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Abstract: CD40-targeting therapies can enhance the dendritic cell priming of tumor-specific T cells
and repolarize intratumoral macrophages to alleviate the tumoral immunosuppressive environment
and remodel the extracellular matrix. Mitazalimab is a potent agonistic CD40 monoclonal IgG1
antibody currently under clinical development. This study used RNA sequencing of blood samples
from a subset of patients from a Phase I trial with mitazalimab (NCT02829099) to assess peripheral
pharmacodynamic activity. We found that mitazalimab induced transient peripheral transcriptomic
alterations (at 600 µg/kg and 900 µg/kg dose administered intravenously), which mainly were
attributed to immune activation. In particular, the transcriptomic alterations showed a reduction in
effector cells (e.g., CD8+ T cells and natural killer cells) and B cells peripherally with the remaining
cells (e.g., dendritic cells, monocytes, B cells, and natural killer cells) showing transcription profiles
consistent with activation. Lastly, distinct patient subgroups based on the pattern of transcriptomic
alterations could be identified. In summary, the data presented herein reinforce the anticipated mode
of action of mitazalimab and support its ongoing clinical development.

Keywords: CD40; mitazalimab; pharmacodynamics; RNA sequencing; cancer

1. Introduction

The advent of immune checkpoint inhibitors (ICIs) has profoundly transformed cancer
therapy, offering a potential remedy for individuals with advanced or metastatic cancer [1].
However, the efficacy of ICI therapy relies on the presence of an existing immune response
within the tumor microenvironment (TME), including the infiltration of CD8+ T cells. Con-
sequently, tumors that lack sufficient T-cell infiltration or exhibit impaired T-cell priming
remain a significant unmet clinical need [2]. Furthermore, many tumors, e.g., pancreatic
tumors, contain a desmoplastic stroma that hosts suppressive myeloid cells such as tumor-
associated macrophages that dampen the immune response in the TME [3]. The ability to
overcome these challenges may significantly improve the efficacy and outcome of existing
and future treatment principles in solid tumors.

CD40, a member of the tumor necrosis factor receptor superfamily, is expressed on
the surface of immune cells (e.g., dendritic cells (DCs), B cells, and macrophages) as well
as on other cell types such as epithelial, endothelial, and neoplastic cells [4]. Signaling
through CD40 promotes the ability of DCs to prime T-cell responses [5], and therapies
targeting CD40 have emerged as a promising strategy to overcome resistance to ICIs [6,7].
CD40-targeting therapies aimed at augmenting the priming of tumor-specific T cells have
the potential to increase response rates in approved indications where ICI therapies have
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limited efficacy, as well as expand the scope of eligible immunotherapy indications [1], by
making the tumors more inflamed via pathways such as type I interferon [8], effectively
turning immunological cold tumors hot [9]. Additionally, CD40 signaling in macrophages
can potentially alleviate the immunosuppressive TME and remodel the extracellular ma-
trix [6,10]. Clinical evidence supporting the benefits of immunotherapy with agonistic
CD40 antibodies, either as monotherapy or in combination therapy, is emerging, and
second-generation CD40 agonists are currently under clinical development [6,7,11,12].

Mitazalimab, a CD40-targeting agonistic human monoclonal IgG1 antibody (mAb),
is being developed as immunotherapy for advanced solid tumors. Preclinically, mitaza-
limab has shown significant antitumor activity and long-term tumor-specific immunity
in human CD40-transgenic mice as well as antitumor activity in immune-deficient NSG
mice [13]. Clinically, mitazalimab has been proven to have a manageable safety profile
and pharmacodynamic activity consistent with its proposed mechanism of action and
demonstrated promising clinical activity in an ongoing Phase 2 study in metastatic pancre-
atic cancer (OPTIMIZE-1, NCT04888312) [14,15]. Pharmacodynamic biomarkers related to
mitazalimab have been characterized both preclinically and clinically and include transient
reduction in circulating B cells, T cells, NK cells, and monocytes, where the remaining B
cells are more activated, consistent with other CD40 agonists [13–18].

