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Abstract: Different studies have reported that inhibiting the mevalonate pathway with statins may
increase the sensitivity of cancer cells to tumor necrosis factor-related apoptosis-inducing ligand
(TRAIL), although the signaling mechanism leading to this sensitization remains largely unknown.
We investigated the role of the YAP (Yes-associated protein)/TAZ (transcriptional co-activator with
PDZ-binding motif)-TEAD (TEA/ATTS domain) transcriptional complex in the metabolic control of
TRAIL sensitivity by the mevalonate pathway. We show that depleting nuclear YAP/TAZ in tumor
cells, either via treatment with statins or by silencing YAP/TAZ expression with siRNAs, facilitates
the activation of apoptosis by TRAIL. Furthermore, the blockage of TEAD transcriptional activity
either pharmacologically or through the ectopic expression of a disruptor of the YAP/TAZ interaction
with TEAD transcription factors, overcomes the resistance of tumor cells to the induction of apoptosis
by TRAIL. Our results show that the mevalonate pathway controls cellular the FLICE-inhibitory
protein (cFLIP) expression in tumor cells. Importantly, inhibiting the YAP/TAZ-TEAD signaling
pathway induces cFLIP down-regulation, leading to a marked sensitization of tumor cells to apoptosis
induction by TRAIL. Our data suggest that a combined strategy of targeting TEAD activity and
selectively activating apoptosis signaling by agonists of apoptotic TRAIL receptors could be explored
as a potential therapeutic approach in cancer treatment.

Keywords: statins; mevalonate pathway; TNF-related apoptosis-inducing ligand; YAP/TAZ-TEAD;
cellular FLICE-like inhibitory protein

1. Introduction

TRAIL is a member of the tumor necrosis factor (TNF) family that activates an apop-
totic program in a broad variety of tumor cells upon binding to its pro-apoptotic receptors,
sparing most normal cells [1,2]. The binding of TRAIL to its pro-apoptotic receptors in-
duces the formation of the death-inducing signaling complex (DISC), recruiting the adapter
protein Fas-associated death domain (FADD) and procaspase-8 [3,4]. Procaspase-8 is pro-
cessed and activated to initiate an apoptotic cascade that results in cell death [3,4]. At
the DISC, apoptosis signaling may be hindered by the caspase-8 inhibitor cFLIP [5]. The
down-regulation of cFLIP levels is a frequent observation upon different treatments that
sensitize tumor cells to TRAIL-induced apoptosis [6–10].

The mevalonate pathway is an essential metabolic pathway involved in the synthesis
of different isoprenoids, including cholesterol, lipoproteins and vitamin D, among oth-
ers [11]. Statins are inhibitors of the 3-OH-3-methyl-glutaryl CoA (HMG-CoA) reductase, a
rate-limiting step in mevalonate synthesis [12,13]. Statins are the standard of care in the
treatment of hypercholesterolemia and the prevention of cardiovascular pathologies [12,13].
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In addition to reducing cholesterol levels, statins also affect the synthesis of other iso-
prenoids, essential constituents of signaling proteins implicated in cancer [14,15]. In this
regard, different clinical studies have indicated the beneficial effect of statins in cancer
patients both on their own and in combination with other anti-tumor treatments [16,17].
Interestingly, different works have shown that statins enhanced apoptosis activation by
TRAIL, although the mechanism involved has not been revealed [18–20].

The Hippo pathway is an evolutionarily conserved protein kinase cascade that is
involved in tumorigenesis and tumor progression [21,22]. YAP and TAZ transcriptional
coactivators promote tissue proliferation and organ growth and are negatively regulated
by the Hippo pathway [23]. Indeed, YAP has been shown to play a key role in inhibiting
apoptosis in cancer cells [24–27], although a pro-apoptotic function of YAP has also been
reported [28–30]. Importantly, several studies have demonstrated that YAP/TAZ nuclear
localization and function can be controlled via the mevalonate pathway [31–33] through
the geranylgeranylation and activation of RhoA GTPases [33].

We have examined the function of the YAP/TAZ-TEAD transcriptional system in the
regulation of sensitivity to TRAIL via the mevalonate pathway in tumor cells. Herein, we
report that inhibiting the mevalonate pathway using statin treatment markedly sensitized
tumor cells to TRAIL. Sensitization to TRAIL through statins was abrogated in tumor cells
overexpressing a constitutively active form of YAP. In this way, we show that both statins
and YAP/TAZ knockdown reduced the cellular levels of the caspase-8 inhibitor cFLIP and
sensitized cancer cells to a TRAIL-induced and mitochondria-regulated apoptotic process.

