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Abstract: Among candidate neurodegenerative/neuropsychiatric risk-predictive biomarkers, platelet
count, mean platelet volume and platelet distribution width have been associated with the risk of
major depressive disorder (MDD), Alzheimer’s disease (AD) and Parkinson’s disease (PD) through
epidemiological and genomic studies, suggesting partial co-heritability. We exploited these re-
lationships for a multi-trait association analysis, using publicly available summary statistics of
genome-wide association studies (GWASs) of all traits reported above. Gene-based enrichment
tests were carried out, as well as a network analysis of significantly enriched genes. We analyzed
4,540,326 single nucleotide polymorphisms shared among the analyzed GWASs, observing
149 genome-wide significant multi-trait LD-independent associations (p < 5 × 10−8) for AD, 70
for PD and 139 for MDD. Among these, 27 novel associations were detected for AD, 34 for PD and
40 for MDD. Out of 18,781 genes with annotated variants within ±10 kb, 62 genes were enriched
for associations with AD, 70 with PD and 125 with MDD (p < 2.7 × 10−6). Of these, seven genes
were novel susceptibility loci for AD (EPPK1, TTLL1, PACSIN2, TPM4, PIF1, ZNF689, AZGP1P1),
two for PD (SLC26A1, EFNA3) and two for MDD (HSPH1, TRMT61A). The resulting network showed
a significant excess of interactions (enrichment p = 1.0 × 10−16). The novel genes that were identified
are involved in the organization of cytoskeletal architecture (EPPK1, TTLL1, PACSIN2, TPM4), telom-
ere shortening (PIF1), the regulation of cellular aging (ZNF689, AZGP1P1) and neurodevelopment
(EFNA3), thus, providing novel insights into the shared underlying biology of brain disorders and
platelet parameters.

Keywords: Alzheimer’s disease; Parkinson’s disease; major depressive disorder; genomics;
multi-trait associations; platelets

1. Introduction

Platelets have represented, for decades, an interesting setting to investigate the bio-
logical underpinnings of neuropsychiatric and neurodegenerative disorders since they are
considered “circulating mirrors of neurons” [1]. Indeed, despite their different embryonic
origin, platelets and neurons share common characteristics in subcellular organization
and in protein composition. There are proteins typically expressed in both neurons and
circulating platelets, and they were found to regulate processes such as platelet activation,
hemostasis and thrombosis [2]. For example, Reelin- neuronal protein that regulates cell
migration, synaptic plasticity and memory formation- is also expressed in blood and is
actively released following platelet activation [3,4]. Amyloid Aβ peptides, which accumu-
late in senile plaques in dementia, and the amyloid precursor protein (APP), are expressed
in megakaryocytes, stored in platelet α-granules and released upon platelet activation [1].

Cells 2023, 12, 245. https://doi.org/10.3390/cells12020245 https://www.mdpi.com/journal/cells

https://doi.org/10.3390/cells12020245
https://doi.org/10.3390/cells12020245
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0002-6052-1807
https://orcid.org/0000-0002-4759-3179
https://orcid.org/0000-0002-7823-1402
https://orcid.org/0000-0003-0514-5885
https://orcid.org/0000-0002-7388-4463
https://doi.org/10.3390/cells12020245
https://www.mdpi.com/journal/cells
https://www.mdpi.com/article/10.3390/cells12020245?type=check_update&version=2


Cells 2023, 12, 245 2 of 15

Released APP is able to participate in hemostasis and can trigger platelet activation, adhe-
sion and aggregation through a number of different pathways [5]. Soluble APP inhibits
the activity of the blood coagulation factors IXa, XIa and Xa, and, to a lesser extent, of
factor VIIa–tissue factor complex [6]. It plays a role in the coagulation cascade, modulating
hemostasis following vascular injury. Brain derived neurotrophic factor (BDNF)-a secretory
protein regulating the development and function of neural circuits-is expressed in both
central and peripheral nervous systems but also in human megakaryocyte α-granules to-
gether with platelet factor 4 (PF4), where they are stored and released by platelets at the site
of injury during platelet aggregation [5,7]. Similarly, serotonin—a neurotransmitter with
important roles in controlling behavior and sociality—is stored in platelet-dense granules,
where it is released upon activation to act as a weak agonist [3,4].