In this study, the peripheral transcriptome of a subset of patients from a Phase I clinical
study of mitazalimab (NCT02829099) was explored for pharmacodynamic activity. We
found that mitazalimab transiently induces peripheral transcriptomic changes attributed
to immune activation, reinforcing its mode of action as a CD40 agonist. Furthermore, the
transcriptomic data enabled patient stratification, unveiling distinct alterations induced by
mitazalimab in two different patient groups.

2. Materials and Methods
2.1. Study Population and Design

A subset of 38 patients from a Phase I, multicenter, open-label, dose-escalation study
of mitazalimab in patients with failed standard treatment for confirmed advanced or
refractory solid malignancy (ClinicalTrials.gov: NCT02829099; Eudra CT: 2016–000969-23),
was selected for analysis using RNA sequencing. The study design and the results of
the clinical trial have previously been reported [15]. The subset of patients included in
this study received mitazalimab intravenously at four different doses (75, 200, 600, or
900 µg/kg) every two weeks in 28-day treatment cycles. Moreover, a subpopulation
(n = 5) of the included patients at 600 µg/kg received pretreatment with corticosteroids, as
described previously [15].

2.2. RNA Sequencing of Blood Samples

For bulk mRNA sequencing, blood samples were collected at baseline (cycle 1 day 1,
C1D1), 24 h after the first mitazalimab administration (cycle 1 day 2, C1D2), and before
starting the third treatment cycle (cycle 3 day 1, C3D1). RNA was extracted, processed
to reduce globin RNA, and prepared for sequencing using an Illumina TruSeq Stranded
mRNA sample preparation kit. Samples were sequenced using a 2 × 50 base pair paired-end
sequencing protocol, aligned to references genome using STAR (v2.4), and quantified using
RSEM (v1.2.14). The data were further analyzed in R (v4.2.2) and R Studio (v 2023.06.0+421).
R scripts and data to reproduce the data analysis are available in a repository on GitHub
upon request.

Gene counts matrix was analyzed to remove low expressing genes and for samples
with large inter-individual Z-score distribution. The 1500 most variable genes based
on standardized variance were selected for principal component analysis (PCA). The
effects of confounding variables were assessed by calculating the correlation between
principal components (PCs) and metadata variables from the study, using the DEGreport
package (v1.34) [19]. Raw gene counts were used for differential gene expression (DGE)
analysis using DESeq2 (v1.38.3) [20] correcting for repeated inter-patient sampling. Genes
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with absolute log2 fold changes of >1 and p-value of <0.05 were, if not otherwise stated,
considered differentially expressed. The visualization of differentially expressed genes
(DEGs) was carried out with the EnhancedVolcano package (v1.16) [21].

Heatmaps of gene expression were generated from the Z-scores of VST gene counts
using ComplexHeatmap (v2.14) [22]. If not otherwise stated, clustering related to heatmaps
was performed using the complete agglomeration of Euclidean distances. For k-mean
clustering on heatmaps, the optimal number of clusters was calculated using the Elbow
method to minimize the sum of squares within clusters [23]. Gene set enrichment analysis
(GSEA) was performed using enrichR (v3.1) [24] by querying the Gene Ontology database
(GO, GO_Biological_Processes_2018). Gene set variation analysis (GSVA) was performed on
enriched GO, to quantify the differences between conditions, using the GSVA package [25].
For the deconvolution of cell types, gene counts were transformed to transcripts per million
(TPM) and analyzed using CIBERSORTx [26] from the IOBR package (v0.99.9) [27]. The
hierarchical clustering of samples was performed using the pvclust package to provide
p-values using multiscale bootstrap resampling (v2.2) [28]. Correlation to mouse expression
was performed using Pearson correlation, as described in Supplementary Materials.

