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Abstract: One of the traits of cancer cells is abnormal DNA methylation patterns. The idea that age-
related epigenetic changes may partially explain the increased risk of cancer in the elderly is based
on the observation that aging is also accompanied by comparable changes in epigenetic patterns.
Lineage bias and decreased stem cell function are signs of hematopoietic stem cell compartment aging.
Additionally, aging in the hematopoietic system and the stem cell niche have a role in hematopoietic
stem cell phenotypes linked with age, such as leukemia and lymphoma. Understanding these changes
will open up promising pathways for therapies against age-related disorders because epigenetic
mechanisms are reversible. Additionally, the development of high-throughput epigenome mapping
technologies will make it possible to identify the “epigenomic identity card” of every hematological
disease as well as every patient, opening up the possibility of finding novel molecular biomarkers
that can be used for diagnosis, prediction, and prognosis.

Keywords: aging; epigenetics; epigenetics clock; epigenetics drift; hematopoiesis; leukemia; lymphoma

1. Introduction
1.1. Epigenetics of Cancer in Relation to Aging

The natural biological process of aging is characterized by a steady loss in tissue and
organ function. Another definition of it is the inescapable, time-dependent deterioration in
the structural integrity of organ physiology. As consequences of the activity of environmen-
tal risk factors like smoking, chemicals, and stress, progressive modification of substances
at the molecular level causes a rise in the risk of many chronic diseases and disabilities [1].

One of the main risk factors for the onset and advancement of cancer is aging, along
with accompanying comorbidities like obesity, smoking, drinking alcohol, and telomere
shortening. As a result, there is a close connection between aging and cancer. The former is
thought to be one of the major causes of the latter, and cancer is regarded as an age-related
disease because its incidence rate increases with increasing age: in the United States, people
55 and older account for 80% of all cancer cases [2]. Additionally, individuals with older
age typically have inferior performance status and a worse prognosis for certain cancers.

In some instances, it is also discovered that aging and cancer have similar mechanisms.
Genomic instability, telomere attrition, proteostasis loss, diminished nutrition sensing,
altered metabolism, and epigenetic alterations are a few examples of these pathways [3,4].
Because cancer and aging are closely related, it is apparent that epigenetic factors influence
both diseases’ entire development and course. Numerous external factors, such as the
environment, pollution, lifestyle choices, and the type and amount of food consumed, have
an impact on different epigenetic pathways. They are also thought to be essential for gene
expression. Recent genome-wide epigenetic studies have uncovered specific epigenomic
characteristics that are shared by cancer and aging [5,6]. There is mounting evidence

Cells 2023, 12, 2392. https://doi.org/10.3390/cells12192392 https://www.mdpi.com/journal/cells

https://doi.org/10.3390/cells12192392
https://doi.org/10.3390/cells12192392
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0001-6156-8239
https://orcid.org/0000-0002-0698-1781
https://doi.org/10.3390/cells12192392
https://www.mdpi.com/journal/cells
https://www.mdpi.com/article/10.3390/cells12192392?type=check_update&version=1


Cells 2023, 12, 2392 2 of 22

that senescent cells may contribute to oncogenesis, given that the risk of developing
cancer increases with aging where senescent cells are accumulating [7]. Senescence does
represent a potent tumor suppressor mechanism imputable to the permanent cell cycle
arrest. Furthermore, it has been shown that senescent human fibroblasts can induce tumors
in animals and favor the stimulation of premalignant and malignant epithelial cells to grow
in culture over normal epithelial cells [8]. In addition, it is possible that the senescence-
associated secretory phenotype (SAPS), a phenotype linked to senescent cells, promotes
tumor cell development, invasion, and metastasis, and tumor vascularization by secreting
inflammatory cytokines, immune modulators, and growth factors [9]. Numerous studies
have revealed relatively substantial similarities between cancer cells and senescent cells in
terms of DNA methylation. Both DNA methylation and chromatin modifications exhibit
this overlap. In actuality, genetic instability and the repression of tumor suppressor genes,
which are typically present in cancer cells, are mechanistically linked with the characteristic
scenario of decreasing genome-wide DNA methylation and the presence of site-specific
DNA hypermethylation identified in senescent cells, respectively [10] (Figure 1).
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Figure 1. Aging-related changes, including telomere shortening, proteostasis loss, and DNA hy-
pomethylation, promote the senescence-associated secreted phenotype (SASP) and, in turn, the
proliferation of neoplastic cells.

It is well known that aging causes changes in genomic DNA methylation [11]. While
certain alterations are crucial to development, others happen randomly and seem to have
no biological purpose [12]. These molecular changes, often referred to as epigenetic drift,
are being studied since it has been suggested that they may be responsible for several
age-related illnesses [13]. A collection of gene promoters in blood that get hypermethylated
with aging has been discovered in several recent investigations employing 1.5 K and 27 K
Illumina methylation arrays [14]. Interesting studies have also revealed that many of these
DNA sequences are hypermethylated in cancer and are enriched in repressive histone
marks like H3K9me3 and H3K27me3 [15,16].
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However, the recent invention of epigenetic clocks [17] has given us a new perspective
with which to investigate aging-associated epigenetic dysregulation and its link with
carcinogenesis, in addition to the canonical hyper- and hypomethylation indicators of
aging and cancer.

Numerous indicators, risk factors for diseases, and health outcomes have been linked
to epigenetic clocks, each of which captures a different facet of the aging process. These
clocks can be separated into intrinsic and extrinsic groups. Extrinsic aging is affected by
cell type proportion and environmental influences, but intrinsic aging is independent of
cell type and partially driven by cellular division [18].

Epigenetic clocks are mathematical methods that use observed DNA methylation
levels at various CpG sites in a subject’s genome to forecast their chronological age with
high accuracy [17]. These algorithms capture a combination of chronological and biological
age, the latter being a measure of an individual’s “healthiness” in terms of their risk of
developing age-associated adverse outcomes [19]. There is now convincing evidence of
the association between changes in the predictions made by epigenetic clocks and lifestyle
factors, disease—including cancer—or outright mortality [20,21].

