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Abstract: Tight junctions (TJs) are intercellular protein complexes that preserve tissue homeostasis
and integrity through the control of paracellular permeability and cell polarity. Recent findings have
revealed the functional role of TJ proteins outside TJs and beyond their classical cellular functions
as selective gatekeepers. This is illustrated by the dysregulation in TJ protein expression levels
in response to external and intracellular stimuli, notably during tumorigenesis. A large body of
knowledge has uncovered the well-established functional role of TJ proteins in cancer pathogenesis.
Mechanistically, TJ proteins act as bidirectional signaling hubs that connect the extracellular com-
partment to the intracellular compartment. By modulating key signaling pathways, TJ proteins are
crucial players in the regulation of cell proliferation, migration, and differentiation, all of which being
essential cancer hallmarks crucial for tumor growth and metastasis. TJ proteins also promote the
acquisition of stem cell phenotypes in cancer cells. These findings highlight their contribution to
carcinogenesis and therapeutic resistance. Moreover, recent preclinical and clinical studies have used
TJ proteins as therapeutic targets or prognostic markers. This review summarizes the functional role
of TJ proteins in cancer biology and their impact for novel strategies to prevent and treat cancer.

Keywords: tight junctions; carcinogenesis; signaling pathways; therapeutic targets

1. Tight Junction Proteins Exhibit a Large Repertoire of Functional Roles in
Cell Biology

Described as intercellular adhesion complexes in epithelia and endothelia, tight junc-
tion (TJ) proteins constitute a multi-functional machinery that regulates paracellular per-
meability and cell polarity [1]. TJ proteins are classified based on multiple genetic and
molecular functions with three transmembrane proteins that are common to all tight junc-
tions [2]. These three proteins comprise claudins (CLDNs), the tight junction-associated
MARVEL domain proteins, including occludin, tricellulin (also known as the MARVEL
domain-containing protein 2 (MARVELD2)) and MARVELD3, in addition to the junction
adhesion molecule (JAM) [3]. Other commonly expressed transmembrane TJ proteins
include the Crumbs proteins (CRBs), the angulin proteins, the coxsackievirus–adenovirus
receptor (CAR), and BVES (blood-vessel epicardial substance, also known as POPDC1 for
Popeye domain-containing protein-1) [4]. Furthermore, the region of the cytoplasm that un-
derlies the tight junctions harbors several multi-molecular protein complexes [5]. The latter
include proteins associated with Lin Seven 1 (Pals1), multi-PDZ domain protein 1 (MUPP1),
Zona occluden-1, -2 and -3 (ZO-1, ZO-2; ZO-3), and the non-PDZ-expressing proteins,
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including cingulin, symplekin, ZO-1-associated nucleic acid-binding protein (ZONAB),
GEF-H1, aPKC, PP2A, Rab3b, Rab13, PTEN, and 7 H6 [5].

Two types of barrier functions are described to be mediated by TJs, namely the gate
and the fence functions [1]. Indeed, the regulation of paracellular permeability is one
of the major physiological functions of TJs, as this controls the transport of molecules
across tissues, and between different body compartments [6]. In this context, selective
permeability is tightly controlled by size and charge. The size-selective pathway allows
the diffusion of macromolecules up to a size limit of ∼30–60 Å, in contrast to the charge-
selective small-pore pathway with pore diameters of ∼4–8 Å [7]. On the other hand, TJ
proteins are involved in the fence function, also known as the intramembrane diffusion
barrier, which refers to the segregation of the apical and basolateral plasma membranes [8].

Beyond their classical functions, TJ proteins also modulate polarity, differentiation,
growth and proliferation, as well as cell migration and motility, as these molecules act as
arbitrators and transducers of cell-to-cell adhesion and signaling cascades [9]. Consequently,
TJ protein alteration during pathological processes has been described to interfere with the
proper functioning of the cellular machinery and homeostasis maintenance [10]. In cancer,
changes in the expression and/or localization of these molecules are frequently reported
(Figure 1) [11]. However, many of these studies are observational, and well-founded
mechanistic studies that link these multi-component complexes to disease pathogenesis
are lacking [12]. Dissecting the role of TJ complexes in various aspects of oncogenic
transformation could catalyze our conception of TJ proteins as bidirectional signaling hubs
and advance our perception of their multifunctional nature as an inherent player of the
evolutionarily conserved signaling cascades. In this context, this review aims to tackle the
interrelation between TJ components and signal transduction in cancer pathophysiology
from a molecular, rather than a cellular biology perspective. Considering the frequent
dysregulation in malignant diseases, we further discuss TJ components as targets of anti-
cancer treatments.
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2. From Intercellular Adhesion and Polarity Regulators to Signaling Modulators in
Cancer Biology

The complexity of TJ functionality is highlighted by their dual and differential expres-
sion patterns in different cancer types, where loss of expression, or alternatively overex-
pression, are described to promote tumorigenesis [13]. This is further confirmed in several
in vivo animal models, where the aberrant expression of TJ proteins promotes abnormal cel-
lular proliferation, neoplasia, or metastasis [11]. At a glance, 5297 abstracts were identified
by Vermette and coworkers as potential articles that emphasize the relationship between
biomarkers of endothelial or epithelial TJ structures or functions and critical illness [14]. In
this setting, recent data have repositioned the perception of TJ proteins from a simple static
constituent of junctions to multi-component and multi-functional signaling complexes
involved in the regulation of a multitude of cellular events [15]. For example, the 44 amino
acids (aa) at the COOH-terminal end of occludin were shown to play a critical role in
receiving and transmitting intracellular apoptosis-inducing signals [16]. Of note, beside
modulating established signaling cascades, some TJ-associated proteins can translocate to
the nucleus where they regulate gene expression [17].