2.3. Cytokine Analysis

Blood samples were collected at baseline and 1, 4, and 24 h after mitazalimab treatment.
Samples were analyzed for serum chemokines and cytokines (interferon gamma-induced
protein (IP)-10, monocyte chemotactic protein (MCP)-1, macrophage inflammatory protein
(MIP)-1α, MIP-1β, and interleukin (IL)-10), as previously described [15]. The data were
subsequently analyzed and visualized using R and R Studio.

2.4. Statistical Testing

If not otherwise stated, the statistical analysis of parametric numerical data with
two groups was performed using Student’s t-test, and non-parametric numerical data
with three or more groups was performed using the Kruskal–Wallis test with Dunn’s test
as post hoc analysis. Bonferroni correction was applied as multiple comparison correc-
tion. Categorical data were analyzed using the Chi-square test. p-values ≤ 0.05 were
deemed significant.

3. Results
3.1. Mitazalimab Induces Transient Peripheral Transcriptomic Alterations in Patients with
Advanced Solid Tumors

We analyzed RNA sequencing data from a subgroup of patients from four selected
dose levels, with a total of 38 patients, from a clinical Phase I study investigating intravenous
mitazalimab administration at escalating doses. The patients had a median age of 56 years
(range 18–77 years) and had undergone a median of three previous systemic treatments
(range 0–9) for their malignancies and had exhausted their standard treatment options prior
to participating in the study with mitazalimab (Table 1). Indications were categorized into
17 different solid malignancies, with sarcoma and breast cancer being the most common
indications (13% and 11% of patients, respectively).

To assess the effects of mitazalimab, we first analyzed patients who did not receive
pretreatment with corticosteroids (n = 33). Initially, blood samples collected from all four
mitazalimab doses at baseline, 24 h post-mitazalimab treatment, and prior to starting the
third cycle were analyzed using PCA (Figure 1). At baseline, all samples clustered close
to the top-left quadrant of PC1 and PC2 (explaining 25% and 13% of the variation, respec-
tively), thus indicating global transcriptomic similarity at baseline. Following mitazalimab
treatment at 600 µg/kg and 900 µg/kg, a notable shift along both PC1 and PC2 towards the
bottom-right quadrant was seen, suggesting mitazalimab-induced transcriptomic changes.
However, patients treated with 75 µg/kg or 200 µg/kg did not show any obvious changes
in PC1 or PC2, indicating a suboptimal pharmacodynamic activity of mitazalimab at these
dose levels. In support of these observations, differential gene expression analysis between
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C1D1 and C1D2 in 75 µg/kg and 200 µg/kg cohorts showed few DEGs (Figure S1). Lastly,
prior to starting the third treatment cycle, the samples clustered toward the upper-left
quadrant of PC1 and PC2 in an equivalent manner as at baseline, suggesting that the
peripheral transcriptomic alterations induced by mitazalimab were transient.
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Figure 1. Schematic overview of study design and principal component analysis (PCA) of all
samples, not pretreated with corticosteroids, at all analyzed time points. Mitazalimab induced a
transient shift along both principal components (PC1 and PC2) which was most predominant at
600 µg/kg and 900 µg/kg. Colors indicate mitazalimab dose, and PC1 and PC2 explain 25% and 13%
variance, respectively.

Table 1. Demographics and baseline clinical characteristics of all included patients.

Parameter Number of Patients

n 38 *

Age, years (median (range)) 56 (18–77)

Sex, n (%) Female 19 (50.0)
Male 19 (50.0)

Corticosteroid pretreatment, n (%) No 33 (86.8)
Yes 5 (13.2)

Dose (µg/kg), n (%)

75 3 (7.9)
200 5 (13.2)
600 16 (42.1)
900 14 (36.8)
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Table 1. Cont.