Epidemiological and genetic evidence also supports the existence of a bridge between
platelet traits and neurodegenerative/neuropsychiatric disorders, such as Alzheimer’s
disease (AD), Parkinson’s disease (PD) and major depressive disorder (MDD), which
often suffer from a lack of risk-predictive biomarkers [5]. Among candidate circulating
biomarkers, platelet parameters such as platelet count (Plt), mean platelet volume (MPV)
and platelet distribution width (PDW) have been associated with the risk of MDD, AD and
PD [7]. Some epidemiological studies consistently reported a positive association between
MPV and MDD [5,7–10], as well as between depressive symptoms and PDW, while the
evidence of an association between Plt and MDD status is less consistent [7]. Similarly,
increased MPV was also reported for PD-although other studies observed an inverse
correlation with the staging of the disease [7,11]-and with AD and cognitive performance,
although not always consistently across studies and types of dementia [7]. PDW has been
instead more consistently (inversely) associated not only with AD risk [5] but also with
mild cognitive impairment and vascular dementia [12].

More recently, genomic studies investigated the genetic correlation-or single nucleotide
polymorphism (SNP)-based co-heritability-of platelet traits and brain disorders, as well as
potential causality links through Mendelian randomization (MR) approaches. In a large
genome-wide association study (GWAS) of blood cell measures, Astle et al. performed
a multivariable MR analysis on platelet parameters and MDD risk, which revealed no
significant causal effect of the formers on the latter, although MPV and PDW showed
marginally significant effects [5]. Later on, Wray et al. investigated genetic correlations
between MDD risk and Plt and MPV, reporting no significant genetic correlations between
depression and platelet parameters [13], which we instead observed for PDW and MDD
risk [14]. Our group later detected a significant genomic overlap between PDW and PD
risk through linkage disequilibrium (LD) score regression, which was confirmed also by a
polygenic score analysis, as well as a trend of significance for genetic correlations between
PDW and AD risk [5]. Despite these promising genetic findings, the variants and genes at
the basis of the genomic overlap between platelet parameters and brain disorders remain
largely under-investigated. A first attempt was made to carry out a multi-trait genetic
association analysis between PD age at onset and MPV, which revealed novel associations
in interesting candidate genes such as KALRN (Kalirin RhoGEF Kinase), encoding a PINK1
interactor previously implicated in schizophrenia, AD and PD [5].

Here, we aimed to identify novel genetic associations with AD, PD and MDD using a
multi-trait association analysis (MTAG) approach [15], exploiting their reciprocal genetic
correlations and evidence of genomic overlap previously identified among themselves and
with three common platelet parameters, namely, Plt, MPV and PDW. Such an approach
provided higher power to detect novel susceptibility variants for neuropsychiatric and
neurodegenerative disorders, as well as overlapping genes and pathways enriched for
these associations. This allowed us to untangle the resulting molecular networks at a
more fine-grained resolution, revealing potential molecular targets for future treatments of
these disorders.
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2. Materials and Methods

We used MTAG [15] to perform a multi-trait association analysis of three neuropsy-
chiatric/neurodegenerative disorders-AD, PD and MDD-and three common platelet pa-
rameters that have been associated with their risk, namely, Plt, MPV and PDW [7]. MTAG
is a generalization of standard, inverse-variance-weighted meta-analysis between two
or more genetically correlated traits, which generates trait-specific associations for each
genetic variant shared among the source GWAS studies, using linkage disequilibrium (LD)
score regression to account for potential sample overlap [15]. The summary statistics of
AD (71,880 cases, 383,378 controls and 13,309,438 SNPs) [16], PD (37,688 cases, 18,618 UK
Biobank proxy-cases, 1,417,791 controls and 10,081,487 SNPs) [17], MDD (246,363 cases,
561,190 controls and 7,880,531 SNPs) [18], Plt (38,561,936 SNPs), MPV (41,254,093 SNPs) and
PDW (41,253,708 SNPs; all with N = 408,112 participants of European ancestry) [19] were
obtained from published GWAS summary statistics data (see URLs). To carry out MTAG
analysis, we first pre-processed and quality-controlled summary statistics from each study
involved: SNP (rs) ids were retrieved, and Z-score was computed by log (OR)/SE when
these were not available; MAF threshold was set at 0.01; indels were removed and SNPs
mapping to the same position of other variants and/or showing conflicting alleles among
different studies were dropped. After variant filtering, the number of variants left for anal-
ysis was 8,632,257 for AD; 6,582,074 for PD; 7,183,400 for MDD; 8,933,201 for Plt; 8,933,763
for MPV; and 8,934,170 for PDW. Of these, 4,540,326 variants were in common among the
different studies and, therefore, underwent MTAG analysis. Using Functional Mapping
and Annotation (FUMA) platform [20], we first identified LD-independent genome-wide
significant SNPs within each study (p < 5.0 × 10−8; pairwise r2 < 0.6 in a 1 Mb window).
Then, we selected novel genome-wide significant SNP associations with the analyzed disor-
ders, defined as associations not detected as genome-wide significant in the original study,
nor in previous GWASs of the same disorder, based on the GWAS catalog and literature
search until 30 April 2022 (Table 1).