Among the complex events that mediate oncogenesis, alterations in signal transduc-
tion pathways are the most commonly described [18]. Recently, through an integrated
analysis of The Cancer Genome Atlas (TCGA), Sanchez-Vega and coworkers emphasized
individual and co-occurring actionable alterations in the 10 main oncogenic pathways as po-
tential drivers and functional contributors of oncogenic transformation [19]. This repertoire
of analyzed pathways includes the following: (1) cell cycle alterations, (2) Hippo signaling,
(3) Myc signaling, (4) Notch signaling, (5) phosphatidylinositol-3 kinase (PI3K) signaling,
(6) oxidative stress response, (7) receptor-tyrosine kinase (RTK)/RAS/mitogen-activated
protein kinase (MAPK) signaling, (8) transforming growth factor-beta (TGF-β) signaling,
(9) Wnt/β-catenin signaling, and (10) p53 [19]. Interestingly, interactions between tight
junction components and these pathways have been described. The following section
discusses illustrative examples of various TJ proteins crosstalks with the aforementioned
pathways, with a detailed mapping of these signaling cascades being developed in the
subsequent section. Regarding cell cycle alteration, ZONAB, which is known to bind to
the SH3 domain of ZO-1, was shown to regulate cellular proliferation and G1/S phase pro-
gression through interacting with the cyclin-dependent kinase 4 (CDK4) [20]. Intriguingly,
ZO-2-mediated transcriptional repression of cyclin D1 and the subsequent cell proliferation
alteration was suggested to be mediated by the interaction with c-Myc [21]. The latter was
also studied in the context of CLDN perturbation, where CLDN7 knockdown increased
c-Myc expression at the transcriptional and proteomic levels [22]. CLDN1 overexpression,
on the other hand, increased c-Myc levels in colon cancer cells [23]. Regarding oncogenic
pathways, CLDN18 overexpression was shown to decrease Yes-associated protein (YAP)
nuclear localization and transcriptional activity, whereas its loss decreased YAP interaction
with Hippo kinases p-LATS1/2 [24]. In addition, CLDN18 and YAP were shown to interact
and colocalize at cell–cell contact, with CLDN18 being identified as a YAP regulator [24].
Beside the Hippo/YAP pathway, other oncogenic signaling cascades were described to be
modulated by TJ proteins. For instance, by inducing matrix metalloproteinase-9 (MMP-9)
and extracellular signal-regulated kinase (ERK) signaling, CLDN1 regulates Notch signal-
ing and cellular differentiation [25], as well as β-catenin pathway activation, mediating
colitis-associated cancer [26]. Beside CLDNs, occludin was also described to interact
with other signaling pathways, for instance the PI3K cascade. Indeed, the latter inter-
acts with occludin through its C-terminal tail, where p85, the regulatory subunit of PI3K,
co-immunoprecipitates with occludin [27]. Specifically, a 27 aa peptide of the coiled coil
domain of occludin was identified to act as a site for specific interactions with several
potential regulatory proteins [28]. Of note, oxidative stress increases the association of
PI3K with occludin [27]. Beside PI3K, the activity of Ras effectors, including Raf kinases, is
described to contribute to the sequential activation of the ERK/MAPK pathway. In this
context, occludin may act as a pivotal signaling molecule, where its overexpression inhibits
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anchorage-independent growth and Raf-1-mediated transformation of salivary gland ep-
ithelial cells [29]. In addition, occludin extracellular loop 2 regulates the localization of
TGFÎ2, the TGF-β type I receptor responsible for inducing the dissolution of tight junctions
and acquisition of a mesenchymal phenotype [30]. Taken together, an intimate link appears
to bridge TJ proteins to the well-established signaling pathways in carcinogenesis. Indeed,
various TJ components crosstalk with a myriad of signaling pathways by directly modulat-
ing these cascades or through intermediate proteins, such as kinases and phosphatases. In
addition, TJ proteins conserve the ability to rapidly modulate their functional properties
and permeability in response to oncogenic stimuli. These diverse regulatory mechanisms
not only allow the fine tuning and transmission of external signals to the cell interior, but
also position TJ protein dynamics as a key aspect in cancer initiation and progression.

3. Tight Junction Proteins as Central Mediators of Cancer Hallmarks

The following section thoroughly examines the functional crosstalk between a variety
of TJ components and the myriad of signaling pathways that control cell dynamics, in
terms of survival, migration, epithelial-to-mesenchymal transition and stemness (Figure 2).
The role of TJ components in epigenetic cell regulation is also discussed.
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Figure 2. Schematic representation of examples of mechanisms mediated by members of the tight
junction protein family during carcinogenesis. (a) Tight junction proteins are identified as potential
mediators of apoptosis/anikiosis resistance. This is mainly mediated through the upregulation of
caspase-3, PARP and Bcl-2, in parallel to the modulation of Src and Akt phosphorylation, coupled
to β-catenin overexpression. (b) Tight junction proteins are also potential mediators of cancer stem-
like phenotype acquisition, where they contribute to self-renewal and dedifferentiation, as well as
therapeutic resistance and poor prognosis. In this setting, CLDN1 overexpression increases Notch
signaling (b1), in parallel to the induction of MMP-9 expression and p-ERK signaling (b2), as well as
through its non-canonical role in regulating Notch/PI3K/Wnt/β-cateninSer552 signaling. (c) Beside
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stemness, tight junction proteins are crucial regulators of cell migration and plasticity, where they
activate key signaling pathways related to epithelial-to-mesenchymal transition (EMT). Indeed,
CLDN1 was described to promote mesenchymal transformation by upregulating Slug and Zeb1
through the activation of the c-Abl-Ras-Raf-1-ERK1/2 signaling axis (c1). CLDN6 was also described
to promote EMT by increasing YAP1 nuclear translocation and enhancing its interaction with Snail1
(c2), as well as through the activation of the PI3K/Akt pathway, along with JAM-A. MarvelD3 has
been suggested to regulate migration through the JNK pathway (c3), and CLDN9 was shown to
promote invasive cellular behavior by activating the Tyk2/STAT3 signaling pathway (c4). TJ proteins
were also described to promote collective cell migration (c5). ALDH: aldehyde dehydrogenase;
CLDN: claudin; JAM: junction adhesion molecule; NCID: Notch intracellular domain; PARP: poly
(ADP-ribose) polymerase; TNF-α: tumor necrosis factor-alpha.