Parameter Number of Patients

Cancer type, n (%) Adrenal 1 (2.6)
Breast 4 (10.5)

Cervical 2 (5.3)
Cholangiocarcinoma 3 (7.9)
Choroidal melanoma 1 (2.6)

Colorectal 3 (7.9)
Melanoma 2 (5.3)

Neuroendocrine 1 (2.6)
NSCLC 3 (7.9)

Pancreas 3 (7.9)
Rectal cancer 1 (2.6)
Renal cancer 1 (2.6)

Salivary gland 3 (7.9)
Sarcoma 5 (13.2)
Testicular 1 (2.6)
Thymus 3 (7.9)
Thyroid 1 (2.6)

Prior lines of treatment, n (%) 0–4 30 (78.9)
>4 8 (21.1)

Median (range) 3 (0–9)
* Subset of patients included in Phase I trial NCT02829099; NSCLC: non-small cell lung cancer.

3.2. Immune Activation Induced by Mitazalimab Is Detectable in Blood Transcriptome

Next, the transcriptomic changes induced by mitazalimab treatment were investigated.
To this end, the patient cohorts treated with 600 µg/kg or 900 µg/kg mitazalimab were
further studied, as no evident changes were seen at 75 µg/kg or 200 µg/kg. In DGE
analysis between C1D1 and C1D2, the 600 µg/kg and 900 µg/kg cohorts had 1027 and
485 DEGs, respectively. However, no DEGs were found between the 600 µg/kg and
900 µg/kg cohorts at C1D2 (Figure S1), thus suggesting that the difference in the number
of DEGs between the groups is attributed to differences in patient characteristics and that
the two doses of mitazalimab induce a similar acute effect on the peripheral transcriptome.

Of the DEGs in the two dose cohorts, 392 DEGs were in common for both dosing
cohorts (Figure 2A). Among the most highly upregulated genes in both dosing cohorts
were the genes typical of immune activation, such as CD274 (PD-L1) and LAMP3 (Table S1).
Pathway enrichment analysis for the gene ontology of the commonly DEG genes revealed
378 differentially regulated pathways of which 319 were related to upregulated genes
(Table S1). The most significantly differentially regulated pathways among the upregulated
genes were the cytokine-mediated signaling pathway (GO:0019221) and type I interferon
signaling pathway (GO:0060337; Figure 2B). Together, this indicates that immune activation
consistent with the mode of action of mitazalimab could be detected using RNA sequencing
in peripheral blood.

To further evaluate the biological effects of mitazalimab, we investigated a set of
well-defined immune transcripts. After treatment with either 600 µg/kg or 900 µg/kg, it
was found that the genes related to T cells (CD3E, CD4, and CD8A), MHC class II (HLA-
DQA1 and HLA-DPA1), and B cells (CD19 and MS4A1) were expressed at a lower level,
while the genes related to Fcγ receptors (FCGR1A and FCGR3B), MHC class I (HLA-B and
HLA-E), and pro-inflammatory cytokines (e.g., IL1B and TNF) were more highly expressed
than at baseline (Figure 2C). Additionally, CIBERSORTx was used to deconvolute gene
expression to cell-type abundances. This revealed a relative decrease in signature scores
of monocytes, CD8+ T cells, and NK cells and an increase in neutrophils and activated
dendritic cells in blood following mitazalimab treatment at 600 µg/kg and 900 µg/kg
(Figure 2D), suggesting the activation and migration of immune cells in line with the mode
of action. In addition, peripheral transcriptomic changes upon mitazalimab treatment
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in patients correlate well with transcriptomic changes in the preclinical in vivo model
(Figure S2).