For instance, supercentenarian or long-lived subjects exhibit younger epigenetic ages
in addition to reduced incidence or delayed start of illnesses [22,23].

Additionally, there is emerging evidence that human healthcare interventions based
on pharmaceutical or lifestyle choices might rejuvenate the epigenetic clock [24–26].

The results of a recent study that examined the genome-wide DNA methylation
status in newborns, middle-aged people, and centenarians supported those from the
methylation arrays and demonstrated that overall hypomethylation, which primarily
affects repetitive DNA sequences, is linked to aging [15]. Bork et al. used 27 K methylation
arrays to examine the DNAm status of mesenchymal stem cells (MSCs) obtained from
young and old donors, and discovered similar DNA methylation changes over time during
prolonged in vitro culture and in vivo aging [27]. However, some studies have examined
DNAm during aging in human adult stem cells and, using the same methylation arrays,
found hypomethylation of differentiation-associated genes as well as de novo methylation
events suggesting epigenetic alterations in older hematopoietic progenitor cells [28]. The
functional reduction of hematopoietic stem cells (HSCs) as people age has been linked
to several genome-wide changes in DNA methylation, according to recent studies in
mice [29,30].

A different study found 18,735 hypermethylated and 45,407 hypomethylated CpG
sites connected to aging when DNA methylation profiling of MSCs taken from people
aged 2 to 92 years was performed [31]. Hypermethylated sequences were enriched in
chromatin repressive markers, just like in differentiated cells. The active chromatin mark
H3K4me1 was significantly overrepresented at hypomethylated CpG sites in stem and
differentiated cells, demonstrating that this is a cell type-independent chromatin signature
of DNA hypomethylation throughout aging. In MSCs and differentiated cells, analysis of
scedasticity revealed that interindividual variability of DNA methylation increased with
aging, opening up a new route for the detection of DNA alterations across time. Genetically
identical individuals’ DNA methylation profiles revealed that nongenetic as well as genetic
factors affected DNA methylation propensity and scedasticity. These findings show that
the DNA sequence, cell type, and chromatin environment all play important roles in the
dynamics of DNA methylation during aging.

1.2. Mechanisms of Aging- and Cancer-Related Epigenetic Drift

As previously mentioned, the term “epigenetic drift” refers to all alterations that
have a broad impact on the epigenome [32]. Age-related changes in the epigenome and
transcriptome landscape were demonstrated by Benayoun et al. to induce inflammatory
responses, primarily interferon-related ones, in a variety of tissues [33]. Peripheral blood
mononuclear cells from individuals of various ages have been used to study epigenetic
drift in humans [34,35].
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In order to determine the degree and interindividual heterogeneity in age-related
changes in DNA methylation at particular CpG islands, researchers analyzed 377 volunteers
who were 85 years old [36].

Even at well-known tumor suppressor genes like TWIST2, they discovered broad and
highly variable methylation of promoter-associated CpG islands with levels ranging from
4% to 35%. Furthermore, this older population’s interindividual variations in methylation
exhibit numerous characteristics of the altered methylation patterns found in cancer cells.
Both methylation associated with aging and methylation associated with cancer can occur at
identical sets of genes, lead to densely methylated, and probably transcriptionally repressed,
alleles, and demonstrate coordinated methylation across many loci. Additionally, during a
3-year follow-up period, elevated methylation levels were linked to a subsequent leukemia
or lymphoma diagnosis [36]. These findings imply that the increased cancer risk associated
with aging may be a result of the accumulation of aging-related alterations in promoter-
associated CpG islands.

Expectedly, aging is a key risk factor for a number of hematologic syndromes and can-
cers, including acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) [37].
Additionally, hemopoiesis and the ability of hemopoietic stem cells (HSCs) to regenerate
are negatively impacted by age.

1.3. Aging and Hemopoiesis

The question of how HSCs can withstand the effects of aging has been the subject of
numerous investigations. HSCs are a rare cell population that, for the most part, remain
dormant and undergo very few divisions over the course of an organism’s existence,
making it extremely difficult to study how they operate in living things [38,39]. Changes in
the niche—which are extrinsic—and the HSC—which are solely dependent on the stem
cell itself—occur during aging.

Both aging-related epigenetic processes and aging per se have an impact on hematopoiesis.
In fact, compared to youthful HSCs, distinct alterations in the epigenome and chromatin orga-
nization take place in aged HSCs. These alterations involve chromatin rearrangement [40,41],
particular histone posttranslational modifications, and DNA methylation [30].

The function of hematopoietic stem cells gradually declines as an individual ages
normally, depending on both cell intrinsic and external stimuli [42,43]. Alterations in cell
polarity, genomic integrity, and the epigenetic landscape that come with aging are the main
causes of altered HSC function, but the aged BM microenvironment also contributes in
significant ways [44,45].

Genome-wide expression analysis of young and old mouse HSCs has demonstrated that
aging-related transcriptional changes in HSCs affect myeloid and lymphoid differentiation [46,47].

Most somatic cells as well as primordial cells have global hypomethylation as they
age [48,49]. Nevertheless, the overall methylation difference between elderly and young
HSCs varies depending on the study. Age-related hypermethylation was detected in
research using reduced-representation bisulfite sequencing. In contrast, MeDIP-seq data
from Taiwo et al. revealed a small but significant (5%) worldwide decrease in DNA
methylation. According to Taiwo et al., the variation could be explained by the disparity in
coverage between the two techniques [29].

HSCs’ adult-life quiescence is one potential explanation for the restriction to a more
widespread and conspicuous hypomethylation on HSCs throughout aging. Global hy-
pomethylation happens when young or aged mouse HSCs are transplanted, causing them
to experience an induced proliferative stress. This finding is consistent with studies on
the aging of human somatic cells and tissues. In spite of this, mice can still identify the
hypermethylation of PRC2 targets, indicating that age and tiredness cause different changes
to the DNA methylation landscape.