3.1. Modulation of Proliferation and Apoptosis Resistance in Cancer Initiation and Progression

Standing as the most fundamental trait of cancer cells, sustained proliferative sig-
naling is the first cancer hallmark among others to support tumor development and
progression [31]. Emerging evidence points toward TJ proteins as essential regulators of
cell proliferation through multiple mechanisms, including, but not limited to, microenvi-
ronment alteration, transcriptional regulation, and alteration in the cellular localization
of cell cycle control proteins [32]. In this context, knockdown of the tight junction pro-
tein 1 (TJP1) gene expression significantly decreased bladder cancer cells’ growth, via
dysfunction of the miR-455-TJP1 axis, where the latter suppressed TJP1 expression by
directly targeting its 3′-untranslated region [33]. Another microRNA, miR-497, was also
described to inhibit cell proliferation upon decreased CLDN2 expression. Mechanistically,
treatment with the HDAC inhibitors trichostatin A and sodium butyrate decreases the
stability of CLDN2 mRNA through the elevation of miR-497 [34]. CLDN2 expression
increased cellular proliferation, anchorage-independent growth and tumor growth in vivo,
potentially via the epidermal growth factor receptor (EGFR) transactivation, a key regulator
of colorectal carcinogenesis [35]. Furthermore, inhibition of cell proliferation in lung adeno-
carcinoma is partly related to the decrease in CLDN2 expression upon treatment with the
DNA methyltransferase inhibitor azacitidine (AZA) [34]. This is explained by the decrease
in NF-κB phosphorylation and binding to the promoter region of CLDN2 [36]. Besides,
CLDN2 retains its ability to complex with ZO-1, ZONAB, and cyclin D1, sequestering
them in the nucleus, which results in enhanced cellular proliferation in lung adenocarci-
noma [37]. Moreover, lipidoid-formulated CLDN3 siRNA intratumoral and intraperitoneal
injections significantly reduced cell proliferation in OVCAR-3 xenografts, and tumor bur-
den in MISIIR/TAg transgenic mice, respectively [38]. In addition, CLDN4 overexpression
increased MCF-7 cells’ proliferation, with tumor size in nude mice transplanted with
CLDN4-silenced MCF-7 cells being reduced [39].

Cell cycle regulators/effectors and apoptotic stimuli link cellular proliferation to apop-
tosis, with the dysregulation of this programmed cell death being one of the leading drivers
of tumorigenesis [40]. For example, it was shown that CLDN1 knockdown couples cycle
arrest to apoptosis due to the upregulation of β-catenin expression [41]. In this context,
the functional role of TJ proteins has been described in apoptosis, with their disruption
considered as an early event that initiates caspase activation and cell death through the inter-
action of occludin and CLDNs with the extrinsic apoptotic signaling pathway [42]. Indeed,
CLDN1 exhibits anti-apoptotic effects under tamoxifen or TNF-α treatment in MCF-7 cells,
with its knockdown increasing the expression of caspase-8 and cleaved poly (ADP-ribose)
polymerase (PARP) [41,43]. An anti-apoptotic function of CLDN1 was also corroborated
in nasopharyngeal carcinoma cell lines under serum deprivation or 5-fluorouracil treat-
ment [44]. Furthermore, caspase-3 activation was increased following treatment with the
apoptotic inducer staurosporine upon CLDN4 expression loss in ovarian tumor cells [45].
In line with these findings, CLDN4 overexpression reduced the rate of cell apoptosis [39].
On the other hand, resistance to anikois, an apoptosis subtype, is a critical prerequisite
for carcinoma progression [46]. CLDN1 expression confers resistance to anoikis in colon
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cancer cells. This is mainly dependent on the activation of Src, a tyrosine kinase identified
to promote anoikis resistance, with which CLDN1 was described to form a multiprotein
complex, along with ZO-1 [47]. This results in the modulation of Akt phosphorylation
and increased Bcl-2 expression. Furthermore, CLDN1-mediated anoikis resistance and Scr
involvement were also described in gastric cancer [48]. A potential role for β-catenin has
been described in CLDN1-regulated anoikis resistance in gastric cancer cells, with β-catenin
overexpression also reactivating Akt and Src signaling [48]. Interestingly, the contribution
of CLDNs to anoikis resistance, and their potential therapeutic druggable potential are
highlighted by the antitumor effect of the quinazoline-based doxazosin derivative DZ-
50 [49]. Indeed, this agent interferes with tumor growth and metastasis via sensitizing cells
to anoikis, by targeting key functional intercellular interactions, focal adhesions, and tight
junctions in prostate cancer. In this context, treatment with DZ-50 resulted in decreased
cell survival, migration and adhesion to extracellular matrix components, with one of the
primary downregulated targets of DZ-50 being CLDN11 [49]. It is worthy to mention that
a pro-apoptotic role of CLDNs and occludin has also been reported [42]. For example, the
number of apoptotic cells was decreased upon intratumoral injection of CLDN3 siRNA
into OVCAR-3 xenografts [38]. This differential functionality could be related to the experi-
mental model or the pathophysiological state in which these proteins were studied. Indeed,
similar pro- and anti-apoptotic roles were reported for other molecules, for instance nitric
oxide, where its dual contrasting apoptotic functions were dependent on its concentration,
flux and cell type [50].

Beside descriptive findings, the interrelation between tight junction dynamics and
intracellular signaling pathways that control cell cycles and apoptosis has not been fully ex-
plored. This highlights the unmet need to study the functional links between TJ modulation
and prominent pathways that regulate proliferation and apoptosis, to link extracellular sig-
nals to transcription factors in the nucleus. These mainly include the MAPK/Ras/Raf/ERK,
PI3K/Akt, Janus kinase/signal transducer and activator of transcription (JAK/STAT),
wingless-related integration site (Wnt), and TGF-β pathways [51]. However, this is com-
plexified by the functional crosstalk between these transduction cascades that not only
regulate cell death and proliferation, but also converge to modulate invasion, metastasis
and cellular plasticity, as discussed in the succeeding section.