Cells 2023, 12, x FOR PEER REVIEW 6 of 14 
 

 

 
Figure 2. Pharmacodynamic effects on peripheral transcriptome induced by mitazalimab at 600 
µg/kg and 900 µg/kg: (A) Heatmap of Z-score normalized VST transformed gene expression of the 
392 DEGs induced at both 600 µg/kg and 900 µg/kg. Paired columns show paired samples during 
pretreatment and 24 h post-treatment. (B) Pathway enrichment analysis of the 392 shared differen-
tially expressed genes in (A). The X-axis shows the log10 p-value and the dot size indicates the 

Figure 2. Pharmacodynamic effects on peripheral transcriptome induced by mitazalimab at
600 µg/kg and 900 µg/kg: (A) Heatmap of Z-score normalized VST transformed gene expres-
sion of the 392 DEGs induced at both 600 µg/kg and 900 µg/kg. Paired columns show paired
samples during pretreatment and 24 h post-treatment. (B) Pathway enrichment analysis of the 392
shared differentially expressed genes in (A). The X-axis shows the log10 p-value and the dot size
indicates the number of genes represented in each pathway. (C) Box plots of selected genes illustrate
the effect of mitazalimab on immune cells, particularly on effector cells and antigen-presenting cells.
Dots represent the expression values of individual patients. (D) Relative frequencies of deconvoluted
gene types as estimated using CIBERSORTx at C1D1, for each dose cohort at C1D2, and at C3D1.
Dots represent individual values. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001.
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The potential influence of pretreatment with corticosteroids on the effects of mitazal-
imab was investigated in patients receiving 600 µg/kg mitazalimab with (n = 5) or without
(n = 15) corticosteroids. PCA revealed a less pronounced mitazalimab effect along PC1
in patients with corticosteroid pretreatment and with a tendency of separation between
patient cohorts along PC4 (8% variability; Figure S3A). Differential gene expression anal-
ysis showed higher expression of genes typically related to immune activation, such as
LAMP3, in patients who had not been pretreated with corticosteroids (Figure S3B and
Table S2). This was further supported by pathway enrichment analysis indicating that
the most significantly differentially regulated pathways among genes with higher expres-
sion in patients without corticosteroid pretreatment were the cytokine-mediated signaling
pathway (GO:0019221) and type I interferon signaling pathway (GO:0060337; Figure S3C).
Overall, the results show that mitazalimab treatment without corticosteroid pretreatment
induced stronger inflammatory gene expression.

3.3. Transcriptomic Analysis Revealed a Distinct Response Pattern in a Subset of the Patients

Next, we investigated subject similarities across the dataset and applied hierarchical
clustering using a multiscale bootstrap resampling of the 1500 most variable genes across
all samples treated with 600 µg/kg or 900 µg/kg mitazalimab at C1D1, C1D2, and C3D1.
By doing so, a significant cluster of 10 patients (named patient group 1) that had received
mitazalimab at either 600 µg/kg or 900 µg/kg was apparent (p < 0.05). The remaining
patients (n = 14, named patient group 2) did not cluster in a significant way (Figure 3A).
The heatmap visualization of the gene expression of the 1500 most variable genes revealed
a distinct gene cluster of upregulated genes in patient group 1 (Figure 3A). Pathway
enrichment suggests that these genes were related to cytokine-mediated signaling in general
and type I interferon (IFN) signaling in particular (Figure S4A). Dimension reduction based
on the PCA of data points from C1D1 and C1D2 echoed the separation between the two
patient groups at C1D2 along PC1 (31% variability; Figure 3B).

Mitazalimab was found to have a more pronounced effect on the peripheral tran-
scriptome of patient group 1 than on that of patient group 2, with 1610 and 237 DEGs in
the respective group (Figure 3C). The two patient groups shared 166 DEGs, which were
mainly found to be significantly enriched in the cytokine-mediated signaling pathway
(Figure S4B). Additionally, among the 1444 DEGs specific to patient group 1, the type I
interferon signaling pathway was significantly enriched (Figure S4C). Gene set variation
analysis (GSVA) echoed these findings, quantifying a higher expression of genes in the two
aforementioned pathways as well as in genes related to the negative regulation of IL-10
(Figure 3D). The CIBERSORTx estimation of gene-type abundances showed a reduction in
CD8+ T cells, resting NK cells, and B cells in both patient groups 1 and 2 at C1D2, albeit to
a lesser extent in group 2. Furthermore, an increased abundance of activated dendritic cells
was observed in patient group 1 (Figure 3E). Together, these findings indicate an immune
activation in both patient groups but with the more noticeable transcriptomic alterations
induced in patient group 1, mainly resulting from a type I interferon-like response.