One of the most precise investigations into the epigenomic changes brought on by
aging in murine HSCs was carried out by Goodell’s team [41]. ChIP-seq was used to profile
some of the key regulatory histone marks in HSCs from 4- and 24-month-old mice. Even
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though the dataset only showed minor variations, some intriguing special features were
reported. For instance, there was only a 6.3% increase in peak deposition of H3K4me3 in
old versus young HSCs but the majority of the peaks were generally wider. Peak levels for
H3K27me3 remained stable but the length of coverage increased by 29% with HSC aging.

In addition, the signal’s strength rose by 50%. With regard to H3K36me3, the peaks
shifted from the transcription start site to the transcription termination site, and H3K36me3
and H3K27me3 behaved antagonistically. The three histone marks examined in the study
showed a high positive connection with transcriptome alterations [41]. Regarding other
histone markers, it has been shown that the levels and location of H4K16ac alter with
aging in murine HSCs. By using a single cell, three-dimensional immunofluorescence
analysis, young HSCs demonstrate a notable distribution of H4K16ac in one pole of the
nucleus. The term “epigenetic polarity” or “epipolarity” is used to describe this quality.
H4K16ac levels in older HSCs are lower; they also exhibit apolarity and localize uniformly
across the nucleus [50–52]. In murine HSCs and ST-HSC, the polarity and amounts of a
number of additional histone marks, including H3K4me1, H3K4me3, H4K8ac, H3K27ac,
and H4K5ac, did not alter with age. It is interesting to note that global alterations in
gene expression did not primarily correlate with the loss of epipolarity and the decrease
in global H4K16ac deposition following aging in HSCs. Inhibiting Cdc42 activity and
LaminA/C expression was shown to target H4K16ac, which was linked to the modification
of higher-order chromatin and protein interactions between chromatin and non-histone
proteins [53].

A few hematopoietic lineages that were themselves descended from HSCs have been
documented to contribute to the regulation of HSCs in addition to the BM cell types
mentioned above. Megakaryocytes have been demonstrated to cause HSCs to go into
quiescence [54], while regulatory T cells and macrophages have been shown to alter HSC
survival [55,56].

A natural temporal decline in HSC activity may be influenced by age-related changes
in the composition, proliferative ability, spatial arrangement, expression of adhesion
molecules, and secretome of niche cells [57,58].

2. Clonal Hematopoiesis

Following the acquisition of somatic driving mutations, clonal hematopoiesis (CH),
consisting in the growth of hematopoietic stem and progenitor cell (HSPC) clones and their
progeny, takes place. Clonal hematopoiesis of indeterminate potential (CHIP) patients do
not have abnormal blood cell counts or any other hematologic disease symptoms but do
have somatic mutations in hematological malignancy-associated driver genes, historically at
or above a variant allele frequency of 2% [59]. However, CHIP is linked to a slightly elevated
risk of hematological malignancy as well as a higher chance of developing cardiovascular
and pulmonary disease.

According to estimates, human HSPCs experience an average of 1 exonic mutation ev-
ery decade of life, so that, by the age of 50, each HSPC would have accumulated an average
of five coding mutations [60]. Inferences about lineage linkages and population dynamics
in human hematopoiesis have been made as a result of two other studies’ observations of
the steady acquisition of mutations in HSPCs with aging [61,62]. Although the majority
of these mutations are most likely to be neutral, a mutation that affects an HSPC clone’s
ability to survive selection will be overrepresented and may result in CH.

Early evidence for age-related CH came from studies of X-chromosome inactiva-
tion across time [63–65], which established the link between CH and aging. A small
cohort of older people was also shown to have somatic TET2 mutations in the absence
of hematological illness [64]. Large-cohort studies were employed by several groups to
discover the accumulation of particular mutations in the blood of healthy aged individuals
at surprisingly high prevalence and a strong association with unfavorable outcomes, as
discussed below. This was made possible by the development of more widely available
high-throughput sequencing [65]. TP53, PPM1D, SRSF2, SF3B1, signaling (JAK2), and



Cells 2023, 12, 2392 6 of 22

other epigenetic regulators (BCORL1) were also found to be mutated, in addition to the
epigenetic regulators DNMT3A, TET2, and ASXL1, which are the most frequently affected.
Contrary to popular belief, aged mouse blood does not frequently contain mutations in
TET2 and DMNT3A, despite the fact that murine models with these mutations mimic many
CH symptoms [66–69].

The impact of aging and epigenetic aging on the beginning and development of
hematologic disorders will be examined in the sections that follow.

3. Leukemia
3.1. Acute Myeloid Leukemia

According to the National Institutes of Health and Surveillance, Epidemiology and
End Results database, the typical age at diagnosis for acute myeloid leukemia is 68 years
old, like many other cancers. Even though leukemia research has been studied for more
than 50 years, senior AML patients’ long-term survival rates are still shockingly poor [70].

A large percentage of AML patients have mutations in epigenetic modifiers [71]. DNA
methylation, DNA hydroxymethylation, histone acetylation, and histone lysine methylation
are the epigenetic alterations that are most frequently described in the context of AML [72].

To define aging-associated changes and explain why older people are more likely
to develop cancer, numerous studies have been conducted [73–76]. For various tissues,
experiments have shown that the frequency of mutations is two to three times higher in
aged cells than in young or young adult cells [77,78]. Quiescence of these cells, which
results in DNA repair attenuation, has been hypothesized to be one of the causes of the
accumulation of mutations in HSCs [79]. Furthermore, it was demonstrated that HSCs
could repair DNA damage regardless of age when the cell cycle was stimulated [79].
According to Moehrle et al. [80], who demonstrated that both young and old HSCs prefer to
exit their quiescent condition upon DNA damage in vivo, this concept has been consistently
validated. It is interesting to note that the same study found that, in comparison to youthful
HSCs, the ability of elderly HSCs to repair DNA damage was unaffected [80].

The ability to accurately estimate chronological age using DNA methylation patterns
has been demonstrated by large-scale methylome research [81,82]. Interesting evidence
reveals that DNA methylation age is an intrinsic attribute of the cell and is unaffected by
the environment because donor HSCs transplanted into recipient patients of varied ages
have been shown to maintain their chronological DNA methylation age [83].