2. Materials and Methods
2.1. Cell Culture

HCT116 cells were kindly provided by Dr. J.A. Pintor-Toro (CABIMER, Seville,
Spain). HCT116 Bax/Bak K.O. cells were a donation from Dr. C. Muñoz-Pinedo (Idi-
bell, Barcelona, Spain). Both cell lines were maintained in McCoy’s medium containing
10% heat-inactivated fetal bovine serum, 2 mM L-glutamine, penicillin 50 U/mL and
streptomycin 50 µg/mL. A549 cells were a gift from Dr. FJ. Oliver, Institute of Para-
sitology and Biomedicine CSIC, Granada, Spain. A549, MDA-MB468 (a gift by Dr. J.
Arribas, VallD’Hebron Institute of Oncology, Barcelona, Spain) and HeLa cell lines were
maintained in complete DMEM medium containing 10% fetal bovine serum, 2 mM L-
glutamine, penicillin (50 U/mL) and streptomycin (50 µg/mL). Complete medium of A549
cells was also supplemented with glucose (4.5 g/L). All cell lines were regularly tested for
mycoplasma contamination.

2.2. Reagents

Reagents for cell culture, buffer preparation and molecular biology were purchased
from Merck/Sigma-Aldrich, (St. Louis, MO, USA). Simvastatin, cerivastatin, propidium io-
dide, puromycin, hygromycin, doxycycline and DAPI were purchased from Merck/Sigma-
Aldrich. Geneticin (G-418) was from Gibco (Fisher Scientific, Loughborough, UK). XAV939
was obtained from Selleckchem (Houston, TX, USA). Human His-tagged recombinant
TRAIL was produced as described [34].

2.3. Antibodies

Anti-Yap (SC-101199) and anti-GAPDH (SC-47724) antibodies were from Santa Cruz
Biotechnology (Dallas, TX, USA). Anti-caspase 8 (1C12) (9746), was purchased from
Cell Signaling Technology (Beverly, MA, USA). Anti-cFLIP monoclonal antibody 7F10
(ALX-804-961-0100) was from Enzo Life Sciences (Farmingdale, NY, USA). Horseradish
peroxidase-conjugated secondary antibodies were purchased from DAKO (P0447, P0448,
P0449) (Cambridge, UK). Alexa 488-conjugated secondary antibody was obtained from
Jackson ImmunoResearch (Baltimore Pike, PA, USA).
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2.4. Determination of Hypodiploid Apoptotic Cells

For the quantitative analysis of apoptosis, cells (3 × 105/well) were cultured in 6-well
plates and treated as shown in the figure legends. Cell cycle analysis (5 × 103 cells/sample)
was carried out in a FACSCalibur cytometer with Cell Quest software, Version 5.1 (Becton
Dickinson, Mountain View, CA, USA), according to published procedures [35].

2.5. Analysis of Cell Viability

HeLa cells (3 × 105/well) were cultured in 6-well plates and treated as shown in the
figure legends. Cell viability was assessed after washing the cultures with phosphate-
buffered saline (PBS)/0.1% bovine serum albumin and incubation for 15 min in the same
buffer containing propidium iodide (2 µg/mL) in the dark. The uptake of propidium iodide
was determined via flow cytometry with the Cell Quest Software.

2.6. Western Blotting of Proteins

After washing the cultures with PBS, cells (3 × 105) were lysed in buffer containing
10 mM Na2HPO4, 3% SDS and 10% Glycerol. Once the protein concentration of lysates was
measured with the Bradford reagent (Bio-Rad Laboratories, Hercules, CA, USA), Laemmli
sample buffer was added and proteins were resolved through electrophoresis on SDS-
polyacrylamide minigels. Proteins were identified via Western blotting as described [35],
using GAPDH as a protein loading control.

2.7. Real-Time qPCR

Total RNA (1 µg) was isolated with PRImeZOL reagent (Canvax Biotech, Córdoba,
Spain) and reverse-transcribed using an iScript cDNA synthesis kit (Bio-Rad, ref. 1708891).
Real-time PCRs were carried out using SYBR green reagent (Bio-Rad, ref. 1725124). Al-
ternatively, M-MLV reverse transcriptase (Invitrogen, Carlsbad, CA, USA) was used to
reverse-transcribe total RNA, and mRNA expression was assessed via qPCR with primers
and probes from Applied Biosystems (Waltham, MA, USA), normalized to hypoxanthine-
guanine phosphoribosyltransferase levels. mRNA levels were assessed on the
ABI Prism7500 sequence detection system.

Primers and probes for real-time qPCR:
Primers for SYBR green analysis:

GAPDH Forward: 5′-ATGGGGAAGGTGAAGGTCG-3′

Reverse: 5′-GGGTCATTGATGGCAACAATATC-3′

FLIPL
Forward:5′-CCTAGGAATCTGCGTGATAATCGA-3′

Reverse: 5′-TGGGATATACCATGCATACTGAGATG-3′

FLIPS
Forward: 5′-GGGCCGAGGCAAGATAAGCAAGG-3′

Reverse: 5′-TCAGGACAATGGGCATAGGGTGT-3′

CTGF Forward: 5′-AGCTGACCTGGAAGAGAACA-3′

Reverse: 5′-CAGGCACAGGTCTTGATGAA-3′

Taqman primers and probes:

CYR61 Hs00155479_m1

HPRT1 Hs01003267_m1

2.8. RNA Interference

siRNAs and non-targeting oligonucleotide were purchased from Sigma Aldrich
(St. Louis, MO, USA). Dharmafect-1 (Dharmacon) was used for siRNA transfection, as
described by the manufacturer. After 6 h, the transfection medium was replaced with
regular medium and cells were further incubated for 48 h before analysis. The transfection
of siRNAs in HCT116 cells was performed using jetPRIME (Polyplus transfection reagent),
according to manufacturer guidelines. The transfection medium was removed, and cells
were cultured in regular medium for 48 h before further analysis.
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siRNAs sequences:
YAP#1: 5′-GACAUCUUCUGGUCAGAGAdTdT-3′

YAP#2: 5′-CUGGUCAGAGAUACUUCUUdTdT-3′

YAP#3: 5′-GGUGAUACUAUCAACCAAAdTdT-3′

TAZ#1: 5′-ACGUUGACUUAGGAACUUUdTdT-3’
TAZ#2: 5´-AGGUACUUCCUCAAUCACAdTdT-3´
cFLIP: 5′-GGGACCUUCUGGAUAUUUUdTdT-3′

Non-targeting control siRNA (Scr) 5′-CUUUGGGUGAUCUACGUUAdTdT-3′

YAP/TAZ pairs of siRNAs:

siY/T#1: siYAP#1 + siTAZ#1
siY/T#2: siYAP#2 + siTAZ#2
siY/T#3: siYAP#3 + siTAZ#2

2.9. Retroviral and Lentiviral Vectors

pQCXIH-Myc-YAP-5SA was a gift from Kunliang Guan (Addgene plasmid # 33093;
http://n2t.net/addgene:33093; accessed on 16 September 2019; RRID:Addgene_33093),
FUW-tetO-wtYAP was a gift from Stefano Piccolo (Addgene plasmid # 84009;
http://n2t.net/addgene:84009; accessed on 17 September 2019; RRID:Addgene_84009),
FUW-tetO-EGFP was a gift from Stefano Piccolo (Addgene plasmid # 84041;
http://n2t.net/addgene:84041; accessed on 17 September 2019; RRID:Addgene_84041),
FUdeltaGW-rtTA was a gift from Konrad Hochedlinger (Addgene plasmid # 19780;
http://n2t.net/addgene:19780; accessed on 17 September 2019; RRID:Addgene_19780) and
pInducer20 EGFP-TEADi was a gift from Ramiro Iglesias-Bartolome (Addgene plasmid #
140145; http://n2t.net/addgene:140145; accessed on 4 September 2020;
RRID:Addgene_140145). All these vectors for stable gene expression were obtained from
the Addgene plasmid repository (Watertown, MA, USA). The pBabe puro vector has been
described previously [35]. To perform silencing experiments, shRNAs against caspase-8 and
TRAILR2, in a pSUPER vector (OligoEngine, Seattle, WA, USA), were digested and cloned
between EcoR1 and Cla1 into a H1 promoter-driven GFP-encoding pLVTHM lentiviral
vector [36].

shRNAs sequences:

TRAIL-R2: 5′-GATCCCCGACCCTTGTGCTCGTTGTCTTCAAGAGA
GACAACGAGCACAAGGGTCTTTTTTA-3′

Caspase-8: 5′-GATCCCCGGAGCTGCTCTTCCGAATTTTCAAGAG
AAATTCGGAAGAGCAGCTCCTTTTTA-3′

Scrambled (Scr): 5′-GATCCCCCTTTGGGTGATCTACGTTATTCAAGAGA
TAACGTAGATCACCCAAAGTTTTTA-3′

To produce lentiviruses and retroviruses, HEK293-T cells were transfected with the
corresponding vectors using the calcium phosphate method. After 48 h, lentivirus- or
retrovirus-containing supernatants were collected, and viruses were concentrated
via ultracentrifugation.

2.10. Generation of A549 Cell Lines

A549 cell lines were obtained after infection with lentiviruses or retroviruses, and selec-
tion was performed in medium with the corresponding antibiotic: puromycin (1.5 µg/mL),
hygromycin (200 µg/mL) or G-418 (1 mg/mL). The infection of tumor cells with GFP-
expressing lentiviruses was determined via flow cytometry.

2.11. Immunofluorescence

Cells were grown on coverslips and fixed for 10 min in 4% paraformaldehyde at room
temperature. Following permeabilization with Triton X-100 (0.5%), cells on coverslips were
incubated at room temperature for 1 h with primary antibodies diluted in blocking buffer.
After washing with 0.1% PBS-Tween, cells were stained for 1 h with fluorescently labelled

http://n2t.net/addgene:33093
http://n2t.net/addgene:84009
http://n2t.net/addgene:84041
http://n2t.net/addgene:19780
http://n2t.net/addgene:140145
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secondary antibody. Images were acquired with an Axio Imager 2 Zeiss microscope (Zeiss,
Oberkochen, Germany). The nuclear localization of YAP was determined by calculating the
ratio between nuclear YAP fluorescence and fluorescence in the cytoplasmic region imme-
diately adjacent. Co-staining the nucleus with DAPI was used as a criteria to differentiate
nuclear and cytoplasmic regions. Images analysis was performed using ImageJ software,
Version 1.0.