To further evaluate the differences in immune responses between the groups, we first
compared the expression of genes related to the regulation of interferon responses, by
utilizing gene signatures previously identified in interferon-stimulated monocytes [29].
By doing so, a markedly higher expression of these genes was seen in patient group 1
compared with group 2 (Figure 4A). Second, the canonical immune-related transcripts were
explored. An equal reduction in B cell-related transcripts (CD19 and MS4A1) was seen in
both patient groups (Figure 4B). Furthermore, a reduction in CD3E and CD4 was observed
in both groups, although mainly in group 1, whereas a reduction in CD8A was only seen in
patient group 1. Moreover, an increase in transcripts related to MHC class I (HLA-B, HLA-C,
and HLA-E) was only observed in patient group 1.
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Figure 3. RNA sequencing data allowed for patient stratification with distinct mitazalimab-induced
transcriptomic alterations in the patient groups: (A) Z-normalized VST transformed gene expres-
sion of the 1500 most variable genes across the 600 µg/kg and 900 µg/kg cohort. The top den-
drogram shows the result of multiscale bootstrapping hierarchical clustering. One larger cluster
(p-value < 0.05), containing samples at C1D2 treated with either 600 µg/kg or 900 µg/kg mitazalimab,
was evident. This cluster was named patient group 1, and the rest of the samples were named
patient group 2. (B) A similar clustering was seen in PCA of samples treated with 600 µg/kg or
900 µg/kg, at C1D1 and C1D2. (C) Volcano plots comparing C1D1 against C1D2 in patient groups
1 and 2. In general, a more prominent peripheral transcriptomic effect was seen in patient group 1.
(D) Radar chart depicting the results of gene set variation analysis of selected GO pathways for the
respective patient groups and samples at baseline. (E) Stacked bar plot of relative frequencies of the
deconvoluted gene types from CIBERSORTx at C1D1 and C1D2 stratified based on patient group
and C3D1.
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Figure 4. Mitazalimab-induced immune activation in patient groups stratified based on peripheral
transcriptomic alterations: (A) Samples from patient group 1 showed higher expression of genes
previously identified in interferon-stimulated monocytes (Table S4). The heatmap shows Z-score
normalized VST gene expression with columns representing samples at either C1D1 or C1D2 stratified
into patient groups. (B) Expression of immunologically relevant genes after mitazalimab treatment.
Samples from C1D1 and C3D1 are grouped, and samples from C1D2 are stratified into identified
patient groups. Dots show individual values. Dots represent individual values. * p < 0.05; ** p < 0.01;
*** p < 0.001; **** p < 0.0001. (C) Serum cytokine levels after mitazalimab administration. Values are
stratified based on patient groups identified from RNA sequencing data. Thick lines represent group
means and thin lines indicate individual values.

Next, we evaluated how the stratification based on transcriptomic profiles translated
into blood cytokine levels. Following mitazalimab treatment, patients in group 1 seemed
to have higher levels of IP-10, MCP-1, MIP-1α, and MIP-1β than those in group 2, who
had higher levels of IL-10 (Figure 4C). This is in accordance with the transcriptomic data
showing the overexpression of genes related to cell migration and the negative regulation
of IL-10 production seen in patient group 1.