Furthermore, numerous investigations found that aged hematopoietic cells had altered
expression of epigenetic regulators as well as a variety of epigenetic modifications [84,85].

For instance, a thorough investigation of the transcriptome, DNA methylome, and
histone modifications in young and old mouse HSCs revealed worldwide epigenetic
alterations linked to stem cell aging. The authors showed changed placement of several
regulatory histone marks such H3K4me3, H3K27me3, and H3K36me3 as well as decreased
production of DNA methyltransferases, the main epigenetic regulators, in old cells.

Furthermore, Adelman et al.’s [86] examination of the epigenetic landscape of an
HSC-enriched population from young and elderly healthy donors indicated a drop in
H3K4me1, H3K27ac, and H3K4me3 with aging, as well as altered DNA methylation in old
cells, characterized by modifications in cell proportions and metabolism, and activation
of time-dependent apoptotic processes. Additionally, Grigoryan et al.’s research [52]
demonstrates that aged mouse HSCs exhibit an enlarged nuclear volume and modified
nuclear shape. It has been demonstrated that these changes are connected to decreased
levels of the nuclear envelope protein Lamin A/C in old HSCs. The authors also noted that
the H3K9me2 heterochromatin mark’s distribution in old HSCs had changed. Intriguingly,
therapy with CASIN (a Cdc42-activity inhibitor) returned nuclear volume, Lamin A/C
levels, and H3K9me2 peripheral localization to the levels seen in young HSCs. Djeghloul
et al. [86] have noted changes to the H3K9me3 heterochromatin mark in aged HSCs. One of
the key enzymes involved in heterochromatin formation, the methyltransferase SUV39H1,
has been demonstrated to be negatively correlated with decreased expression in aged
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murine and human HSCs. These findings collectively imply the existence of widespread
alterations in the nuclear structure of aging HSCs, which may be related to alterations in
chromatin structure and gene expression [87,88].

The loss of H4K16ac polarity in aged HSCs linked to increased activity of the small
RhoGTPase Cdc42 is another aging-associated epigenetic modification that has just been
identified but is still poorly understood. Additionally in this instance, it has been demon-
strated that functional HSC rejuvenation correlates with Cdc42 activity suppression with
CASIN, which results in the restoration of H4K16ac polarity [50]. In keeping with the
phenotypic expansion of HSCs seen with aging, the same group has demonstrated that loss
of epigenetic polarity in HSCs is linked to an enhanced rate of symmetric self-renewing
divisions in old stem cells [89]. The significance of this observation is highlighted by the
part aberrant self-renewal plays in the emergence of AML [90].

A study by Adelman et al. [85] also lends credence to the concept that aging influ-
ences leukemogenesis. Analysis of AML-associated epigenetic alterations (differentially
methylated areas and enrichment/depletion of various histone marks) and age-associated
epigenetic changes in HSC-enriched populations revealed parallels between the two [85].
Moreover, Maegawa et al. [84] highlighted the significance of epigenetic drift in the de-
velopment of MDS/AML. Progressive hypermethylation of preselected genes has been
demonstrated from young to old normal BM, then to MDS, and finally to AML using
murine transgenic AML models [66]. It is interesting to note that Mizukawa et al.’s re-
search [91] shows that genetic deletion of CDC42 in murine and human MLL-AF9-induced
AML leads to a slower rate of self-renewing divisions and prevents leukemia formation.

The necessity of CDC42 for leukemogenesis suggests that higher activation of CDC42
in aged HSCs may render them more susceptible to leukemic transformation because
CDC42 activity is raised following aging in murine and human cells and is associated with
poorer HSC function [92]. Additionally, the discrepancies between AML in young and old
patients may be explained by CH, which is frequently seen in the elderly. The question of
whether clonal hematopoiesis is linked to a worse outcome is, however, still up for debate
and has not yet been resolved [93–97].

Last but not least, a number of studies [98,99] have emphasized the crucial function of
histone acetyltransferase p300 in promoting malignant transformation and its function as a
key driver of the senescent phenotype.

3.2. Acute Lymphoblastic Leukemia

The progression of B-ALL is age dependently influenced by the BM populations, par-
ticularly macrophages, according to research by Zanetti et al. [100]. Between macrophages
from young and old mice, they found clear variations in genome-wide gene expression
and chromatin accessibility. These genes and DARs point to a heightened inflammatory
response in immature macrophages deriving from BMM. They link the CXCR5-CXCL13
axis to the progression of B-ALL, while direct cell interaction between macrophages and
leukemia cells cannot be ruled out as a contributing factor. The CXCR5-CXCL13 axis was
suggested as a possible target for treating human B-ALL or as a prognostic marker.

4. Aging and Lymphoma

Innate and long-term adaptive immune responses to exogenous antigens and vaccines
are primarily coordinated at lymph nodes, which are carefully organized structures of the
peripheral lymphoid organs. Additionally, they have a role in immunological tolerance. In
addition to changes in the production of chemokines and cytokines required for immune
cell proliferation, survival, and function, impaired naive T- and B-cell homeostasis, and
a shorter humoral response, aging of lymph nodes causes a decrease in cell transport
to and within the nodes, a disruption in the structure and organization of nodal zones,
incorrect placement of specific immune cell types, and impaired intercellular interactions.
As the lymph nodes get older, their size and quantity decrease, and their structure becomes
chaotic [101].
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4.1. EZH2 and Lymphoproliferative Diseases