2.12. Assessment of Luciferase Activity

YAP/TAZ-responsive reporter 8xGTII–luciferase plasmid (a gift from Stefano Piccolo,
Addgene plasmid #34615; http://n2t.net/addgene:34615; accessed on 16 December 2020;
RRID: Addgene_34615) was transfected in A549 cells together with a Renilla plasmid
to normalize for transfection efficiency. Six hours after transfection, cells were treated
with doxycycline (1 µg/mL, A549-iTEAD cells) or XAV939 (5 µM, A549 cells) during
24 h before collection. Luciferase activity in cell lysates was assessed using the Dual-
Luciferase Reporter Assay System (Promega, Madison, WI, USA). Samples were analyzed
in a Varioskan Flash microplate reader (Thermo Electron Corporation, Waltham, MA, USA).
Every experimental condition was performed in duplicate.

2.13. Quantitative Analysis of Caspase-8 Activity

Cells growing in 6-well plates were treated as indicated in the figure legend. Following
collection, cells were washed with PBS and resuspended in regular medium. After 90 min-
incubation, caspase-8 activity was assessed using the Caspase-Glo®®8 Assay (Promega,
Madison, WI, USA) by measuring the luminescence intensity in a Varioskan Flash mi-
croplate reader. Every experimental condition was performed in duplicate.

2.14. Global Protein Synthesis Determination by the SUnSET Method

General protein synthesis was assessed by the non-isotopic SUnSET assay as pre-
viously described [37]. Cells were pulse-labelled with puromycin and proteins in cell
lysates were separated by denaturing electrophoresis. Rate of protein synthesis was de-
termined via Western blot with an anti-puromycin antibody (clone 12d10, MABE343,
Merck/Sigma Aldrich).

2.15. Statistics

Results are presented as the mean ± SD. Experiments were performed independently
at least three times. GraphPAD Prism 8 software was used to carry out the statistical
analysis (GraphPad Software, San Diego, CA, USA). The statistical tests used are indicated
in the figure legends. p < 0.05 was considered significant. * p < 0.05; ** p < 0.01; *** p < 0.001;
**** p < 0.0001.

3. Results
3.1. Control of TRAIL Sensitivity by the Mevalonate Pathway in Cancer Cells

Simvastatin, a mevalonate pathway inhibitor widely used in the treatment of cardio-
vascular disease, also shows inhibitory effects on various types of cancers [38]. Interestingly,
different studies have described that inhibiting the mevalonate pathway with statins sen-
sitizes tumor cells to apoptosis induction by death ligand TRAIL [18–20]. However, the
signaling mechanism involved in this synergistic action remains poorly understood. To
investigate the molecular mechanism responsible for the sensitization to TRAIL in tumor
cells treated with statins, different tumor cell lines were incubated for 24 h with simvastatin
followed by treatment with TRAIL for a further 24 h-period. In these cell lines, simvastatin
significantly sensitized the cells to TRAIL-induced apoptosis (Figure 1A). Statins inhibit
the enzymatic activity of HMG-CoA reductase, thus reducing the levels of the downstream
metabolites of the mevalonate pathway [11]. To validate the on-target effects of simvastatin
increasing the sensitivity of tumor cells to TRAIL, we carried out the rescue experiments
via the supplementation of simvastatin-treated tumor cell cultures with mevalonate. Our

http://n2t.net/addgene:34615
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results clearly indicated that simvastatin-mediated sensitization to TRAIL was abolished
when cells were treated with the statin in the presence of mevalonate, prior to the addi-
tion of TRAIL (Figure 1A). These results were confirmed in experiments performed with
cerivastatin, another inhibitor of HMG-CoA reductase (Figure 1B).
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Figure 1. Inhibition of the mevalonate pathway by statins sensitizes cancer cells to TRAIL. Apoptosis
in cancer cells treated with (A) simvastatin (Simv, 5 µM) or (B) cerivastatin (Ceriv, 1 µM), in the
presence or absence of mevalonate (Mev, 0.5 mM) during 24 h prior to incubation with or with-
out TRAIL. Cell death was determined via the quantification of hypodiploid cells through flow
cytometry (5 × 103 cells/sample) (A549, MDA-MB468, HCT116). In HeLa cells, cell viability was
assessed via propidium iodide uptake. Data show the mean ± SD of at least three independent
experiments. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001. Two-way ANOVA with Tukey´s
multi-comparisons test.

Collectively, our results demonstrate that the sensitivity of these tumor cells to the
induction of the apoptotic pathway by TRAIL significantly depends on the levels of metabo-
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lites of the mevalonate pathway downstream of the activation of HMG-CoA reductase, the
rate-limiting enzyme in the mevalonate pathway [11].