The analysis of baseline transcriptomic profiles in the two groups showed minor
differences, mainly attributed to increased expression of ribosomal protein in group 2
(Figure S5). No significant differences in clinical characteristics, e.g., demographics and
prior treatments, were identified between the groups (Table S3). However, patients in group
2 tended to have undergone more lines of treatment than those in group 1 (p = 0.054).
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4. Discussion

Herein, we used RNA sequencing of peripheral blood from patients in a Phase I clinical
trial with mitazalimab, a potent agonistic CD40 mAb, to describe early pharmacodynamic
effects in patients with advanced solid tumors. Transient transcriptomic effects that re-
inforce the mode of action of mitazalimab, including the upregulation of genes related
to type I interferon regulation and a relative reduction in genes in effector cell gene sets
including CD8+ T cells, were seen at dose levels of 600 µg/kg and 900 µg/kg, supporting
the dose selected for the ongoing Phase 2 study with mitazalimab (900 µg/kg, OPTIMIZE-1,
NCT04888312). Overall, the pathways induced by mitazalimab support the potential of
this antibody to overcome ICI resistance as well as overcome a suppressive tumor immune
environment. Moreover, the transcriptomic data analysis allowed for patient stratification
into groups where the gene expression induced by mitazalimab treatment was reflected in
the cytokine response profiles.

Several clinical studies have reported the pharmacodynamic effects of agonistic CD40
mAbs determined via flow cytometry or cytokine analysis of peripheral blood. Typical
flow cytometric findings include a transient reduction in CD19+ B cells with the activation
of remaining CD19+ B cells determined through the upregulation of either CD80, CD86, or
CD54 [14–17,30–32]. Increased serum cytokine release of MCP-1, IL-6, and tumor necrosis
factor-alpha (TNFα) has been observed after intratumoral treatment [14]. In addition,
elevation in cytokine levels in serum, including IFN-γ, MCP-1, MIP-1α, MIP-1β, IL-6, IL-8,
IL-12, IP-10, and TNFα, has been detected after intravenous treatment [15]. However, to the
best of our knowledge, no studies have yet analyzed the RNA sequencing data of peripheral
blood for the pharmacodynamic effects of agonistic CD40 mAb. RNA sequencing provides
an unbiased and global view of gene expression, allowing for a comprehensive assessment
of the pharmacodynamic response [33]. The analysis presented herein demonstrates that the
RNA sequencing-based analysis can both capture the known pharmacodynamic effects of
mitazalimab [14,15] and detect novel findings. Biological systems are inherently complex,
and the use of multiple complementary techniques is therefore advantageous to both
validate findings and detect novel findings [34]. The data presented in this study support
the finding that RNA sequencing could prove a valuable complement to flow cytometry
and serum cytokine analysis in determining pharmacodynamic effects.

Binding to CD40, via CD40L, on APCs leads to the recruitment of TNF receptor-
associated factor proteins, which in turn results in the release of nuclear factor-kappa B
(NF-κB) transcription factors or the activation of mitogen-activated protein kinases. Ulti-
mately, both pathways mediate various cellular responses, including the transcription of
pro-inflammatory genes, such as various cytokines, that orchestrate the CD40-induced im-
mune responses [35]. Indeed, we detected the strongest peripheral transcriptomic changes
following mitazalimab treatment, which are related to cytokine production and regula-
tion. Largely, these changes were attributed to type I interferon responses with induced
expression of genes such as OAS1, OAS2, IRF7, and MX1. The dose–response relationship
of mitazalimab reported in the present study is in line with assessments carried out on
cytokine and exposure data [14,15,18]. Furthermore, the data suggest that pretreatment
with corticosteroids immediately before mitazalimab treatment dampens the pharmaco-
dynamic effects. These findings support the dosing regimen in the ongoing OPTIMIZE-1
study (NCT04888312), which does not include pretreatment with corticosteroids prior to
the administration of mitazalimab.

