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Abstract: Avascular necrosis of the femoral head (ANFH) is a painful disorder characterized by the
cessation of blood supply to the femoral head, leading to its death and subsequent joint collapse. In‑
fluenced by several risk factors, including corticosteroid use, excessive alcohol intake, hypercholes‑
terolemia, smoking and some inflammatory disorders, along with cancer, its clinical consequences
are thrombus formation due to underlying inflammation and endothelial dysfunction, which collab‑
orates with coagulopathy and impaired angiogenesis. Nonetheless, angiogenesis resolves the ob‑
structed free flow of the blood by providing alternative routes. Clinical manifestations of early stage
of ANFH mimic cysts or lesions in subchondral bone, vasculitis and transient osteoporosis of the hip,
rendering it difficult to diagnose, complex to understand and complicated to cure. To date, the treat‑
ment methods for ANFH are controversial as no foolproof curative strategy is available, and these
depend upon different severity levels of the ANFH. From an in‑depth understanding of the patho‑
logical determinants of ANFH, it is clear that impaired angiogenesis, coagulopathy and endothelial
dysfunction contribute significantly. The present review has set two aims, firstly to examine the role
and relevance of this molecular triad (impaired angiogenesis, coagulopathy and endothelial dysfunc‑
tion) in ANFH pathology and secondly to propose some putative therapeutic strategies, delineating
the fact that, for the better management of ANFH, a combined strategy to curtail this molecular tri‑
angle must be composed rather than focusing on individual contributions.

Keywords: avascular necrosis of femoral head; impaired angiogenesis; coagulopathy; endothelial
dysfunction; bone disease; skeletal abnormality

1. Introduction
Avascular necrosis of the femoral head (ANFH) is a debilitating condition identified

as the death of the bone tissue due to compromised blood supply to the subchondral bone
and its delayed regeneration [1]. Being a multifactorial and complex disease, its pathogen‑
esis remains unclear. Several risk factors, including excessive alcohol intake; corticosteroid
use; some medical conditions such as lupus, sickle cell disease and clotting disorders; and
hormonal imbalances along with cancers and medical procedures like high‑dose radiation
therapy, hip surgery, bone marrow transplant and genetic factors participate in its pathol‑
ogy [2]. The effect of these risk factors generally induces dysfunction in the molecular path‑
ways which initiate, develop and progress ANFH [3]. Three important pathways which
may play a crucial role in ANFH pathology are impaired angiogenesis, coagulopathy and
endothelial dysfunction [4]. Understanding the intricate and unforeseen interplay among
these three molecular mechanisms is essential for unraveling the underlying pathways,
which will help devise effective therapeutic strategies for ANFH [4]. Largely, ANFH is
caused by hindered or cessation of blood supply to the femoral head, leading to necrosis
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because of an inadequate supply of oxygen and nutrients to the bone tissue (Figure 1). In
response, a cascade of events is initiated for restoring impaired blood flow.
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Figure 1. Impaired blood supply causing necrosis of the femoral head.

Consequently, angiogenesis, the process of new blood vessel formation, is triggered
as a compensatory response to the compromised blood supply [5]. It behaves as a double‑
edged sword. On one side, it tries to establish alternative routes for the free flow of blood
to the necrotic area of the femoral head by forming new vessels and a capillary network,
which may be structurally abnormal and leaky, causing edema, hence failing to adequately
restore blood flow. On the other side, if angiogenesis is excessive and uncontrollable, then
it may cause unusual bone remodeling, thereby exacerbating the problem of ANFH [6].

Coagulopathy is the condition of disturbed homeostasis of procoagulant and antico‑
agulant factors that promotes excessive clot formation and demotes thrombolysis [7]. It
exaggerates ischemia and internal bleeding because of reduced production of fibrinolytic
enzymes such as tissue plasminogen activator (tPA) [8]. Furthermore, coagulopathy par‑
ticipates in the formation of intravascular and microvascular thrombi, thereby obstructing
the blood flow, exacerbating the tissue ischemia and delaying the tissue repair [9].

Endothelial dysfunction represents the impairment of the normal functioning of en‑
dothelial cells, thereby disrupting the delicate balance of vasoconstriction and vasodila‑
tion [10]. This dysfunctional state distorts the blood flow regulation and the release of va‑
soactive molecules, which fails to resolve the exigency of the blood supply to the femoral
head, leading to ischemia, subsequent bone tissue damage and worsening the condition
by initiating a pro‑inflammatory state [11]. Several inflammatory cytokines and adhesion
molecules promote the recruitment of immune cells to the affected area, thereby perpetuat‑
ing the release of destructive enzymes and reactive oxygen species, causing further damage
to the bone tissue [12]. Additionally, endothelial dysfunction promotes a prothrombotic
state within compromised blood vessels and delays the fibrinolysis of the clots, depriving
the affected area of vital nutrients and oxygen for regeneration and repair [13].

