stemness and therapeutic resistance [94]. Therefore, exploring
the mechanism underlying CRC therapeutic resistance is crucial for drug optimization [95].

Angiogenesis is one of the most common clinical phenotypes of CRC, and is crucial
for tumor growth [40]. In addition, VEGF has been widely studied in relation to the
development of novel drugs against CRC [96], and numerous reports have demonstrated
high expression levels of VEGFA in CRC, which are associated with tumor angiogenesis,
metastasis, and poor prognosis [33]. Therefore, understanding the regulatory mechanisms
of VEGFA expression in CRC may lead to vital breakthroughs for novel therapies to
fight various cancers [97]. In the current study, we utilized computational simulation, by
exploring a bioinformatics analysis, and showed that VEGFA was elevated in CRC. Among
the biomarkers evaluated in this study, these findings are in line with the above-mentioned
study reports on the expression of VEGFA in CRC. Furthermore, recent studies revealed that
chemokine receptors play vital roles in identifying the metastatic characteristics of tumor
cells [98]. Multiple studies have shown that VEGFA positively regulates Wnt/B-catenin
signaling through 3-catenin, which is associated with angiogenesis and cancer stemness in
CRC, thus suggesting the potential autocrine action of VEGFA [99-101].

Most anti Wnt/B-catenin therapies in CRC have being aimed at inhibiting cell invasion
delay cancer progression, eliminate drug resistance, and preventing metastatic colorectal
cancer (mCRC) [102-104], However, their contribution still remains unsatisfactory [105].
Accumulated studies have also shown that the Wnt/B-catenin signaling pathway interacts
with angiogenesis markers in CRC [40], and this suggest its significance as a potential
biomarker of angiogenesis. Herein, we further investigated the correlation between VEGFA
and B-catenin. Our findings obtained from STRING and Genemania bioinformatics analyses
confirmed the co-expression of VEGFA and CTNNB1, with the highest interactive confidence
score of 0.900. Moreover, multiple studies have shown that VEGFA positively regulates
Whnt/B-catenin signaling through GSK-38, which is associated with angiogenesis and can-
cer stemness in CRC, thus suggesting the potential autocrine action of VEGFA [99-101].
Accordingly, we found that the CD44 stemness marker is upregulated in CRC and also
co-occurred with VEGFA, STAT3, and CTNNBI in CRC tissues. Additionally, others have
shown that VEGFA-mediated development of CRC tumor angiogenesis was impeded by
inhibition of MMP7 [50,99,100]. MMP7 is highly expressed in CRC epithelial cells and
promotes metastasis [45,106]. In the current study, we found that MMP7 was overexpressed
in CRC tissues compared to adjacent normal tissues [46,107,108]. Previously, Fang et al.
demonstrated the association of VEGFA and MMP7 with immune invasion in CRC [109].

Our data also showed that increased levels of MMP7 were associated with VEGFA
and were associated with tumor progression, metastasis, and immune invasion. These
observations support our data, which demonstrated a marginal association between MMP7
and VEGF, suggesting that MMP7 could be one of the regulators of VEGFA activity in
CRC cells. These findings thus suggest crosstalk among the VEGFA/CTNNB1/MMP7/CD44
oncogenic signatures in regulating CRC progression, immune invasion, therapeutic resis-
tance, metastasis, and poor prognosis. Immunotherapies have repeatedly been shown to
impede the current cancer treatment landscape over the years, thus suggesting the need for
development of novel immunotherapies. The identification of novel diagnostic markers for
the development of these therapies requires molecular understanding of the TME, and its
association with different prognostic markers [110,111]. ScCRNAseq has been extensively
utilized to study tumor heterogeneity and immune cells associated with the tumor in
CRC [55,56]. Herein, we explored publicly available scRNA-seq datasets of CRC and found
a high abundance of VEGFA, CTNNB1, MMP7, and CD44 in regulatory T cells, mast cells,
macrophages, and myeloid cells; a low expression level of CD4*Tc and CD8*Tc cells; and
exhausted CD8 T cells with the TME of CRC patients, suggesting its associates with the
immune landscape of CRC based on similarities with the control.

The collective analytical results using a bioinformatics analysis from TCGA groups of
CRC tissues compared to adjacent normal tissues further confirmed that the overexpression
of VEGFA, CTNNB1, MMP7, and CD44 signatures were associated with angiogenesis,
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development of tumor growth, immune infiltration, resistance to therapies, and metastasis.
To further investigate, we demonstrated the anticancer activities of LCC-21 as a target small
molecule for the VEGFA/CTNNB1/MMP7/CD44 signaling pathway in CRC. Our molecular
docking analysis revealed the potential binding abilities of LCC-21 with VEGFA, CTNNBI,
MMP7, and CD44, with results showing the highest respective binding energies of LCC-21:
A =-81,-82,-9.0, and —8.0 kcal/mol, with the above-mentioned oncogenes. These
results were higher than the docking analysis results of VEGFA/CTNNB1/MMP7/CD44,
with their FDA approved inhibitors sorafenib, SFRP-1, and batimastat, which displayed
lower binding energies of (—(A = —7.3, —7.8, —8.6 kcal/mol), respectively (Figure 12).
Collectively, these structural simulations predicted LCC-21 to be a multi-target inhibitor
with high confidence. We further validated these finding in vitro and demonstrated that
LCC-21 inhibited colony formation, sphere formation, migration, and invasion, and these
results were further confirmed by a Western blot analysis in HCT116 and DLD-1 cells. Thus,
the inhibitory effect of LCC-21 on these angiogenic and onco-immunogenic signatures
could be of translational relevance as potential CRC biomarkers for early diagnosis.

5. Conclusions

In conclusion, our results demonstrate that the overexpression of the VEGFA/CTNNB1/
MMP7/CD44 oncogenic signatures is associated with progression, immune infiltration,
drug resistance, metastasis, and poor clinical outcomes in CRC. LCC-21, a novel multitarget
small molecule, successfully suppressed VEGFA, CTNNB1, MMP7, and CD44 signatures in
CRC cell lines, thus suggesting that LCC-21 might be a potential novel candidate compound
for inhibiting the VEGFA/CTNNB1/MMP7/CD44 signaling pathway in CRC.
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