Table 1. Novel genes associated with neuropsychiatric/neurodegenerative disorders based on single
variant associations.

CHR Pos REF ALT rsID p nSNPs Gene Disorder

8 144,992,361 C T rs7822511 8.82 × 10−11 139 EPPK1 AD
22 43,414,330 A G rs3091364 3.82 × 10−10 16 TTLL1 AD
22 43,279,611 A G rs4822218 3.91 × 10−10 9 PACSIN2 AD
19 16,211,630 A G rs59508494 1.49 × 10−9 3 TPM4 AD
15 65,170,949 C T rs2013555 6.37 × 10−9 72 PIF1 AD
16 30,902,353 A G rs80095680 3.62 × 10−8 89 ZNF689 AD
7 99,581,469 C T rs11761882 4.64 × 10−8 34 AZGP1P1 AD
4 975,238 C T rs73211813 2.99 × 10−10 45 SLC26A1 PD
1 155,053,719 C T rs1462855 4.17 × 10−8 36 EFNA3 PD

14 104,000,183 C T rs2756127 8.20 × 10−11 108 TRMT61A MDD
13 31,733,057 A G rs41292151 5.34 × 10−9 23 HSPH1 MDD

To have further biological insights into the underlying biology of common variance
in different neuropsychiatric/neurodegenerative disorders and platelet parameters, as-
sociations underwent gene, gene ontology and pathway enrichment analysis through
MAGMA v1.08 [21], within the FUMA platform [20]. This was carried out for all the
protein-coding genes to which at least one SNP was annotated within a ±10 kb interval,
namely, 18,781 genes. A Bonferroni correction for multiple testing was applied accordingly,
based on the number of genes tested (α = 2.7 × 10−6) (Table 2).

To estimate protein–protein interactions (PPIs) among the genes enriched for associations,
we used the search tool for the retrieval of interacting genes/proteins in db-STRING v11.5 [22].
We analyzed genes significantly enriched for associations with AD, PD and MDD, first
separately and then merged into a single list, to compute “global” interactions among
all the genes significantly enriched for any of the three disorders. The obtained network
included both direct (physical) and indirect (functional) associations, specifically evidence
of interaction from curated databases; evidence experimentally determined; gene neigh-
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borhood; gene fusions; gene co-occurrence; joint gene mentioning based on text mining
in published articles; gene co-expression; and protein homology. We set a minimum in-
teraction score of >0.7 so that only high-confidence interactions between proteins were
included in the analysis. The observed excess of interactions compared to the expected
number of edges among nodes, average node degree (i.e., the average number of edges per
node in the graph) and local clustering coefficient (i.e., a measure of the extent to which
nodes in the graph tend to cluster together) were taken as measures of network density and
clustering levels.

Table 2. Novel genes associated with (a) AD, (b) PD and (c) MDD based on gene-based enrichment analysis.

(a)

SYMBOL CHR START STOP NSNPS ZSTAT p

PVRIG 7 99,805,864 99,829,113 43 5.5752 1.24 × 10−8

FAM57B 16 30,025,748 30074299 42 5.1135 1.58 × 10−7

NDUFS2 1 1.61 × 108 1.61 × 108 43 5.0689 2.00 × 10−7

C16orf92 16 30,024,655 30,049,057 27 4.8555 6.01 × 10−7

KLC3 19 45,826,692 45,864,778 46 4.6901 1.37 × 10−6

B4GALT3 1 1.61 × 108 1.61 × 108 18 4.6514 1.65 × 10−6

ZNF688 16 30,570,667 30,594,055 5 4.6452 1.70 × 10−6

DEDD 1 1.61 × 108 1.61 × 108 22 4.6293 1.83 × 10−6

(b)