3.2. Members of the TJ Protein Family as Regulators of Cell Migration and Plasticity

Abnormal TJ protein expression is linked to changes in cell plasticity and differential
induction or suppression of EMT, thus highlighting these proteins as major regulators of
invasion and metastasis [52]. In this context, CLDN1 expression was linked to enhanced
invasiveness and metastasis of multiple malignancies, such as gastric carcinoma [53]
and colon cancer [23,54]. Moreover, CLDN1 was described to promote mesenchymal
transformation in hepatocellular carcinoma (HCC) by upregulating Slug and Zeb1 [55],
and to enhance the invasive ability of oral squamous cell carcinoma by promoting the
cleavage of laminin-5 gamma2 chains via MMP-2 and membrane-type MMP-1 [56]. Indeed,
it is well conceived that CLDNs enhance cell invasion via the activation of MMPs [57]. In
particular, CLDN1 activation of MMP-2 is mediated through the stimulation of the protein
kinase C (PKC) signaling pathway in a panel of melanoma cell lines [58]. CLDN6 was also
shown to induce MMP-2 activation through CLDN1. The latter is described to interact
with the extracellular proMMP-2 through its ECLs, resulting in its activation by MMP-
14 in human adenocarcinoma gastric cancer cells [59]. CLDN2, on the other hand, was
described to increase the mRNA level and enzymatic activity of MMP-9 through elevating
Sp1 nuclear distribution in the human lung adenocarcinoma cell line A549 [60]. In turn,
proteolytically active MMPs not only degrade the ECM, but also form new cell–matrix and
cell–cell attachments and change the adhesive phenotype of tumor cells toward EMT [61].
Beside proteases, CLDN7 expression was described to regulate E-cadherin expression and
invasion in esophageal squamous cell carcinoma cells [62]. In addition, CLDN7 is required
to recruit EpCAM for TACE/presenilin2, resulting in the generation of the EpCAM-cleaved
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intracellular domain, EpIC. The latter is responsible of the induction of EMT-associated
transcription factor expression [63]. This broadens the conceptual framework for the
mechanisms by which TJ proteins modulate invasion.

On the other hand, although CLDN4 overexpression increased the migration of breast
cancer cells [39], the invasiveness and metastatic potential of pancreatic cancer cells was
shown to be decreased upon CLDN4 expression [64]. In addition, CLDN7 downregulation
may promote invasion and metastasis of colorectal cancer [65], and was positively corre-
lated with the depth of invasion, lymphatic vessel invasion and lymph node metastasis
in esophageal squamous cell carcinoma [66]. This positive correlation was also described
for venous invasion and liver metastasis in the context of colorectal cancer [67] and distant
metastases in high-grade serous ovarian carcinoma patients [68]. MarvelD3 was transcrip-
tionally downregulated during mesenchymal transition in pancreatic cancer cells [69],
whereas its expression inhibits EMT, along with NF-κB pathway inactivation, a main reg-
ulator of EMT and cell metastasis [70]. In line with these findings, MarvelD3, a dynamic
regulator of the MEKK1–c-Jun NH2-terminal kinase (JNK) pathway, was described to
reduce pancreatic cancer cells’ tumor formation in vivo and Caco-2 cells’ proliferation and
migration. Indeed, MarvelD3 recruits MEK kinase 1 (MEKK1), an MAPK kinase, leading to
the downregulation of JNK phosphorylation. Subsequently, this inhibits JNK-mediated
transcriptional mechanisms that regulate cell behavior, including migration [71]. This high-
lights the fact that the altered expression of TJ proteins in various cancer types and tissues
might differentially modulate cell migration, invasion and metastasis, with a potential
disparity in transduction pathway activation. Despite this, it is well reported that these
TJ proteins act as a pivot for intracellular signaling pathways that modulate metastasis in
several malignancies [52], as detailed in the following section.

TGF-β-dependent pathway signaling. Among the pathways established to induce
EMT, canonical SMAD-dependent TGF-β signaling is described to be a major driver [72].
In fact, TGF-β-induced cell migration is linked to the induction of CLDN1 expression
in ovarian cancer cells [73]. Additionally, the RNA-binding motif protein 38 (RBM38), a
pivotal mediator of TGF-β-induced EMT, positively regulates ZO-1 transcription via direct
binding to AU/U-rich elements in its mRNA 3′-UTR in breast cancer [74]. On the other
hand, SMAD2 suppresses CLDN6 expression through DNMT1-mediated methylation of
CLDN6 promoter, thus promoting cell migration and invasion in breast cancer [75]. Beside
direct modulation, CLDNs can contribute to the release of active TGF-β, thus enhancing
EMT. For example, CLDN1 activates the membrane-type 1 matrix metalloproteinase, as
mentioned previously [56], which is responsible for the proteolytical release of TGF-β
from the subendothelial matrix [76]. Similarly, TGF-β1, its receptor, and receptor-mediated
signaling are partly activated by MMP-2, also induced by CLDN1 [77].

Ras-Raf-MEK-ERK and PI3K/Akt signaling. TGF-β-induced EMT can also occur
through non-SMAD pathways, for instance Ras-Raf-MEK-ERK and PI3K/Akt pathways [72].
The c-Abl-Ras-Raf-1-ERK1/2 signaling axis was shown to be activated upon CLDN1 ex-
pression, with the subsequent upregulation of Slug and Zeb1 and EMT induction in Chang
cells [55]. In this context, PKCα regulated CLDN1 expression via Snail- and MAPK/ERK-
dependent pathways during EMT in human pancreatic cancer, shedding the light on the
potential therapeutic status of PKCα inhibitors [78]. In line with these findings, Snail, but
not Zeb1 nor Twist1, was also highlighted for its CLDN6-mediated invasive abilities in
gastric cancer. Indeed, CLDN6 increased YAP1 nuclear translocation, which enhanced the
interaction between YAP1 and Snail1 to promote EMT [79]. Furthermore, Snail enhanced
the migration of squamous cell carcinoma by inducing the expression of CLDN11 through
the tyrosine-mediated phosphorylation of the latter, which activated Src and suppressed
RhoA activity [80]. CLDN6 also enhanced endometrial carcinoma cell migration via the
PI3K/AKT/mTOR signaling pathway [81]. Junctional adhesion molecule-A (JAM-A) led to
EMT via the activation of the PI3K/Akt pathway in human nasopharyngeal carcinoma [82].
On the other hand, expression of CLDN1 inhibited the migration potential of human os-
teosarcoma cells through the inhibition of the Ras/Raf/MEK/ERK signaling pathway [83].
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Furthermore, CLDN3 and CLDN4 impeded EMT in ovarian carcinoma through the ac-
tivation of the PI3K/Akt pathway [84], in line with CLDN7-mediated inhibition of cell
migration and invasion through the ERK/MAPK signaling pathway in human lung cancer
cells [85]. In parallel, CLDN18 suppressed human lung adenocarcinoma cell motility by
inhibiting the PI3K/PDK1/Akt signaling pathway [86]. In addition, it has been shown
that occludin downregulation in the context of Ras-Raf-driven epithelial transformation
might play an essential role in mediating the loss of the structure and function of epithelial
TJs through the MEK-ERK signaling pathway [29]. This differential regulation of cell
behavior highlights the context-dependent role of TJ proteins as inducers or inhibitors of
EMT in carcinogenesis.