The multi-subunit polycomb repressive complex (PRC)-2 is made up of the proteins
EED, SUZ12, and RBBP4 in addition to the polycomb group (PcG) protein EZH2. PRC2
initiates polycomb-mediated gene repression by a multitude of methods. Chromatin com-
paction, which prevents transcription factors from accessing and acting on DNA, and direct
block of the transcriptional machinery via inhibition of RNA polymerase II are two of
these methods [102]. By serving as a platform for the recruitment of DNA methyltrans-
ferases, EZH2 has also been proposed to enable DNA methylation. The histone mark
H3K27me3 is crucial because, after being trimethylated by the suppressor of variegation
3–9, enhancer of zeste, and trithorax (SET) domain of EZH2, it serves as a docking site
to draw in a second polycomb complex, PRC1, which maintains gene repression by ubiq-
uitinating H2AK119 [103,104]. In a study, authors discovered senescence as a hidden
tumor feature defined by a senescence gene signature that was unexpectedly enriched
in noncancerous cells through integrative analysis of single cell and bulk transcriptome
data from multiple datasets of solid cancer patients [105]. They also discovered two dis-
tinct senescence-associated subtypes based on unsupervised clustering. In comparison to
patients with the aggressive subtype, those with the senescence subtype exhibited larger
tumor mutation burdens and a better prognosis. They developed the senescore scoring
system using machine learning, which is based on six signature genes: ADH1B, IL1A, SER-
PINE1, SPARC, EZH2, and TNFAIP2. In 2290 gastric cancer samples, a higher senescore
showed a strong predictive potential for prolonged overall and recurrence-free survival.
This finding was independently confirmed by the multiplex staining analysis of gastric
cancer samples on the tissue microarray. Surprisingly, the senescore signature proved to
be a trustworthy indicator of the effectiveness of both chemotherapy and immunotherapy,
with high-senescore patients benefiting from immunotherapy and low-senescore patients
responding to chemotherapy [105].

Overexpression of mutant EZH2 has been identified in a variety of B- and T-cell
lymphoproliferative diseases in hematological malignancies [106–109]. A significant study
revealed a sizable cohort of EZH2 variant-positive diffuse large B-cell lymphoma (DLBCL)
and follicular lymphoma cases. Respectively 7.2% and 21.7% of the cases of follicular
lymphoma and DLBCL had “gain-of-function” point mutations that caused a transition
from tyrosine to histidine in codon 641 (Tyr641) in the catalytically active SET domain
of the EZH2 protein [108]. The germinal center (GC) cell phenotype was present in all
of the DLBCL cases and they all looked to be heterozygous for the variation. This study
showed that Tyr641 mutations were linked to a significant decrease in EZH2 enzymatic
activity in vitro, in apparent contradiction to the elevated EZH2 mRNA levels seen in
breast and prostate cancer. According to a theory [108], these mutations may modify the
specificity of the EZH2 target gene and thus alter the DNA methylation at PcG sites in
these malignancies.

A later investigation, however, demonstrated that the Tyr641 EZH2 mutation conferred
an abnormal functional interaction between mutant and WT gene products. Sneeringer
et al. demonstrated that the Tyr641-mutant B-cell lymphoma’s malignant behavior results
from altered cooperation between the mutated and WT EZH2, which has a general “hyper-
trimethylating” effect on H3K27me3 and causes gene repression [110]. This means that
the EZH2 Tyr641 mutation may really represent an atypical “gain-of-function” mutation.
When compared to naive B-cell controls, GC B cells exhibit a markedly increased level of
EZH2 expression and, intriguingly, the transcriptional regulatory profile of EZH2 in GC B
cells seems to be closely akin to that of human ESCs [111] (Figure 2).
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4.2. Hodgkin Lymphoma

In developed nations, Hodgkin lymphoma (HL) is the most prevalent type of malig-
nant lymphoma that affects people under the age of 30 [112,113]. Adolescent and young
adult (AYA) HL patients (defined as 15–39 years of age at diagnosis) who are monozygotic
(MZ) twins have a risk that is approximately 100 times higher than that of the general pop-
ulation, whereas dizygotic (DZ) twins of patients have a risk that is approximately 7 times
higher than that of non-twin siblings [114]. Genetic risk variations in the HLA region, as
well as in the genes for IL13, REL, PVT1, GATA 3, and TCF3, have been discovered by
genome-wide association studies (GWAS) and collectively explain less than 5% of genetic
risk [115,116]. Furthermore, numerous specific DNA modifications have been found in
HL tumors [117,118] and cell lines [119], suggesting that epigenetic changes may play a
significant role in the development and progression of Hodgkin lymphoma.

Research that used unaffected twins of cancer survivors as genetically and chronologi-
cally matched controls evaluated DNAm in long-term AYAHL survivors [120]. Limited to
DNA from blood specimens, they found an epigenetic age acceleration in AYAHL survivors
relative to their unaffected co-twins in every stratum (sex, age at and since diagnosis, and
histological subtype). Survival and unaffected co-twins’ blood DNAm ages varied (64.1 vs.
61.3 years, respectively), mainly in females. No changes in saliva DNAm ages were found.
Seventy-four (in blood DNA) and six (in saliva DNA) sites were differently methylated in
survivors and co-twins, respectively [120]. These findings imply that AYAHL survivors
continue to age epigenetically even after receiving an HL cure. It is probable that therapy-
related DNA changes may be a factor in the long-term health effects. It is noteworthy in
the study that the AYAHL discordant twin pairs’ different DNA ages were maintained for
decades after treatment. According to certain publications, exposure to vinca alkaloids like
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vincristine, alkylation drugs like dacarbazine, radiation, and bleomycin—all components
of the standard AYAHL therapy—may be linked to epigenetic aging [121].

Given that at least three of the four chemicals in conventional chemotherapy and radi-
ation therapy result in epigenetic change, the difference in DNAm age between survivors
and their twins is therefore most likely the effect of treatment [122]. Alternative theories
include the possibility that the disease is to blame for the accelerated epigenetic age or that
the risk factor was acquired before the diagnosis.

4.3. Chronic Lymphocytic Leukemia

The accumulation of mature-appearing CD19+ CD23+ CD5+ B cells in the bone
marrow, peripheral blood, and lymphoid organs is a hallmark of chronic lymphocytic
leukemia (CLL), an indolent B-cell cancer. Similar to the majority of cancers, CLL is a
heterogeneous disease with a number of known genetic alterations, including the 17p
deletion (del [17p]), the tumor protein 53 (TP53) mutation, and the 11q deletion (del [11q]),
all of which have been identified as poor prognostic indicators in patients who have
received chemoimmunotherapy [123,124].

Previous studies [125–129] have employed DNA methylation to divide CLL pa-
tients into prognostic groupings for overall survival. Additionally, age-related DNA
methylation signatures, or biological clocks, have been linked to a risk of mature B cell
neoplasms [130,131], indicating that these indicators of biological age may be helpful to
forecast cancer risk.