SYMBOL CHR START STOP NSNPS ZSTAT p

DPM3 1 1.55 × 108 1.55 × 108 17 7.3804 7.89 × 10−14

SLC26A1 4 962,861 997,228 60 6.3491 1.08 × 10−10

FBXL19 16 30,924,376 30,970,104 26 6.2787 1.71 × 10−10

SMIM15 5 60,443,536 60,468,301 38 6.1459 3.98 × 10−10

ERCC8 5 60,159,658 60,250,900 133 5.727 5.11 × 10−9

FAM200B 4 15,673,285 15,717,188 66 5.2295 8.50 × 10−8

CTF1 16 30,897,928 30,924,881 13 5.2123 9.32 × 10−8

ADAM15 1 1.55 × 108 1.55 × 108 24 5.1236 1.50 × 10−7

PRSS8 16 31,132,756 31,157,083 17 5.0704 1.99 × 10−7

NCOR1 17 15,922,471 16,131,499 206 5.0238 2.53 × 10−7

VKORC1 16 31,092,163 31,117,301 10 4.9064 4.64 × 10−7

ZNF668 16 31,062,164 31,095,641 19 4.8085 7.61 × 10−7

PRSS36 16 31,140,246 31,171,415 19 4.7714 9.15 × 10−7

ZNF668 16 31,062,813 31,083,451 14 4.7305 1.12 × 10−6

SRCAP 16 30,699,530 30,765,602 18 4.6567 1.61 × 10−6

(c)

SYMBOL CHR START STOP NSNPS ZSTAT p

ZNF165 6 28,038,753 28,067,341 45 7.314 1.30 × 10−13

BTN2A2 6 26,373,324 26,405,102 88 6.2064 2.71 × 10−10

OR2W1 6 29,001,990 29023,017 5 5.9545 1.30 × 10−9

OR12D3 6 29,331,200 29,353,068 6 5.9392 1.43 × 10−9

TRMT61A 14 1.04 × 108 1.04 × 108 44 5.9312 1.50 × 10−9

OR2J1 6 29,058,386 29,079,658 5 5.6346 8.77 × 10−9

HMGN4 6 26,528,633 26,556,482 30 5.5889 1.14 × 10−8

OR2B3 6 29,043,985 29,065,090 4 5.2266 8.63 × 10−8

BTN3A3 6 26,430,700 26,463,643 54 4.9893 3.03 × 10−7

ZNF197 3 44,616,380 44,699,963 70 4.8584 5.92 × 10−7

ZNF35 3 44,680,219 44,712,283 18 4.8361 6.62 × 10−7

TRIM27 6 28,860,779 28,901,766 11 4.7826 8.65 × 10−7

OR2B6 6 27,915,019 27,935,960 14 4.7288 1.13 × 10−6

DLST 14 75,338,594 75,380,448 62 4.6985 1.31 × 10−6

RHOBTB1 10 62,619,196 62,771,198 238 4.6824 1.42 × 10−6

ZNF660 3 44,609,715 44,651,186 46 4.6731 1.48 × 10−6

RBM4B 11 66,422,469 66,455,392 19 4.6717 1.49 × 10−6

ITGB6 2 1.61 × 108 1.61 × 108 312 4.6636 1.55 × 10−6

RBM14-RBM4 11 66,374,097 66,423,940 32 4.5834 2.29 × 10−6

Legend: CHR—chromosome; NSNPS—number of SNPs in the gene; START/STOP—start/stop position (bp) of
the variant in the genome (GRCh37/hg19 coordinates); ZSTAT—enrichment Z-score statistics; and P—p-value.
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3. Results