3.2. Metabolic Control of YAP/TAZ Subcellular Localization and Activity by the Mevalonate
Pathway in Cancer Cells

Several studies have shown that the mevalonate pathway could be involved in the
regulation of YAP/TAZ subcellular localization and activity in cancer cells [31–33]. Given
the important role of YAP/TAZ in cancer cell survival [25,27], we examined whether
YAP/TAZ may function as downstream effectors of the mevalonate pathway to promote
resistance to TRAIL. First, we monitored by immunofluorescence the effect of simvastatin on
the subcellular localization of YAP/TAZ in both the human lung adenocarcinoma cell line
A549 and the triple-negative breast cancer cell line MDA-MB468 (Figure 2A). Interestingly,
simvastatin treatment induced a significant cytoplasmic re-localization of YAP/TAZ in both
cell lines (Figure 2A). Similar results were obtained by treating these cells with cerivastatin
(Figure 2B). Importantly, the cytoplasmic re-localization of YAP/TAZ was not observed in
cells treated with statins when mevalonate was added to the culture medium (Figure 2A,B).
Moreover, we evaluated the effect of inhibiting the mevalonate pathway on CYR61 gene
expression, a downstream target of the YAP/TAZ/TEAD transcriptional system [39]. Data
shown in Figure 2C indicate that CYR61 gene expression was markedly impeded by
simvastatin treatment and that mevalonate addition completely prevented the inhibition of
YAP/TAZ/TEAD activity by the statin.

3.3. Inhibition of YAP/TAZ Signaling Mediates Statin-Induced Sensitization to TRAIL

The mevalonate pathway is known to be involved in the regulation of YAP/TAZ
phosphorylation and activity independently of LATS1/2 kinases [33]. To determine whether
the decreased YAP/TAZ signaling observed in cancer cells treated with statins plays a role
in the sensitization to TRAIL-induced apoptosis, we first generated A549 cells expressing
an activated form of YAP (YAP5SA), lacking inhibitory phosphorylation sites. As shown in
Figure 3A, the expression of YAP5SA in A549 cells was sufficient to prevent simvastatin-
induced sensitization to TRAIL.
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Figure 2. Nuclear localization and activity of YAP/TAZ are regulated by the mevalonate pathway
in cancer cells. (A) Representative images of YAP/TAZ immunofluorescence (left panel) in cells
treated with dimethylsulphoxide (NT) or simvastatin (Simv) alone or with mevalonate (Mev) for
24 h. Quantification of nuclear/cytosolic YAP/TAZ (right panel) from three independent experi-
ments. (B) Representative images of YAP/TAZ immunofluorescence (left panel) in cells treated with
dimethylsulphoxide (NT) or cerivastatin (Ceriv) alone or with mevalonate (Mev) for 24 h. Quantifi-
cation of nuclear/cytosolic YAP/TAZ (right panel) from three independent experiments. At least
100 cells were analyzed in every experiment. Scale bars, 25 µm. (C) A549 cells were cultured with
dimethylsulphoxide (NT) or simvastatin (Simv) alone or with mevalonate (Mev) for 24 h, and CYR61
mRNA levels were assessed using RT-qPCR. Data show the mean ± SD of at least three independent
experiments. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001. Two-way ANOVA with Tukey´s
multi-comparisons test.
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To further demonstrate the role of YAP/TAZ proteins in the control of TRAIL sensitiv-
ity in cancer cells, we performed the simultaneous knockdown of YAP and TAZ proteins in
the various cancer cell lines using two independent sets (siY/T#1 and siY/T#2) of previ-
ously validated YAP and TAZ siRNAs [40]. As shown in Figure 3B, YAP/TAZ knockdown
significantly sensitized cancer cells to TRAIL-induced apoptosis. Importantly, sensitization
to TRAIL by YAP/TAZ siRNAs was not observed in cells expressing a siRNA-insensitive
form of wild-type YAP (Figure 3C).



Cells 2023, 12, 2370 10 of 19

3.4. Control of TRAIL Sensitivity by the YAP/TAZ-TEAD Signaling Module

Collectively, the above data suggest that transcriptional co-activators YAP/TAZ are
involved in the regulation of TRAIL sensitivity by the mevalonate pathway in cancer cells.
Nuclear YAP/TAZ mainly execute their transcriptional functions through their binding to
members of the TEAD family of transcription factors [41,42]. To investigate the role of the
YAP/TAZ-TEAD system in the control TRAIL sensitivity, we initially assessed the effect of the
tankyrase inhibitor XAV939, a well-known inhibitor of TEAD activity [43], in the apoptotic
response of cancer cells to TRAIL. As shown in Figure 4A, XAV939 treatment markedly
decreased TEAD reporter activity in A549 cells. Interestingly, the incubation of A549 cells
with XAV939 significantly sensitized these cells to TRAIL-induced apoptosis (Figure 4B).
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Figure 4. Regulation of sensitivity of cancer cells to TRAIL by the YAP/TAZ-TEAD signaling module.
(A) A549 cells were cultured in the presence or absence of XAV939 5 µM for 24 h and transcriptional
activity of TEAD was determined with a luciferase reporter that contains tandem TEAD-binding
sites. (B) A549 cells were treated as in (A) before adding TRAIL for 24 h. Cell death was assessed
via subG1 quantification (5 × 103 cells/sample). (C) Microscope images showing GFP expression in
iTEAD cells after doxycycline treatment (1 µg/mL, 24 h). (D) TEAD transcriptional activity measured
via luciferase assay in A549 iTEAD cells cultured for 24 h in the presence or absence of doxycycline
(1 µg/mL). (E) A549 iTEAD cells were treated with Doxycycline for 24 h before TRAIL treatment for
24 h. Cell death was measured as a quantification of subG1 population. Data show the mean ± SD of
at least three independent experiments. ** p < 0.01; *** p < 0.001; **** p < 0.0001, unpaired t-test (A,D).
Two-way ANOVA with Tukey´s multi-comparisons test (B,E).
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To further demonstrate the role of the YAP/TAZ-TEAD signaling module in the
regulation of TRAIL sensitivity in cancer cells, A549 cells expressing TEADi, an inhibitor of
the interaction of YAP and TAZ with TEAD [44], were generated through infection with a
tetracycline-inducible TEADi-GFP lentiviral vector (Figure 4C). The expression of TEADi
in A549 cells markedly inhibited TEAD reporter activity (Figure 4D) and significantly
sensitized these cells to TRAIL-induced apoptosis (Figure 4E).