Wnt/β-catenin/T-cell and lymphoid enhancer (TCF-LEF) signaling. Dysregulation of
Wnt/β-catenin signaling can trigger the induction of EMT, which could lead to metastasis.
This is mainly mediated by β-catenin nuclear translocation and binding to TCF-LEF factors,
which activates the transcription of target genes with a pro-invasive expression profile [87].
Smad4 is a central intracellular signal transduction component of the TGF-β family that
was described to mediate invasion suppressive effects in colon cancer via the modulation of
β-catenin/TCF-LEF activity, resulting in the repression of CLDN1 transcription [88]. This
is further confirmed by the positive correlation of CLDN1 expression levels with β-catenin
levels in gastric cancer [89]. Furthermore, CLDN3-modulated EMT is mediated through the
regulation of the Wnt/β-catenin signaling pathway in lung squamous cell carcinoma [90],
a role also shared by CLDN4 [91]. CLDN7 expression is significantly correlated with
lymph node metastasis in salivary adenoid cystic carcinoma, where its expression regulates
metastasis also through the modulation of Wnt/β-catenin signaling [92].

STAT signaling. The activity of a multitude of master EMT transcription factors that
function to stimulate rapid transitions between epithelial and mesenchymal phenotypes
is regulated by STAT3 [93]. CLDN9 was shown to promote the invasive behavior of
hepatocytes in vitro, by activating the Tyk2/STAT3 signaling pathway [94]. On the other
hand, Tyk2/STAT1 signaling was described in CLDN12-induced EMT in lung squamous
cell carcinoma [95].

Beside signaling pathways, the localization of tight junction proteins is also altered
during EMT. Enhanced non-junctional CLDN1 expression, e.g., in the nucleus or cytoplasm,
was detected in colon carcinomas and metastatic lesions, in contrast to cell membrane-
restricted staining in normal colonic mucosa [23]. It is worth mentioning that besides single
tumor cell metastasis, collective cell migration is also described as a fundamental process
where migrating clusters maintain cell-to-cell junctions and exhibit a higher invasive
capacity and therapeutic resistance compared to single cell migration [96]. In this context,
the aberrant expression of CLDN1 was shown to support collective cell migration [97].
In addition, CLDN11 was described to prompt the formation of circulating tumor cell
clusters through the activation of a Snail–CLDN11 axis in head and neck cancers [80]. In
line with these findings, the overexpression of CLDN11 and occludin was described to
enhance the collective migration of peritumoral cancer-associated fibroblasts via TGF-β
secretion [98,99].

Whether CLDNs retain the junctions between cancer cells or form cell adhesion
complexes to enhance the metastatic efficiency remains unclear. Further studies are needed
to decipher the additional aspects regarding the mechanisms by which TJ proteins modulate
the modes of EMT-mediated cancer migration. This can be further clarified by coupling the
study of the altered signaling pathways to the localization of the dysregulated TJ proteins.
Importantly, and in the light of the heterogenic roles of TJ components at different stages
of the metastatic cascade, context-dependent and individual assessment of these proteins’
role could reveal novel therapeutic targets. As many of the migration and EMT studies
cited above have been conducted in conventional cell culture systems, the adoption of
experimental models that reflect better physiological or pathological characteristics raises a
crucial unmet need.
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3.3. Functional Role of Tight Junction Proteins in Cancer Cell Stemness

With their first identification in 1994, cancer stem cells (CSCs) emerged as a critical
cancer subpopulation subset endowed with tumor-initiating properties, self-renewal abili-
ties and multi-lineage differentiation, opening the door toward tumor heterogeneity and
therapeutic resistance [100].

A growing body of evidence points toward the important role of tight junction pro-
teins, in particular CLDNs, in cancer stem-like cell biology [101]. In this setting, claudin
functions are regulated at various levels, and by distinct mechanisms. cDNA microarray
analysis identified CLDN1 as one of the most significantly upregulated genes in ovarian
cancer-initiating cells [102]. Moreover, CLDN1 overexpression was shown to induce ded-
ifferentiation in primary colon adenocarcinoma [23]. CLDN2 promoted the self-renewal
of colon cancer cells in vitro, as well as colorectal cancer self-renewal in vivo, along with
increasing the population of ALDHHigh stem-like cells and favoring phenotypic transi-
tions from ALDHLow toward ALDHHigh subpopulations [99]. Furthermore, CLDN3 was
uncovered as a positive regulator of cancer stemness in non-squamous non-small cell
lung carcinoma, where stemness suppression and chemoresistance reversal were observed
upon CLDN3 transcriptional activity downregulation [103]. In contrast, CLDN1 depletion
increased the invasive and CSC-like properties of hepatocellular carcinoma cell lines [104].
In line with these findings, CLDN7 deficiency was shown to confer stemness properties
and to promote tumor-initiating cell features in colorectal cancer stem cells [22].

CSC regulation is complex and multiple intracellular signaling pathways and extracel-
lular factors have been shown to be implicated. Of those, the Hedgehog (Hh) and Notch
pathways are highlighted as key signals in this specific cell phenotype [105].

Hedgehog pathway. As an evolutionarily conserved pathway that is essential for cell
fate determination, the aberrant activation of the Hh pathway serves as a crucial asset for
CSC function and maintenance during tumorigenesis [106]. In this context, the expression
of CLDN3, CLDN5, occludin, and JAM-A was increased in response to the activation of
Hedgehog signaling. In contrast, treatment with cyclopamine, an Hh pathway inhibitor,
decreased the expression of these proteins [107]. Cyclopamine also downregulated CLDN4
and occludin expression in colon cancer stem cells [108]. Importantly, CLDN1 is pinpointed
as a direct transcriptional target of Hh pathway activation in breast cancer, as evidenced
by the correlation between membranous CLDN1 expression and Hh paracrine pathway
activation [109].