In the multi-trait association analysis of three different brain disorders (AD, PD, MDD)
and three different platelet parameters (Plt, MPV and PDW), we analyzed 4,540,326 variants
shared across the different source studies that passed QC (see Methods section). Given
the main aim of the manuscript, we report in detail below the results of the associations
with AD, PD and MDD, along with the overlap with platelet parameters in terms of single
variant and the gene enrichment of associations. The full results of the MTAG analysis
of platelet traits are reported in Supplementary Materials (Figures S1 and S2) and online
(see Data Availability Statement). MTAG revealed 358 genome-wide significant multi-trait
associations (p < 5 × 10−8; pairwise r2 < 0.6; Figure 1): 149 for AD (top hit at rs1081105,
within the APOE gene, p = 2.36 × 10−180), 70 for PD (top hit at rs356219, within the SNCA
gene, p = 6.01 × 10−41) and 139 for MDD (top hit at rs2232429, within the ZSCAN12 gene,
p = 6.41 × 10−19). Among these, we observed 27 novel associations with AD (top hit at
rs2232429, within the ITGB5 gene, p = 6.41 × 10−19), 34 with PD (top hit at rs1372518 within
the SNCA gene, p = 3.33 × 10−28) and 40 with MDD (top hit at rs200965 in a transcription
factor binding site on 6p22.1, p = 4.07 × 10−15). Of these SNPs, seven were mapped in
novel susceptibility genes for AD (EPPK1, TTLL1, PACSIN2, TPM4, PIF1, ZNF689 and
AZGP1P1), two for PD (SLC26A1 and EFNA3) and two for MDD (HSPH1 and TRMT61A).
The analysis of 18,781 genes tested in the gene-based enrichment analysis revealed 62,
70 and 125 genes with a significant enrichment of associations with AD, PD and MDD,
surviving correction for multiple gene testing (p < 2.7 × 10−6, Figure 2). Of these, eight
genes represented novel associations with AD (PVRIG, FAM57B, NDFUS2, C16orf92, KLC3,
B4GALT3, ZNF688 and DEDD), 14 with PD (DPM3, SLC26A1, FBXL19, SMIM15, ERCC8,
FAM200B, CTF1, ADAM15, PRSS8, NCOR1, VKORC1, ZNF668, PRSS36 and SRCAP) and
38 with MDD (ZNF165, BTN2A2, OR2W1, OR12D3, TRMT61A, OR2J1, HMGN4, OR2B3,
BTN3A3, ZNF197, ZNF35, TRIM27, OR2B6, DLST, RHOBTB1, ZNF660, RBM4B, ITGB6,
RBM14-RBM4, HIST1H4K, HIST1H2AK, HIST1H2BL, HIST1H3H, HIST1H2AL, HIST1H1B,
HIST1H3I, HIST1H4J, HIST1H2BM, HIST1H2AI, HIST1H2AJ, HIST1H2AM, HIST1H3J,
HIST1H2BN, HIST1H2AG, HIST1H2BO, HIST1H4L, HIST1H2BJ and HIST1H4I). None of
these genes were overlapping across the three disorders. However, when we checked the
overlap between each neurodegenerative/neuropsychiatric disorder and platelet param-
eters in terms of single variant associations, we found 24 SNPs associated with AD and
3 associated with PD, which were also associated with 1 or more platelet parameters. Of
these, 12 AD- and 3 PD-associated SNPs represented novel associations never detected be-
fore (Table 3a,b). As for overlapping gene enrichments with any of the platelet parameters
analyzed, we identified 29 genes matching with AD, 14 with PD and 15 with MDD. Of
these, 6 were novel susceptibility loci for AD, 4 for PD and 12 for MDD (Table 4a–c).
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Table 3. Single variant association overlap of (a) AD and (b) PD with platelet parameters.

(a)

SNPs Overlap between SNP Gene Chr:position Function
Previously
Associated
with AD

Previously
Associated

with Platelet
Parameters

AD and all platelet parameters rs6727023 EHD3 2:31475960 Upstream
rs62118504 EXOC3L2 19:45734751 Intronic [23]
rs2143926 22:43185180
rs4822218 PACSIN2 22:43279611 Intronic
rs2267487 PACSIN2 22:43411389 Upstream

AD, MPV and PDW rs4575098 B4GALT3 1:161155392 Upstream [23]
rs585021 ITGB5 3:124482869 Intronic

rs11620465 LRCH1 13:47250344 Intronic
rs3091364 22:43414330

AD, MPV and Plt rs12461065 PPP1R37 19:45605308 Intronic [23]
rs12461144 EXOC3L2 19:45723706 Intronic [23]
rs123187 19:45830947 [23]

AD, PDW and Plt rs9357551 6:47606029 [24] Plt [25]
AD and MPV rs10934680 KALRN 3:124440780 Downstream

rs11669338 NECTIN2 19:45382984 Downstream [24]
rs138235833 19:45415285

rs620807 19:45706952 [24]
rs4803806 19:45708947

AD and PDW rs858502 CASTOR3 7:99843353 Intronic [24]
rs7113976 11:85869737 [24]
rs283810 NECTIN2 19:45388241 Downstream [24]

rs1160983 TOMM40 19:45397229 Synonymous variant
rs584007 APOC1 19:45416478 Upstream [24]

rs117648021 EIF3L 22:38274632 Intronic

(b)

SNPs Overlap between SNP Gene Chr:position Function
Previously
Associated

with PD

Previously
Associated

with Platelet
Parameters

PD, MPV and PDW rs10847839 HIP1R 12:122838013 Intronic
PD and MPV rs17689966 CRHR1 17:45833089 Intronic

rs9899833 MAPT 17:45915577 Intronic

No overlaps were found between SNPs associated with MDD and those associated with platelet parameters.
Legend: AD—Alzheimer’s disease; PD—Parkinson’s disease; Plt—platelet count; MPV—mean platelet volume;
and PDW—platelet distribution width.