3.5. YAP/TAZ-TEAD Signaling Confers Resistance to TRAIL-Induced Apoptosis by Controlling
cFLIP Levels in Cancer Cells

Initiator caspase-8 is an essential component of the extrinsic pathway of apoptosis sig-
naling induced upon death receptor activation by their cognate ligands [3,4,45] and cellular
stress [46–49]. Furthermore, a growing body of evidences indicates that the activation of
the mitochondria-operated pathway is a key event in the feedback amplification of apical
apoptotic caspases by effector caspases [50]. To obtain further insight into the mechanism
underlying the sensitization of cancer cells to TRAIL by statins, we first examined the
role of the mitochondria in the induction of apoptosis by TRAIL upon YAP/TAZ knock-
down. To this end, YAP/TAZ silencing was performed in HCT116 cells and their Bax/Bak
deficient counterparts prior to treatment with TRAIL and apoptosis was then assessed.
Results shown in Figure 5A illustrate that sensitization to TRAIL-induced apoptosis via
YAP/TAZ knockdown was completely blocked in Bax/Bak KO cells. We next assessed the
caspase-8 activation state in Bax/Bak KO cells, in which sensitization to TRAIL-induced
apoptosis by YAP/TAZ silencing was completely inhibited. Interestingly, sensitization
to TRAIL-induced caspase-8 processing (Figure 5B) and activation (Figure 5C) through
YAP/TAZ knockdown were still observed in Bax/Bak KO cells, indicating that YAP/TAZ
regulates early signaling in the extrinsic apoptotic pathway, although signal amplification
through the mitochondrial pathway [50] is required to complete the apoptotic process.
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Figure 5. YAP/TAZ knockdown facilitates the TRAIL-induced activation of apical caspase-8 in
cancer cells. (A) Wild type (WT) or Bax/Bak DKO HCT116 cells were transfected with siRNA
oligonucleotides targeting both YAP and TAZ (YAP/TAZ#1). A scrambled RNA oligonucleotide was
also used as non-targeting control oligonucleotide. After 30 h, cells were treated with TRAIL for
24 h and apoptosis determined via subG1 analysis (5 × 103 cells/sample). Protein knockdown was
confirmed via immunoblot analysis. (B) HCT116 Bax/Bak DKO cells were transfected as in (A) and
then treated with TRAIL (50 ng/mL) for the indicated times. Caspase-8 processing was analyzed via
Western blotting. (C) HCT116 Bax/Bak DKO cells were transfected as in (A) and then treated for 2 h
with TRAIL. Caspase-8 activity was determined as described in the Materials and Methods section.
Data show the mean ± SD from three independent experiments. **** p < 0.0001. Two-way ANOVA
with Tukey´s multi-comparisons test.

The anti-apoptotic proteins cFLIPL and cFLIPS are key regulators of apical caspase-8
activation upon TRAIL receptor clustering by TRAIL [5,51,52] and cellular stress [53,54].
To further investigate the mechanism responsible for statin-mediated sensitization to
TRAIL, we initially determined cFLIP levels in cells treated with simvastatin. As shown
in Figure 6A, the treatment of A549 cells with simvastatin down-regulated the expression
of both cFLIPL and cFLIPs proteins. Importantly, cFLIP loss in cells treated with sim-
vastatin was prevented if mevalonate was added to the cell cultures (Figure 6A), further
supporting the role of the mevalonate pathway in controlling the cellular levels of these
anti-apoptotic proteins.