Notch pathway. Beside the Hh pathway, CLDN1 was identified as one of the dy-
namic regulators of Notch signaling [25]. CLDN1 overexpression increased Notch and Wnt
signaling at the transcriptomic level, as evidenced by an increase in Hes1 and a decrease
in Math1 expression in a mouse colon cancer model [110]. Indeed, CLDN1 upregulation
activates Notch signaling in parallel to the induction of MMP-9 expression and p-ERK
signaling, thus interfering with cellular differentiation, and enhancing susceptibility to
mucosal inflammation and hyperplasia [25]. Beside the mentioned mechanisms, upregu-
lated CLDN1 expression was shown to promote Notch signaling through its noncanonical
role in regulating Notch/PI3K/Wnt/β-cateninSer552 signaling, which underlies the in-
duction of colitis-associated cancer [26]. Interestingly, this CLDN1/Notch axis could be
therapeutically targeted by CLDN1-specific monoclonal antibodies, with the latter result-
ing in the inhibition of Notch cleavage in HCC cell-based and CDX animal models [111].
Moreover, the Notch signaling pathway was identified as one of the pathways that is
regulated by CLDN5 in the context of lung cancer brain metastasis [112]. In addition,
upregulated Notch expression in holoclones was associated with CLDN7 expression in
colon adenocarcinoma [113].

Miscellaneous pathways. Other pathways are also implicated in CSC biology [114].
For example, the CLDN2-dependent regulation of stem-like cell self-renewal is mediated
through the activation of YAP and downstream repression of miR-222-3p [99]. Moreover,
indirect protein interaction was reported between CLDN7 and SOX9, a vital player in
CSC self-renewal and a master regulator of several stem cell markers [22]. The human
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growth hormone (hGH)-STAT3-CLDN1 axis was described to be responsible for invasive
and CSC-like properties in HCC [104]. Furthermore, CLDN1 regulation during ovarian
cancer-initiating cell proliferation and invasion was shown to be mediated by miR-155,
where the endogenous mature form of the latter may inhibit cancer-initiating cell growth
via reducing CLDN1 expression by targeting its mRNA on the 3’-UTR [115].

Beside the potential role of TJ proteins in the regulation of CSC cell biology, a subse-
quent correlation with poor prognosis, therapeutic resistance and relapse could be specu-
lated, all of which being key characteristics of CSCs [100]. Indeed, multiple tight junction
proteins were highlighted as potential biomarkers in the prognostic outcome of cancer
patients. For example, elevated JAM-A expression is significantly correlated with poor
prognosis in breast cancer patients [116]. Partitioning defective protein 3 (Par3) and ZO-1
clustering on the cell membrane are indicators of poor prognosis in lung squamous cell
carcinoma [117]. Moreover, CLDN1 is correlated with a poor prognosis of oral squamous
cell carcinoma [118] and lung adenocarcinoma [119]. The poor prognosis of gastric and
breast cancer patients is associated with CLDN4 overexpression, in line with the poor
prognostic value of CLDN7 in gastric cancer [120–122].

On the other hand, the development of therapeutic resistance is a major challenge
facing cancer therapy, in which CSCs play an important role [100]. Various mechanisms are
employed by TJ proteins to mediate chemoresistance, including their effects on apoptosis
and autophagy, as well as on drug transporters. In this setting, cisplatin resistance in
non-small cell lung cancer was shown to be promoted by CLDN1-induced activation of
autophagy via the activation of ULK1 phosphorylation [123]. Doxorubicin resistance was
also reported in lung adenocarcinoma cells, where CLDN1 is speculated to inhibit the pene-
tration of anticancer drugs into the target area [124]. CLDN4 knockdown increased cellular
accumulation and sensitivity to cisplatin, pointing towards the potential involvement of
CLDN4 in platinum resistance in ovarian cancer [125], in line with the enhanced sensitivity
toward carboplatin and paclitaxel upon CLDN1 knockdown in ovarian cancer cells [126].
This could be partly explained by the interactions of some CLDNs with the microtubule
network, notably tubulin, resulting in the re-shaping of its structure and polymerization
toward a reduced apoptotic response to the microtubule-targeting paclitaxel [127]. Alter-
natively, relapse-free survival (RFS) was significantly shorter in high versus low CLDN2
or CLDN5 expression in breast cancer [128,129], with high CLDN4 expression also being
associated with worse RFS [121]. Furthermore, the substantial association between high
CLDN2 expression in cancer-associated fibroblasts and shorter survival in 5-fluorouracil-
and oxaliplatin-treated metastatic colorectal cancer patients has been reported [130]. In
addition, cytoplasmic CLDN3 and CLDN7 expression was associated with poor RFS in
triple-negative breast cancer [131]. In the context of HCC, CLDN10 expression was un-
derlined as a molecular marker of disease recurrence after curative hepatectomy [132].
Nevertheless, various studies have reported a negative correlation between tight junction
protein expression and poor prognosis, therapeutic resistance, or disease relapse [101].
Furthermore, contradictory findings were also reported for the same CLDN molecule.
For example, in renal cell carcinoma, CLDN1 expression was correlated with shortened
disease-specific patient survival; however, an opposite finding was described for papillary
renal cell carcinoma [133]. This emphasizes the heterogenous nature of tumors and the
potential differential expression pattern of tight junction proteins during distinct stages of
tumor development, as well as cellular differentiation. This requires a careful assessment
of these molecules, as the interplay between cancer stem cell enrichment and TJ proteins
can reveal potential clinical perspectives of the latter as clinicopathologic parameters or
prognostic factors.

3.4. TJ Proteins and Epigenetic Regulation in Cancer

In a recent update published in 2022, Hanahan proposed “nonmutational epigenetic
reprogramming” as a new distinctive enabling characteristic that expedites the acquisition
of cancer hallmark capabilities during tumor development and progression [134], high-
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lighting the importance of these modifications in oncogenic transformation. In this setting,
various epigenetic mechanisms are reported to regulate tight junction protein expression in
favor of malignant transformation.