In a publicly available dataset, a study [132] investigated the relationship between
epigenetic age acceleration and time to CLL relapse. Before starting chemoimmunotherapy,
the Infinium HumanMethylation450 BeadChip was used to analyze the DNA methylation
of 35 CLL patients. Blood DNA methylation levels were used to estimate four epigenetic
age acceleration metrics: intrinsic epigenetic age acceleration (IEAA), extrinsic epigenetic
age acceleration (EEAA), PhenoAge acceleration (PhenoAA), and GrimAge acceleration
(GrimAA). To evaluate the relationship between each epigenetic age parameter and time to
CLL relapse, receiver operating characteristic curve analysis, and quantile, logistic, and
linear regression were used. The likelihood of a CLL relapse was inversely correlated with
EEAA and PhenoAA, and favorably correlated with GrimAA. When EEAA and GrimAA
were assessed simultaneously in male patients, individuals who relapsed early were differ-
entiated from patients who relapsed later. With IEAA, no relationships were found. These
results imply that the time to CLL relapse is correlated with epigenetic age acceleration
prior to the start of chemotherapy [132]. These findings offer fresh understanding of the
relationship between aging-related DNA methylation alterations and CLL recurrence, and
could potentially serve as indicators for treatment relapse and therapy choice.

Other investigations assessed the detection of epigenetic features linked to treatment
response, while these studies focused on the risk stratification and prognostic significance
of epigenetic markers in CLL.

Although age-related epigenome changes in other diseases have been linked to disease
recurrence in the past, offering new insight into how biological aging affects the clinical
course of disease [133], similar connections in CLL have not been thoroughly documented.
Age-related changes to the epigenome and biological clocks may serve as predictive markers
for treatment response and, maybe, may influence therapy choice because the disease
typically affects older people. In order to determine the relationship between four biological
clocks calculated from blood DNA methylation and time to relapse in CLL patients, a study
looked at these variables.

Global DNA methylation profiling of large CLL cohorts and normal B-cell subsets,
employing both microarrays and whole-genome bisulfite sequencing, has provided new
information [134,135]. Using genome-wide analysis, patients with CLL may be divided
into three separate epigenetic subclasses: naive B-cell-like CLL (n-CLL), memory B-cell-like
CLL (m-CLL), and intermediate CLL (i-CLL). These subclasses partially represent the stage
of B-cell maturation from which the malignancies in the patients’ bodies are produced. Five
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epigenetic DNA methylation indicators were shown by Queiros et al. to be highly accurate
at categorizing patients into these epigenetic groupings [127]. In retrospective studies of
mostly early-stage patients, the authors have established the usefulness of this classification
approach for estimating time to first therapy and overall survival (OS) [127] (Table 1).

Table 1. Completed clinical trials about hematological malignancies in relation to aging.

Study Title Conditions Study Type Sex Age NCT Number

Characterization of
Proliferating Compartment in
B-Cell Patients and in Healthy

Aging Subjects

Chronic Lymphocytic
Leukemia Observational All

18 Years and Older
(Adult,

Older Adult)
NCT01110863

Exercise Training to Promote
Resilience to Chronic

Lymphocytic Leukemia

Aging;
Chronic Lymphocytic

Leukemia
Interventional All

18 Years and Older
(Adult,

Older Adult)
NCT04950452

Bryostatin 1 and Rituximab in
Treating Patients With
B-Cell Non-Hodgkin’s
Lymphoma or Chronic
Lymphocytic Leukemia

Leukemia;
Lymphoma Interventional All

18 Years and Older
(Adult,

Older Adult)
NCT00087425

A Patient-centered
Communication Tool

(UR-GOAL) for Older Patients
With Acute Myeloid

Leukemia, Their Caregivers,
and Their Oncologists

Acute Myeloid
Leukemia Interventional All

60 Years and Older
(Adult, Older

Adult)
NCT04625413

Bryostatin 1 and
Interleukin-2 in Treating

Patients With Refractory Solid
Tumors or Lymphoma

Lymphoma;
Small Intestine Cancer;

Unspecified Adult
Solid Tumor, Protocol

Specific

Interventional All
18 Years and Older

(Adult,
Older Adult)

NCT00003993

Lymphoma Follow-up Lymphoma Observational All
21 Years and Older

(Adult,
Older Adult)

NCT00744120

Bendamustine + Rituximab in
Older Patients With

Previously Untreated Diffuse
Large B-cell Lymphoma

Diffuse Large B-Cell
Lymphoma; Diffuse

Large-Cell Lymphoma
Interventional All NCT01234467

The Effects of
Anthracycline-based

Chemotherapy on Peripheral
Vascular Function

Breast Cancer;
Lymphoma;

Chemotherapy Effect
Observational All NCT03062878

Naive B-cell-like CLL (n-CLL), memory B-cell-like CLL (m-CLL), and intermediate
CLL (i-CLL), each with a different time to first therapy and overall survival, can be distin-
guished in early-stage patients by DNA methylation profiling. However, it is unknown
whether DNA methylation can identify people who will respond well to CIT. Using pyrose-
quencing and microarray data, a study divided treatment-naive patients from three UK
chemo and CIT clinical trials into the three epigenetic subgroups, and conducted extensive
survival analysis [128]. In IGHV-unmutated (IGHV-U) cases, the n-CLL, i-CLL, and m-CLL
signatures were discovered in 80% (n 5 245/305), 17% (53/305), and 2% (7/305), respec-
tively, and in 9%, (19/216), 50% (108/216), and 41% (89/216), respectively. m-CLL was
found to be an independent prognostic factor for both progression-free survival and overall
survival in CLL patients by multivariate Cox proportional analysis. m-CLL is identified as
an independent sign of prolonged survival and may help in the selection of patients likely
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to display prolonged survival after CIT in the study of epigenetic subgroups in patients
enrolled in three first-line UK CLL trials [128].