We also examined the role of the YAP/TAZ-TEAD module in the control of cFLIP
expression in cancer cells by performing the genetic knockdown of YAP/TAZ using two
different sets of siRNAs that efficiently silenced their expression in A549 and HCT116 cells
(Figure 6B). Interestingly, YAP/TAZ knockdown resulted in a marked down-regulation of
both cFLIPL and cFLIPs expression levels in these cancer cells (Figure 6B). The role of the
YAP/TAZ-TEAD signaling module in the control of cFLIP expression was also investigated
with the tankyrase inhibitor XAV939 that efficiently reduced TEAD reporter activity in
A549 cells (Figure 4A). Inhibiting TEAD activity with XAV939 resulted in a significant
down-regulation of cFLIP proteins in these cancer cells (Figure 6C). The importance of
YAP/TAZ-TEAD signaling in the control of cFLIP protein levels was further assessed in
A549 cells expressing a tetracycline-inducible inhibitor of TEAD activity (TEADi-GFP).
Results shown in Figure 6D demonstrate that inducing the expression of TEADi-GFP with
doxycycline caused a marked loss of both cFLIPL and cFLIPs isoforms in A549 cells.
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Figure 6. Control of cFLIP levels in cancer cells by the YAP/TAZ-TEAD signaling module.
(A) A549 cells were treated with simvastatin (Simv, 5 µM) in the presence or absence of meval-
onate (Mev, 0.5 mM) for 30 h, and cFLIP levels were analyzed via Western blotting. (B) Cells were
transfected with siRNA oligonucleotides targeting both YAP and TAZ (#1 and #3). A scrambled RNA
was also used as non-targeting control oligonucleotide (SC). After 30 h, cFLIP levels were analyzed
via Western blotting. (C) A549 cells were treated with XAV939 5 µM for 24 h, and cFLIP levels cells
were analyzed via Western blotting. (D) A549 iTEAD cells were treated with doxycycline for 24 h and
cFLIP levels cells were analyzed via Western blotting. (E) A549 cells were treated as in (A) and mRNA
levels of both cFLIP isoforms, and CTGF were determined via real time-qPCR. (F) A549 cells were
either treated as in (A) or transfected with siRNA oligonucleotides targeting YAP/TAZ (YT#1), as
indicated in (B). Puromycin (1 µg/mL) was added for the last 10 min of incubation. The incorporation
of puromycin into cellular proteins during the 10 min pulse was determined via Western blotting with
an anti-puromycin antibody, as described in the Materials and Methods section. (G) A549 cells were
transfected with siRNA oligonucleotides targeting both cFLIP isoforms (Fd). After 6 h, cells were
treated with TRAIL for 24 h. Cell death was analyzed via subG1 quantification (5× 103 cells/sample).
Protein knockdown was assessed via immunoblot analysis. Data show the mean ± SD of at least
three independent experiments. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001. Two-way ANOVA
with Tukey´s multi-comparisons test.

To investigate the mechanism underlying the observed down-regulation of cFLIP
proteins levels upon the inhibition of the mevalonate pathway with simvastatin, we first
assessed cFLIP mRNA levels in A549 tumor cells treated with the statin (Figure 6E) at a
dose that induces maximal sensitization to TRAIL (Figure 1A). A significant decrease in the
mRNA levels of both cFLIP isoforms was observed in tumor cells treated with simvastatin
at a concentration that caused a marked inhibition of CTGF gene expression (Figure 6E),
a downstream target of the YAP/TAZ/TEAD transcriptional module. Additionally, sim-
vastatin has been reported to repress protein synthesis by reducing the cellular levels of
eukaryotic initiation factor 2B [55]. Cellular FLIP isoforms are short-lived proteins that
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can be degraded by the proteasome after ubiquitination [56]. Consequently, a reduction in
the global rate of protein synthesis following statins treatment could result in cFLIP loss
through proteasomal degradation, and this modulation may lead to TRAIL sensitization.
Therefore, we first assessed the rate of global protein synthesis inhibition upon statin
treatment. Data shown in Figure 6F demonstrate that protein synthesis was reduced in
tumor cells treated with simvastatin and restored in the presence of mevalonate (Figure 6F),
which closely correlated with the regulation of FLIP levels in these cells by the mevalonate
pathway. Global protein synthesis was also attenuated following YAP/TAZ knockdown in
A549 cells (Figure 6F), which may also explain the down-regulation of cFLIP expression
observed under these conditions (Figure 6B). To demonstrate the importance of the loss of
cFLIP proteins observed in cells treated with simvastatin or by targeting YAP/TAZ-TEAD
signaling in the sensitization to TRAIL-induced apoptosis, we depleted both cFLIP iso-
forms in A549 cancer cells with a siRNA oligonucleotide set prior to treatment with TRAIL.
As shown in Figure 6G, the simultaneous silencing of the two cFLIP isoforms markedly
sensitized these cancer cells to TRAIL-induced apoptosis.