Although playing an essential role in biologic processes, aberrant promoter methyla-
tion is extensively associated with carcinogenesis [135]. The CpG island hypermethylation
of occludin promoter enhances the tumorigenic, invasive, and metastatic properties of
cancer cells [16]. JAM-3 is frequently downregulated in colorectal cancer through DNA
methylation [136], with the latter also silencing CLDN1 [137]. CLDN3 promoter hyper-
methylation is described in HCC and advanced gastric adenocarcinoma [138,139], as well
as the hypermethylation of CLDN11 promoter in melanomagenesis [140]. On the other
hand, CLDN4 upregulation during early gastric tumorigenesis is strongly associated with
DNA hypomethylation, along with decreased repressive H3K27me3 and H4K20me3 hi-
stone marks, and an increased active H3K4me3 and H4Ac histone marks [141]. CLDN5
is also identified as an aberrant methylation target in pancreatic carcinoma [142], as well
as CLDN6 in breast and esophageal squamous cell carcinoma [143,144], and CLDN7 in
breast ductal [145] and colorectal carcinoma [146]. Interestingly, differential CLDN4 ex-
pression reported as CLDN4 overexpression in differentiated carcinomas compared to
the downregulation in invasive/high-grade bladder tumors was associated with a low
versus high level of CLDN4 methylation, respectively [147]. This is also noted with CLDN1,
with an increased promoter methylation-expression pattern in recurrent ovarian cancer,
compared to the primary cancer [126]. In addition, CLDN1 promoter CpG island methyla-
tion was relatively frequent in estrogen receptor-positive breast cancer, but not estrogen
receptor-negative samples [148]. This could point towards a complex and differential
epigenetic-mediated expression pattern of TJ proteins in different tumor stages and grades,
highlighting their potential as promising prognostic markers. In fact, CLDN1 has been
described as a strong prognostic indicator of disease recurrence and poor patient survival
in stage II colon cancer [149]. Furthermore, the combined low expression of CLDN3, -4, -7
and -8 in metaplastic and basal-like breast cancer is proposed to be a strong predictor of
disease recurrence [150].

Epigenetic modulation of tight junction proteins is best demonstrated through treat-
ment with epigenetic modulators/inhibitors. Indeed, AZA, a DNA methylation inhibitor,
was found to downregulate CLDN2 expression [34]. Interestingly, in this context, epigenetic
modulation could intersect with intracellular signaling pathways, in addition to regulating
gene transcription. For instance, it was reported that CLDN2 is downregulated through the
inhibition of Akt and NF-κB phosphorylation by AZA [34]. Indeed, interactions between
the epigenetic machinery and various signaling pathways, including MAPK, Notch, Wnt,
JAK/STAT, NF-κB and JNK pathways, have been described [151]. It could be of interest to
link epigenetic modifications to signaling pathways in order to broaden our understand-
ing of the complex, yet intersecting, mechanisms by which a cell induces transcriptional
changes in response to external and internal signals during carcinogenesis. In this context,
special attention should be paid to the dynamic nature of the tumor microenvironment, as
it is correlated with the epigenetic re-programming and the activation of tumor-promoting
signaling cascades by harboring various hormones and growth factors. For example,
estrogen stimulation upregulates CLDN1 expression in cervical adenocarcinoma via G
protein-coupled receptor 30 through ERK and/or Akt signaling [152].

Taken together, signaling mediated by members of the TJ protein family plays a key
role in the pathogenesis of solid tumors and is associated with tumor initiation, progression,
and metastasis. These functional effects correlate with differential subcellular delocalization
and expression patterns. However, the complexity and plasticity associated with the
functions of TJ proteins in the mediation of tumorigenesis go beyond signaling pathway
perturbations. This includes the loss of membrane polarity via tight junction abnormalities,
increased paracellular permeability and junctional remodeling. The resulting dysregulation
of this machinery can have deleterious effects not only on cellular homeostasis, but also
on the interactions with the extracellular matrix. Coupling the perturbations in cell-to-cell
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adhesion to adhesion-independent signal transduction perturbations will broaden our
understanding of how TJ molecules contribute to cancer pathogenesis.

4. Members of the Tight Junction Protein Family as Targets for Cancer Treatment

Considering the critical role of tight junctions in carcinogenesis, these proteins are cur-
rently perceived as potential therapeutic targets, with multiple approaches being employed,
ranging from monoclonal antibodies (mAbs) and targeting molecules, to therapeutic gene
delivery [13].