5. Future Perspectives

After allogeneic hematopoietic cell transplantation (allo-HCT), immune escape is a
primary cause of AML relapse, with HLA class II expression decrease in leukemia cells
accounting for up to 40% of relapses. Relapse has come to be seen as the primary barrier to
the full success of allo-HCT for AML in recent years [136,137]. This has sparked studies
devoted to comprehending its mechanics [138–140]. At the time of diagnosis, defects in
this route are rare in AML, but they frequently recur after allo-HCT (1), supporting the
hypothesis that recurrence happens when the tumor learns how to avoid T cell-mediated
detection. In particular, it has been discovered that, after transplantation, AML blasts
change their HLA asset in two ways: either they lose one HLA haplotype genetically,
which nearly always includes incompatible HLAs [140], or they stop expressing HLA class
II molecules on the surface [138,139]. This second modality in particular appears to be
mostly nonoverlapping with genomic haplotype loss in the case of HLA-incompatible
transplants and happens with comparable frequency in both cases. For example, only one
of the 14 relapses from a study [138] with class II downregulation showed signs of HLA
loss, raising the question of which event took place first and was dominant in causing
immunological escape. Additionally, some researchers have looked into the epigenetic
basis of this immunological escape mechanism and found no indication of fresh mutations
in immune-related genes in cases of HLA class II downregulation [138,139].

A study identified polycomb repressive complex 2 (PRC2) as a significant epigenetic
driver of this immune escape modality. According to the authors, chromatin accessibility
is decreased in a PRC2-dependent manner in conjunction with the loss of HLA class II
molecule expression [141]. In vitro and in vivo, pharmacological suppression of PRC2
subunits improves HLA class II expression in AML relapses, leading to a restoration of
leukemia recognition by CD4+ T cells. These findings reveal a brand-new connection
between leukemia immune escape and epigenetics, which could quickly lead to creative
ways to treat or stop AML post-transplantation relapse.

PRC2 is a brand-new and optimistic therapeutic target that has the potential to reverse
the resistance mechanism and restore the beneficial graft-versus-leukemia impact. Several
drugs that target EZH2 and other PRC2 subunits are now undergoing clinical trials, with
GSK126 and EPZ-6438/tazemetostat being the most advanced [142,143]. Notably, mice
treated with the substance for 3 weeks did not exhibit obvious side effects, and plasma
concentrations of tazemetostat recorded in humans [144,145] without severe toxicities were
equivalent to those employed in tests.

Even though in in vitro and in vivo experiments the recovery of HLA class II expres-
sion upon PRC2 inhibition did not reach the same levels documented at diagnosis, it is
possible to speculate that, in the clinical setting, longer exposure to the compound and
synergistic effect with cytokines released by activated T cells may further enhance HLA
class II upregulation. In line with this hypothesis, preclinical and clinical studies with PRC2
inhibitors in solid cancers have already evidenced activation of immune responses as one
of the mechanisms of action [146,147]. Moreover, better results in terms of HLA class II
recovery may be obtained with more potent EZH2 inhibitors or by simultaneously blocking
multiple PRC2 subunits, targeting a larger proportion of AML cells and thus avoiding the
selection of resistant subclones [148,149].

Finding biomarkers, such as epigenomic markers linked to particular pathologic
processes, may help us better understand therapy-resistant cancer and may support hema-
tological precision medicine efforts to choose individualized treatment plans to increase
patient survival due to the aging population and the tendency of cancer to primarily affect
older people.

FTO alpha-ketoglutarate dependent dioxygenase (FTO), the first discovered m6A
demethylase, has been shown to be highly expressed in some subtypes of AML and
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promotes pro-survival signaling as well as blocking myeloid differentiation by targeting a
number of genes, including ASB2, RARA, MYC, and CEBPA, in an m6A-dependent manner.
Additionally, FTO maintains aerobic glycolysis in leukemia cells by positively regulating
the glycolytic genes PFKP and LDHB [150].

When FTO is aberrantly overexpressed in solid tumors such glioblastoma, breast
cancer, and pancreatic cancer, it also acts as an oncogene [151]. Experimental data showing
that FTO knockdown effectively slows tumor growth, reduces cancer cell metabolism,
and enhances cancer cells’ receptivity to medication therapy strongly suggest that FTO
is a prospective therapeutic target for the treatment of cancer in elderly individuals [150].
These findings have led to intensified efforts in the search for potent small-molecule FTO
inhibitors. Su et al. discovered two highly effective small-molecule FTO inhibitors, CS1
(also known as Bisantrene) and CS2 (also known as Brequinar), which exhibit powerful
anti-tumor effects in both in vitro and in vivo settings in both AML and solid tumors where
FTO is highly expressed (such as glioblastoma, breast cancer, and pancreatic cancer) [152].
CS1 and CS2 decrease FTO activity and signaling by obstructing the catalytic pocket and
interfering with the binding of FTO to m6A modified targets. Importantly, even at doses
four times greater than those used to treat cancer, administration of CS1 or CS2 to C57BL/6
mice resulted in negligible drug toxicity.

For elderly AML patients who cannot tolerate intense chemotherapy, hypomethylating
drugs (HMAs) are frequently utilized as frontline therapy. However, due to the elevation
of immune checkpoint gene expression and associated immune evasion, the majority of
HMA-treated patients eventually acquire drug resistance. By inhibiting the expression of
the immunological checkpoint gene LILRB4, CS1 and CS2 therapies make AML cells more
susceptible to T cell cytotoxicity. This finding supports FTO inhibition as a useful tactic to
combat immune evasion brought on by HMAs. The ability of leukemia stem/initiating
cells (LSCs/LICs), the main population thought to be responsible for treatment failure and
disease relapse in AML, to self-renew is likewise noticeably reduced by pharmacological
inhibition of FTO with the two drugs or genetic depletion of FTO.

There is a growing belief that the epigenetic composition dramatically changes as an
organism ages. Various cell types and tissues can show age-related alterations in DNA
methylation [153]. The so-called “epigenetic clock” may accurately predict the donor
age because of the great repeatability of age-associated DNA methylation changes [154].
Notably, studies linking the pace of epigenetic aging to life expectancy have shown that age-
related DNA methylation can also be a reflection of biological aging [155]. It is particularly
remarkable that reprogramming into induced pluripotent stem cells completely resets
age-associated DNA methylation patterns [156]. However, age forecasts do not always
work when it comes to cancer tissue.