Taken together, the above results suggest that the metabolic control of YAP/TAZ-
TEAD transcriptional activity by the mevalonate pathway may represent an important
mechanism controlling the expression of cFLIP (Figure 7), a key modulator of caspase-8
activity, and thus regulates the response of cancer cells to the clustering of proapoptotic
receptors by death ligand TRAIL. We cannot rule out that changes in the expression levels
of regulators of the bcl-2 family by statins may also be involved in facilitating the activation
of the mitochondrial pathway of apoptosis upon TRAIL receptor activation by its ligand.
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4. Discussion

TRAIL has long been reported to be a potent inducer of apoptosis in tumor cells, with
non-transformed cells being more resistant to the pro-apoptotic action of this cell death
ligand [1,2]. Based on these preclinical observations, different clinical trials on the use
of TRAIL and agonistic TRAIL receptor antibodies for human cancer therapy have been
undertaken [57]. However, primary tumors are normally resistant to TRAIL [58], and these
findings may explain why clinical trials conducted so far have not achieved the expected
results [57,59]. Therefore, deciphering the molecular determinants and signaling pathways
responsible for TRAIL resistance should provide new targets for therapeutic intervention.
In this way, sensitizing resistant tumor cells to TRAIL-induced apoptosis through different
strategies would increase the therapeutic potential of TRAIL.
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The metabolic control of the sensitivity of tumor cells to TRAIL-induced apoptosis
has been the subject of different studies [8,60,61]. In this regard, the role of the mevalonate
pathway in the control of the apoptotic response of tumor cells to TRAIL has been previously
reported [18–20], although the mechanism involved has not yet been revealed. In our study,
we demonstrate that inhibiting with statins the activity of HMG-CoA reductase, the rate-
limiting enzyme in the mevalonate pathway [12,13], down-regulates cFLIP levels and
facilitates the activation of an apoptotic process by TRAIL in different human cancer cell
lines, by hindering the nuclear localization of the transcriptional coactivators YAP and TAZ.

The decrease in cFLIPL levels upon statin treatment observed in our work could result
in an elevation of the caspase-8/cFLIPL ratio in the DISC of statin-treated cells, which
should facilitate caspase-8 activation and promote apoptosis [52,62]. In this regard, it has
been shown that different treatments inducing the down-regulation of cFLIP frequently
lead to subsequent sensitization to TRAIL-induced apoptosis [10,63–65]. Moreover, the
pivotal role of cFLIP down-regulation in TRAILR2-mediated apoptosis has been also
demonstrated in tumor cells undergoing endoplasmic reticulum [53] or metabolic stress [54].
Importantly, elevated levels of cFLIP isoforms have been reported in human tumor samples
from different cancers [66], suggesting a pro-tumoral role of this inhibitor of the extrinsic
apoptotic pathway. Therefore, inhibiting cFLIP function by targeting the Hippo pathway
downstream effectors YAP/TAZ may represent a potential antitumor strategy [67].

In addition to reducing the expression of a key regulator of the extrinsic apoptotic
pathway like cFLIP, the inhibition of the mevalonate pathway via the treatment of can-
cer cells with statins may also promote the TRAIL-induced activation of apoptosis by
enhancing the expression of apoptotic TRAIL receptors in glioblastoma and prostate cancer
cells [20,68]. Furthermore, by lowering the levels of Bcl-2 and up-regulating pro-apoptotic
Bax expression in cancer cells, statins may enable the activation of the intrinsic pathway
of apoptosis [69], thus facilitating the amplification of apoptosis signaling through the
mitochondria [50].

Agonistic antibodies against proapoptotic TRAIL receptors and non-tagged versions
of recombinant TRAIL have been tested in clinical trials of various malignancies [57]. Unfor-
tunately, despite broad tolerability, the clinical benefit of these TRAIL-based monotherapies
has been rather limited, likely due, among other reasons, to the intrinsic resistance of
most primary human tumors and the low agonistic activity of these agents [59]. Therefore,
second-generation formulations of TRAIL and agonistic antibodies have been developed
to increase the agonistic bioactivity against tumor cells [59,70]. In this context, our data
suggest that the pharmacologic targeting of YAP/TAZ-TEAD transcriptional signaling with
benzoporphyrin derivatives or allosteric inhibitors [71,72] may synergize with agonists of
apoptotic TRAIL receptors to overcome the TRAIL resistance of tumor cells. Collectively,
our results on the regulation of the YAP/TAZ-TEAD system by the mevalonate pathway in
tumor cells warrant further studies to ascertain the feasibility of inhibiting this pathway
with statins for therapeutic intervention in cancer, in combination with novel agonists of
pro-apoptotic TRAIL receptors.

5. Conclusions

Since the initial reports of the pro-apoptotic effect of TRAIL on tumor cells and its
lack of toxicity in clinical trials, TRAIL has been considered a potential antitumor therapy.
However, the various clinical trials conducted using TRAIL as a monotherapy have not
confirmed these encouraging data. Therefore, it has become essential to find treatments
that can sensitize tumor cells to the pro-apoptotic action of TRAIL without increasing
the toxicity of these combined therapies. Our results have shown that the inhibition of
the metabolic pathway of mevalonate by statins in various tumor cell lines facilitates the
activation of the extrinsic pathway of apoptosis by TRAIL and the death of these tumor
cells. Our studies also indicate that this sensitizing action of statins is due to their inhibitory
effect on the YAP/TAZ-TEAD transcriptional module. In conclusion, our results suggest
that modulating the activity of the Hippo pathway may represent a therapeutic strategy
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that overcomes the resistance of tumor cells to TRAIL. However, preclinical work should
be performed to confirm this hypothesis before its application as an antitumor therapy in
humans could be considered.
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