The molecular network resulting from the gene enrichment test, as produced by STRING
v11.5 analysis, showed more significant interactions than expected for AD (enrichment
p = 1.0 × 10−16; 57 nodes, 57 edges vs. 2 expected, average node degree 2.00 and aver-
age local clustering coefficient 0.36), PD (enrichment p = 8.46 × 10−9; 63 nodes, 18 edges vs.
3 expected, average node degree 0.57 and average local clustering coefficient 0.23) and MDD
(enrichment p = 1.0 × 10−16; 120 nodes, 264 edges vs. 49 expected, average node degree 4.4
and average local clustering coefficient 0.47) (Figure S3a–c; Table S1). Similarly, we observed
evidence of an interaction also when the genes enriched for the three disorders were analyzed
together (enrichment p = 1.0 × 10−16; 240 nodes, 281 edges vs. 61 expected, average node
degree 2.34 and average local clustering coefficient 0.3) (Figure 3; Table S1).

Gene-set analysis also revealed significant enrichment for the three disorders, the most
associated gene ontology (GO) term was negative regulation of amyloid precursor protein catabolic
process (13 genes, β(SE) = 2.23(0.26); enrichment p after Bonferroni correction = 2.7 × 10−13) for
AD, IgG binding (9 genes, β(SE) = 0.03(0.31); Pbonf = 0.0056) for PD and GABAergic synapse
(64 genes, β(SE) = 0.74(0.13); Pbonf = 9.5 × 10−5) for MDD (Table S2; see URLs to access the
full list of pathways tested and the genes driving these enrichments).



Cells 2023, 12, 245 9 of 15

Table 4. Gene enrichment overlap of (a) AD, (b) PD and (c) MDD with platelet parameters.

(a)

Genes Overlap between Gene Previously Associated with AD
Previously Associated with

Platelet Parameters

AD and all platelet parameters AC005779.2
AC006126.3

CD2AP [26] MPV [26] and Plt [26]
CKM [16]
EHD3 MPV [27], PDW [19] and Plt [27]

EXOC3L2 [24]
KLC3

L47234.1
MARK4 [24] MPV [25], PDW [27] and Plt [25]

PVR [24] MPV [27]
AD, MPV and PDW ADAMTS4 [24]

AL590714.1
APOA2

B4GALT3
DEDD [24]

NDUFS2
TOMM40L [28]

AD, MPV and Plt GEMIN7 [24]
AD, PDW and Plt GATS [29]

AZGP1 [30]
PILRA [24]

AD and MPV BLOC1S3 [24] MPV [25], PDW [27] and Plt [27]
PPP1R37 [24]
PVRL2 [31]

AD and PDW APOC1 [23] PDW [19]
APOE [24] PDW [19] and Plt [27]
GPC2 [32]

PVRIG
SLC24A4 [24] PDW [19]

STAG3 [33]
TOMM40 [24]

AD and Plt IGSF23 [24]
PICALM [24]

(b)

Genes Overlap between Gene Previously Associated with PD Previously Associated with Platelet
Parameters

PD and MPV WNT3 [34]
AC008498.1

SPPL2C [34]
ARHGAP27 [34]

CRHR1 [34]
MAPT [34] Plt [25]

ELOVL7 [34] MPV [19]
ERCC8

SMIM15
PLEKHM1 [34]
KANSL1 [34]

NSF [34]
NDUFAF2 [34]

STH [35]
PD and PDW SRCAP MPV [19]

(c)

Genes Overlap between Gene Previously Associated with AD Previously Associated with Platelet
Parameters

MDD and MPV OR2J3 [36]
TRIM27
OR5V1 [37]