The epigenetic clocks appear to be accelerated in the majority of malignancies but
decelerated in others [157]. This may be explained by the fact that healthy tissue’s ability
to predict age is based on a cross-section of many cells from the regularly developing
organism, whereas tumor tissue recapitulates the epigenetic composition of the tumor-
initiating cell. In fact, there is proof that patient-specific, age-associated DNA methylation
patterns can be utilized to monitor clonal proliferation [158].

Therapies that inhibit EZH2 may accelerate the exhaustion of CSC populations since
data suggest that EZH2 plays a function in promoting self-renewal in at least some cancers
(including some hematological malignancies) [159]. Furthermore, it would be predicted
that decreasing EZH2 might have therapeutic benefits if it had non-stem cell specific
carcinogenic effects, such as increasing cell proliferation or repressing differentiation. As a
result, much effort has been put into developing EZH2 inhibitors. The first medication to be
suggested to inhibit EZH2 is 3-deazaneplanocin (DZNep), which exerts its indirect action
by competitively inhibiting S-adenosylhomocysteine hydrolase. Adenosylhomocysteine,
an enzyme substrate, builds up as a result, which inhibits methyltransferases, causes the
PRC2 complex to degrade, and lowers EZH2 levels [160,161].
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A model system and novel target for the development of EZH2 inhibitors has been
made available by the identification of EZH2 mutations in lymphoma, particularly DL-
BCL [162,163]. In their study explaining how microRNAs control EZH2, Zhao et al. com-
bined DZNep first with the inhibitor of histone deacetylation Vorinostat and then with the
inhibitor of the bromodomain and extra-terminal (BET) domain JQ1 [164]. By disrupting
the c-MYC-miR-EZH2-HDAC3 feedback loop, this medication combination boosted the
expression of the tumor suppressor miR-29, downregulated its target genes, and inhibited
the formation of lymphomas. An Ezh2-selective small-molecule inhibitor called EI1 was
created by Qi et al. [165] that competitively binds to the S-adenosylmethionine (SAM)
pocket of the Ezh2 SET domain in both Tyr641-mutated cells and WT cells. The Ezh2
mutant cells underwent death, G1 growth arrest, and differentiation into memory B cells
as a result of this suppression of histone H3K27me3. It is not a well-targeted therapy
because there is evidence that some of these drugs have a broad inhibitory effect on protein
methyltransferases other than EZH2 [160].

The finding that the introduction of transcription factors associated with embryonic
stem (ES) cells into terminally differentiated somatic cells can transform their functionality
into an ES cell state, a process accompanied by the erasure of the epigenetic parame-
ters of the mature somatic cell, has stoked interest in the transcriptional and epigenetic
characteristics that define cell identity [166,167].

6. Conclusions

Recent research has proven the potential for more direct cellular reprogramming, from
one somatic cell type to another [168]. Reprogramming technologies have a lot of potential
from a hematological standpoint because it might be challenging to obtain eligible donors
for bone marrow transplantation and, occasionally, enough HSCs. Somatic cell reprogram-
ming has thus been extensively researched as a method of producing transplantable HSCs,
either directly or via developing induced pluripotent (iPS) cells into HSCs. Despite the
fact that a few studies [169–171] were able to develop transplantable HSCs with long-term
activity from fibroblasts and iPS cells, the majority of experiments were unable to do so.
Given that HSCs cultivated in vitro quickly lose their stemness, the reliance on in vitro
culture techniques in such procedures may help to explain this. This issue was recently
highlighted by Riddell et al. [172], who discovered that terminally differentiated blood
cells might be converted into transplantable, functional HSCs by being briefly exposed to a
number of HSC-specific transcription factors in vivo.

However, it seems conceivable that changed expression of a few important aging loci
could cause HSC aging. If this is the case, normalizing these age-dysregulated loci should
offer a way to revive aging HSCs in terms of function. This theory was recently tested in a
study that used blastocyst complementation to redifferentiate old hematopoietic stem and
progenitor cells (HSPCs) into HSCs in vivo [47].

When examined for a number of known age-related functional flaws, the function of
the resultant HSCs was found to be strikingly similar to that of young HSCs and failed to
resemble aged HSCs [47]. Because of this, the HSC aging state seems to be reversible and
predominantly relies on a changed transcriptome and epigenome.

However, scientific findings support proof-of-concept studies by demonstrating that
it is possible to modify the HSC aging state by using exogenous agents. Additionally,
researchers might be able to use HSC aging-preventive therapy in addition to intervening
with an already established aged disease and eventually acquire a more complete grasp of
the correct targets.

To do this, it is crucial to understand the difference between aging that affects only
one organ and aging that affects an entire person. Due to the fact that age progression
is a complex process, its blockage or even reversal will probably necessitate the risky
manipulation of one or more important tissue homeostasis regulators. For instance, the
tumor suppressor Trp53 has a well-established role in increasing aging [173] but interfering
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with such a potent tumor suppressor would almost certainly result in the growth of a
cancer [174].

In conclusion, hematopoietic stem cell phenotypes associated with aging, such as
leukemia and lymphoma, are influenced by the aging of the hematopoietic system and
the stem cell niche. Because epigenetic mechanisms are reversible, understanding these
changes will open up interesting avenues for therapeutics against age-related illnesses.
Furthermore, the advancement of high-throughput epigenome mapping technologies will
enable the identification of the “epigenomic identity card” of each and every patient as well
as hematological disease, opening the door to the discovery of novel molecular biomarkers
for diagnosis, prediction, and prognosis.
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of mesenchymal stromal cells derived from induced pluripotent stem cells. Stem Cell Rep. 2014, 3, 414–422. [CrossRef] [PubMed]

157. Lin, Q.; Wagner, W. Epigenetic aging signatures are coherently modified in cancer. PLoS Genet. 2015, 11, e1005334. [CrossRef]
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