Antibodies that target the TJ components have been recently described, with their
pharmaceutical activities being explored in experimental and clinical settings. Importantly,
this therapeutic targeting is not limited to junctional proteins, but has also been applied to
exposed TJ proteins located outside the TJs. Overexpression of non-junctionally exposed
CLDN1 has been described at the basolateral membrane of human hepatocytes during
advanced liver fibrosis and hepatocellular carcinoma, where CLDN1 mediates key reg-
ulatory cell functions, such as differentiation, proliferation, and migration, by recruiting
signaling proteins in response to extracellular stimuli [153]. Non-junctionally exposed
CLDN1 serves as a cell entry factor of HCV—a major cause of liver cancer worldwide [154].
Interestingly, treatment with humanized monoclonal antibodies (mAbs) that selectively
target the extracellular loop 1 of non-junctionally exposed CLDN1 suppressed liver can-
cer growth and EMT in patient-derived ex-vivo models and reprogrammed the tumor
microenvironment in patient-derived HCC spheroids, an effect also confirmed in in vivo
proof of concept CDX and PDX models [155]. Inhibition of cancer growth and invasion
was mainly mediated through interference with oncogenic signaling pathways, notably the
Notch cascade [111]. In addition, these highly specific mAbs demonstrated significant and
robust antitumoral effects in vivo across cell line-derived and patient-derived xenograft
models for intra- and extrahepatic cholangiocarcinoma [156]. Safety studies on non-human
primates showed no detectable adverse events even at high steady-state concentrations,
hence providing a preclinical proof-of-concept for CLDN1-specific mAbs for liver cancer
prevention and treatment [157]. Collectively, these data provide an opportunity for the clin-
ical development of CLDN1-specific antibodies for liver cancer. Given the high expression
of CLDN1 in other solid tumors [110,158,159], CLDN1-targeting approaches may be used
to treat a broad range of solid tumors. On the other hand, treatment with the human–rat
chimeric IgG1 1A2 CLDN2-targeting antibody attenuated fibrosarcoma tumor growth
without remarkable side effects [160]. The anti-CLDN4 extracellular domain antibody 4D3
synergistically enhanced the antitumoral effects of 5-fluorouracil or the anti-EGFR antibody
C225 (cetucimab) in colorectal cancer [161]. KM3900, a monoclonal antibody that recog-
nizes the extracellular loop 2 of CLDN4, induced antibody-dependent cellular cytotoxicity
and complement-dependent cytotoxicity in vitro, while inhibiting pancreatic and ovarian
tumor growth in SCID mice in vivo [162]. Similar anti-tumor activity was also noted upon
treatment with KM3907, a dual-targeting monoclonal antibody against the extracellular
loop 1 of CLDN3 and CLDN4 [163]. The anti-CLDN6 antibody IMAB027, also known as
ASP1650, has been studied in women with recurrent advanced ovarian cancer [164], and
men with incurable platinum refractory germ cell tumors [165]. The CLDN18.2-targeting
antibodies zolbetuximab (IMAB362; claudixmab) and NBL-015 were also studied in gastro-
esophageal cancer [166] and in patients with advanced solid tumors [167], respectively.
Notably, NBL-015 was granted the status of orphan-drug designation (ODD) by the U.S.
Food and Drug Administration (FDA) for the treatment of pancreatic and gastric cancers,
including cancer of gastroesophageal junctions [167]. The ODD status has also been granted
to I-Mab’s TJ-CD4B, a first clinical-stage bispecific antibody that binds to CLDN18.2 and
the co-stimulatory molecule 4-1BB on T cells to exert a tumor-killing effect in the setting of
gastric cancer [168]. Of note, the anti-JAM-C mAb H225 abolished mantle cell lymphoma
cell engraftment in a xenograft model [169]. An injection of anti-JAM-A mAb 6F4 signifi-
cantly inhibited the growth of epidermoid carcinoma xenograft models of MCF-7 and A431
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cells [170]. Data that summarize the current results and status of anti-CLDN antibodies in
clinical trials are reviewed in Table 1.

Table 1. Anti-CLDN antibodies and their therapeutic effects in clinical trials.

Antibody Target Clinical Trial Results References

IMAB027
(ASP1650) Extracellular loop 2 of CLDN6

Safe and well tolerated in women with
recurrent advanced ovarian cancer; well
tolerated but lacked efficacy in male patients
with relapsed refractory germ cell tumors

[164,165,171]

BNT211 CLDN6
Multi-center open-label trial demonstrated a
favorable safety profile at the doses tested
with encouraging signs of efficacy

[172]

IMAB362
(claudiximab; zolbetuximab)

CLDN18.2
(mouse–human chimeric IgG1

antibody)

- Multiple open-label phase II clinical
trials demonstrated inhibition of tumor
growth by IMAB362 monotherapy or
combination therapy in
gastro-esophageal cancer. Multiple
other phase II and III trials are ongoing

- Phase III clinical trial demonstrated
significant progression-free survival in
locally advanced unresectable or
metastatic gastric or gastroesophageal
junction adenocarcinoma

[166,173]

NBL-015 CLDN18.2
(humanized antibody)

Open-label, multi-center, dose-escalation
phase I clinical study in patients with
advanced solid tumors started in 2021

[167]

Moreover, engineered Clostridium perfringens enterotoxin (CPE)-related molecules,
including toxin-conjugated CPE fragments, have demonstrated antitumor effects. For
instance, an injection of a CLDN4-targeting molecule, consisting of the fusion of the
C-terminal fragment of CPE (C-CPE) and the protein synthesis inhibitory factor (PSIF)
derived from Pseudomonas aeruginosa exotoxins, reduced tumor growth in vivo [174].
Another fusion molecule that targets CLDN4 in ovarian cancer cells was also described,
with CPE being fused to TNF at its NH(2)-terminal end [175]. Targeted gene therapy of
CLDN3 and/or four overexpressing colon cancer cell lines was also described through
the use of an optimized CPE-expressing vector that functions as targeted suicide gene
therapy, with the latter resulting in rapid and effective tumor cell killing in vitro and
in vivo [176]. Nevertheless, CPE immunogenicity and potential toxicity might limit its
clinical applications [177]. This could be overcome with local administration, or by adopting
alternative technologies, such as the development of monoclonal antibodies that target these
TJ proteins, as mentioned above. Other treatment modalities for cancer immunotherapy
include the incorporation of a panel of engineered CLDN6 variants into the membrane of
retrovirus-derived virus-like particles (VLPs), eliciting complement-dependent cytotoxicity
in solid tumors [178]. The latter was also noted upon the administration of a combination
of the measles virus and the CLDN6 tumor vaccine [179].

Of note, the anti-JAM-C antibody antitumoral effect was mediated through the in-
hibition of ERK1/2 phosphorylation [169]. Superior attention to the signaling pathways
implicated needs to be granted to thoroughly understand the molecular mechanism of
action that underlies the effectiveness of those therapeutic tools. In particular, this could
allow the potential repositioning of some of these therapeutic antibodies in the setting of
uncurable or resistant malignancies.
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5. Conclusions and Perspectives

A large body of research in the last decade has shown that TJ proteins are not only
statically expressed in tight junctions to contribute to barrier function, but are dynami-
cally involved in a wide array of cellular processes that regulate proliferation, migration,
plasticity, and differentiation, all of which are central to cancer initiation and progression.
The differential expression of TJ proteins in cancer, combined with the gain and loss of
functions, has unveiled their important functional role in carcinogenesis in a tissue- and
context-dependent matter, as well as during diverse stages of cancer progression, including
invasion, metastasis, or relapse. Pre-clinical and clinical studies that target several members
of the TJ protein family have reported the targetable properties of these molecules, as
well as their safety and efficacy. Furthermore, recent clinical studies using monoclonal
antibodies have demonstrated that TJ proteins are a valuable target to improve the outcome
of solid tumors.
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