C11orf31
OR2B3
NRD1

OR12D3
HIST1H2BK

OR2J1
OR2W1

HIST1H4K
HIST1H2AK

MDD and PDW MARK3 [37] PDW [38]
TRMT61A

MDD, PDW and Plt HIST1H3B

Legend: AD—Alzheimer’s disease; PD—Parkinson’s disease; MDD—major depressive disorder; Plt—platelet
count; MPV—mean platelet volume; and PDW—platelet distribution width.
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Figure 3. Protein–protein interaction network of genes significantly enriched for associations with
AD, PD and MDD. The reported network, including both direct (physical) and indirect (functional)
associations, was based on the STRING v11.5 database [22]. Only high-confidence interactions be-
tween proteins are reported (interaction score > 0.7), while disconnected nodes in the network are
hidden. Each node represents all the proteins produced by a single protein-coding gene locus, while
edges represent protein–protein associations. Line color indicates the type of interaction evidence:
light blue— from curated databases; purple—experimentally determined; green—gene neighbor-
hood; red—gene fusions; blue—gene co-occurrence; yellow—text mining; black—co-expression; and
violet—protein homology.

4. Discussion

We report the first multi-trait association analysis of structural platelet parameters routinely
assessed in blood tests and three of the most common neurodegenerative/neuropsychiatric
disorders, identifying novel candidate susceptibility genes for AD, PD and MDD. The most
significant associations were detected in some of the most implicated genes in neurodegen-
erative/neuropsychiatric disorders, namely, APOE (apolipoprotein E, with AD) [39], SNCA
(alpha synuclein, with PD) [40] and ZSCAN12 (zinc finger and SCAN domain-containing 12,
with MDD) [41]. APOE is a protein associated with lipid particles that mainly functions in
lipoprotein-mediated lipid transport between organs via plasma and interstitial fluids [42].
Alpha synuclein is involved in synaptic activities such as the regulation of synaptic vesicle
trafficking and subsequent neurotransmitter release [43,44]; moreover, it modulates DNA
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repair processes, including the repair of double-strand breaks [45]. ZSCAN12 encodes a
Zinc finger and SCAN domain-containing protein involved in transcriptional regulation.

Still, MTAG analysis also revealed novel genes showing significant multi-trait as-
sociations, which, to our knowledge, were never associated with these disorders before.
Among genes associated with AD, EPPK1, TTLL1, PACSIN2 and TPM4 play a role in
the organization of cytoskeletal architecture, which has been identified as an important
component in the development of neurodegenerative disorders [46–49]. PIF1 prevents
telomere elongation by inhibiting the action of telomerase, while ZNF689 and AZGP1P1 are
transcription factors involved in cell viability and apoptosis, and both molecular functions
can affect cellular aging and the development of age-related disorders such as AD and
PD [24]. Moreover, TTLL1 [19], PACSIN2 [26,40], TPM4 [27] and PIF1 [19] were previously
associated with platelet parameters, suggesting a possible pleiotropic effect of these genes.
EFNA3, a novel gene resulting in an association with PD, encodes a member of the ephrin
family, previously implicated in mediating developmental events, especially in the central
nervous system [50].

A gene-based enrichment analysis also revealed novel genes associated with AD, PD
and MDD. Interestingly, among these genes are several encode transcription factors that
may be involved in development, maintenance and survival of neurons and olfactory
receptors [51]. Indeed, olfactory dysfunction, which is thought to be due to the loss of
synaptic function, has been linked with most neurodegenerative, neuropsychiatric and
communication disorders [52]. Moreover, among these genes, there are also some histone
complex proteins, in line with some recent studies revealing associations between histone
methylation/acetylation and AD [53] and implicating several histone deacetylases in the
pathogenesis of PD [54]. These findings suggest the pleiotropic influence of several genes on
the risk of neurodegenerative and neuropsychiatric disorders, which were not previously
detected through classical univariate GWAS analyses.

Of note, we found several overlaps between genes and SNPs multi-trait associations
with the brain disorders and platelet parameters analyzed. Among genes enriched for
association, we identified clusters of genes encoding products involved in mitochondrial
function (e.g., NDUFS2, NDUFAF2 and TOMM40L), cytoskeleton remodeling (CD2AP and
KLC3, as discussed above) and histone proteins (HIST1H2BK, HIST1H4K, HIST1H2AK and
HIST1H3B, as explained below). Indeed, NDUFS2 and NDUFAF2 encode for a subunit and
for a chaperone involved in the assembly of complex I, located on the inner mitochondrial
membrane, while TOMM40L is involved in mitochondrial transmembrane translocation.
Several studies suggest that platelet mitochondrial dysfunction may be involved in neu-
rodegenerative diseases such as AD and PD [55–57]. Still, further studies are needed to
clarify the variant association overlap between platelet parameters and MDD, which we
were not able to identify here, possibly due to the genetic and phenotypic heterogeneity
of depression.