Among the chemokine-related genes, CCL2 (MCP-1), CCL3L1 (MIP-1α), and CCL8,
as well as CXCL9, CXCL10 (IP-10), and CXCL1, were increased peripherally following mi-
tazalimab treatment. Such changes suggest the activation of monocytes and dendritic cells
after mitazalimab treatment. Many of these findings are in line with the reported increase
in serum levels of, e.g., MCP-1, MIP-1α, and IP-10, after mitazalimab treatment [15], high-
lighting the relevance of the transcriptomic findings. Moreover, we observed a reduction
in the peripheral expression of chemokine receptors (CXCR3 and CXCR5), suggesting the
extravasation of effector cells such as T cells and NK cells following mitazalimab treatment,
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which is also supported by our CIBERSORTx analysis and the results previously reported
from flow cytometry analysis [15]. Furthermore, in line with the reported transient re-
duction in B cells and NK cells in the blood following agonistic CD40 treatment [15], we
observed a reduction in both canonical B cell genes (e.g., CD19, MS4A1, CD22, CD79A,
and CD79B) [36,37] and NK cell genes (e.g., KIR3DL1, KIR2DL1, and KIR2DL2) [38]. On
the other hand, the increased expression of genes such as CD54 and CD274 suggests the
activation of blood leukocytes [39,40], with increased expression of LAMP3 and CD177,
indicating the activation of DCs and neutrophils, respectively [41,42]. Taken together, these
findings effectively support the proposed mode of action of mitazalimab.

Additionally, targeting CD40 in immunotherapy has been suggested to play a crucial
role in remodeling the TME, especially via the repolarization of macrophages, leading to
the degradation of tumor stroma by altering the expression of metalloproteases [10]. In
this study, we detected an increase in MMP1 and MMP8, as well as a marked increase
in ADAMTS2, all of which are metalloprotease genes. Interestingly, we also observed a
reduction in MMP11 and MMP28. Possibly, this could indicate a shift in MMP expression
rather than a global induction of MMPs, as previously postulated [10], which could po-
tentially mediate the degradation of fibrosis associated with certain malignancies making
them more permeable for both immune cells and medications.

The pharmacodynamic effects of mitazalimab have been preclinically evaluated in
tumor-bearing human CD40-transgenic mice [13,18]. Notably, peripheral transcriptomic
changes upon mitazalimab treatment in this preclinical in vivo model correlate well with
the clinical transcriptomic changes. Thus, this finding strengthens the translation of the
preclinical findings of mitazalimab in the preclinical model.

The large volume of data obtained through RNA sequencing allowed us to stratify
patients based on their pharmacodynamic response, which was not possible from flow
cytometric or cytokine analysis [15]. Notably, the changes seen on a transcriptomic level
in the patient groups also correlated with cytokine levels in the respective groups. A
non-significant trend indicates that patients with more previous lines of therapy seemed to
have a lower peripheral immune activation. Speculatively, this could be due to systemic
immune alteration from, e.g., chemotherapy or ICI. However, the small sample size and
diverse patient population (n = 23) limit the interpretation, and additional studies would be
warranted to investigate if these findings remain valid in specific indications and first-line
treatment settings. In addition, a correlation between peripheral transcriptomic changes to
both intratumoral immune changes and clinical response is yet to be determined.

In summary, by using RNA sequencing on peripheral blood from patients in clinical
trials with mitazalimab, we could confirm the pharmacodynamic effects of mitazalimab
previously observed with flow cytometry and serum cytokine analysis. Furthermore, the
larger volume of data obtained using RNA sequencing, as compared to previous flow
cytometry and serum cytokine data, revealed a distinct response pattern in a subset of
patients that was echoed in the serum cytokine data. In conclusion, the data presented
herein reinforce the mode of action of mitazalimab and support its further investigation in
clinical trials of solid malignancies.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/cells12192365/s1, Figure S1: DEGs between C1D1 and C1D2 at 75 and
200 µg/kg mitazalimab; Figure S2: Correlation between transcriptomic changes in human and mice
following mitazalimab treatment; Figure S3: Effect of corticosteroid pretreatment; Figure S4: Pathway
enrichment in patient groups; Figure S5: Baseline transcriptomic differences between patient group 1
and 2; Table S1: DEGs and GO after mitazalimab treatment; Table S2: DEGs between mitazalimab
with or without CS pretreatment; Table S3: Patient characteristics based on patient group; Table S4:
ISG cMo gene list.
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