Protein–protein interaction analysis revealed a significant excess of interactions among
enriched genes for the brain disorders tested both separately and jointly, suggesting that
their gene products are highly likely to be linked in a global molecular network.

In particular, this highlighted some local networks of interests, such as the one among
the histone proteins complex-HIST1H2BI, HIST1H2BF and HIST1H2BJ-which may play
a role in the onset of neurodegenerative diseases due to the alteration of methylation
patterns [58]. Similarly, the apolipoproteins APOE, APOA2, APOC1 and APOC4 have been
repeatedly implicated in triglyceride and cholesterol transport and metabolism [59,60], as
well as in neurodegenerative [61] and cardiovascular risk [62], while the local network
among EPHA1, EPHB2, EFNA1, EFNA3 and EFNA4, highlights the importance of the inter-
actions between ephrins and ephrin receptors in the etiology of several neurodegenerative
and neuroinflammatory disorders, suggesting potential links with (cellular) immunity [63].

Gene-set analysis revealed significant enrichments of GO terms involved in the regu-
lation, formation and catabolic processes of amyloid beta and in the negative regulation of
metalloendopeptidase activity for AD, supporting the hypothesis that metallopeptidases
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are implicated in the pathogenesis of several central nervous system diseases such as
multiple sclerosis and AD [64]. For PD, significant enrichments of IgG binding is interest-
ing in light of a higher fraction of IgG, a different IgG glycosylation profile [65], and of
increased IgG (but not IgM) binding in dopaminergic neurons of PD cases vs. controls [66].
Moreover, serum IgG levels in PD patients are negatively associated with mood/cognition
scores [67], in line with a potential pleiotropic role of humoral immunity at the interface
among the mood, cognitive and motor control domains. Similarly, the significant enrich-
ment of GABAergic synapse GO term in MDD analysis corroborates the hypothesis that
the alteration in GABAergic receptors may play a role in long-term depression [68].

Overall, we provide insights into the shared underlying biology of these disorders
and related platelet parameters, proposing novel molecular targets for the risk prediction
and treatment of these disorders.

Strengths and Limitations

The strengths of this study include the novelty of the analysis performed; indeed, to our
knowledge, this represents the first attempt to identify the shared genomic underpinnings
of platelet parameters and three of the most common neurodegenerative/neuropsychiatric
disorders through a comprehensive approach, including not only multi-trait association
analysis but also gene-/gene-set enrichment and molecular network analyses. Moreover,
our analyses are based on large GWASs, with an important amount of genetic data, which
confers robustness to our observations. Last, our focus on novel associations allowed
identifying proteins and biological pathways, which should be functionally validated in
the future.

This study presents some limitations. First, currently only partial evidence of genetic
correlation among the disorders and platelet parameters tested exists, which may have
hampered the power of the analyses. Second, in multi-trait association approaches, associa-
tion significance is often driven by the largest source GWAS involved in the MTAG analysis,
which may have biased the analyses towards the largest studies. Still, this represents a
useful approach to identifying the pleiotropic variants and genes influencing multiple
traits and/or disorders, which were already proven successful with multiple correlated
phenotypes [15]. Third, functional studies are warranted to explain the role of the novel
susceptibility genes identified here, both in neurodegenerative/neuropsychiatric risk and
platelet variability.

However, although there are some limitations, these studies may reveal potential
molecular targets for future treatments of three of the most common neurodegenera-
tive/neuropsychiatric disorders.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells12020245/s1, Figure S1: Manhattan plots of multi-trait asso-
ciations with (a) MPV, (b) PDW and (c) Plt; Figure S2: Manhattan plots of gene-based enrichments
of multi-trait associations with (a) MPV, (b) PDW and (c) Plt; Figure S3: Protein–protein interac-
tion network of genes significantly enriched for associations with (a) AD, (b) PD and (c) MDD;
Table S1: Network statistics of protein–protein interaction networks of genes significantly enriched
for associations with AD, PD and MDD; Table S2: Significant gene-set enrichments of associations
with (a) AD, (b) PD and (c) MDD.
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