The present review aims to investigate these perplexing molecular mechanisms and
signaling pathways which participate individually as well as collaboratively in the initi‑
ation, progression and worsening of ANFH pathology [14]. Knowledge obtained from
this review will help in paving the way for innovative interventions and offers a compre‑
hensive but lucid list of therapeutic strategies for its early identification, leading to better
management of this disease with its severe ramifications.
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2. Angiogenesis: Sprouting, Splitting and Stabilization
Angiogenesis is a process of developing new vessels from pre‑existing vessels, and

these vessels are considered to be the foremost organ in embryo development [15]. Vessels
may develop, remodel and grow in different ways. They may sprout from already present
vessels (sprouting angiogenesis) or develop by splitting from previously prevailing arter‑
ies or capillaries upon receiving the angiogenic stimuli (intussusceptive) [16]. They may
enlarge and elongate from the coalescence of capillaries (coalescent angiogenesis), promot‑
ing the rapid expansion of the vasculature. Vessels may remodel themselves to increase
their luminal diameter when more blood flow is required or there is a need to develop col‑
lateral bridges to provide alternative routes for the free flow of blood (arteriogenesis) [17].
Unlike angiogenesis, new blood vessels may be formed from the blood islands where no
pre‑existing vessels are present (vasculogenesis) [16]. All newly formed vessels must be
mature and stable, otherwise they may be abnormal and leaking, further causing problems
of local hematoma and edema [18]. These become stable due to the signaling molecules
arranging pericytes overlaid on endothelial cells and the formation of the basement mem‑
brane, whereby junctions are established to allow optimum blood flow [19]. Angiogenesis
has both beneficial and detrimental effects on health and disease, which makes it a potent
hotspot for both pro‑angiogenic and anti‑angiogenic drug targets [20].

From the perspective of avascular necrosis, regulated angiogenesis is beneficial for
collateral circulation to the necrotic area and its repair, whereas dysregulated angiogene‑
sis is harmful [21]. The femur is a specially structured and highly vascularized bone, the
longest in the human body. Its mechanical strength, recuperation, repair, regeneration
and remodeling depend upon vascular health, which helps in supplying incessant blood
and providing adequate oxygen, nutrients, growth factors and osteoprogenitor cells to the
bone [22]. Consequently, angiogenesis is expected to revascularize, reperfuse and resorb
the necrotic area. Branching from the circulatory system, the nutrient artery is the largest
blood vessel that enters the medullary cavity and supplies almost half of the total blood vol‑
ume to the femur [23]. At the proximal end, it forms anastomoses with perforating arteries,
whereas at the distal side it merges with the profunda femoris artery. It extends longitudi‑
nally to the bone and divides into the lateral femoral circumflex artery and medial femoral
circumflex artery [24]. Both branches of lateral femoral circumflex arteries feed the femur
head region via lateral epiphyseal arteries and the neck region through posterior superior
retinacular arteries [25]. The ligament of the femur head is also supplied by the anterior
branch of the obturator artery of the hip bone, which traverses through the inferior part of
the pubic ramus and anastomoses with the femoral artery and medial femoral circumflex
artery [26] (Figure 1).

With the advent of three‑dimensional high‑resolution imaging, a new aspect of the
anatomy of vessels linking bone vasculature and bone marrow has been discovered [27].
This newlydiscoveredvascular system comprises arterioles, venioles and capillaries, which
collectively have been named as transcortical vessels (TCVs), which have shed light on the
connection between endosteal and periosteal circulation [28]. A new subtype of blood
vessels expressed from endomucin (Emcn) and a cluster of differentiation 31 (CD31) on
endothelial cells in the bone known as type H has been identified lately [29]. Present in
endosteum and metaphysis, this vessel is considered to be full of mesenchymal and osteo‑
progenitor cells, which mediate subchondral remodeling by coupling angiogenesis and
osteogenesis [30]. Whether it contributes to ANFH pathology remains to be clarified as
crosstalk between subchondral bone and articular cartilage during ischemia is unclear [31].
Obstruction or ischemia may take place in any of these arteries, but lateral and medial
branches of the femoral circumflex or retinacular arteries are largely involved [32].

3. Angiogenesis: A Predominant Pacifier in Avascular Necrosis
Several stimuli are received by endothelial cells from the local environment, prompt‑

ing them to initiate angiogenesis [33]. These signaling stimuli augment endothelial cell
activation and their migration along with apoptotic resistance, cytoskeletal reorganization
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and endothelial cell proliferation. Firstly, angiogenesis is triggered in response to ischemia,
which is a dynamic process leveraging the equilibrium between pro‑angiogenic and anti‑
angiogenic factors, resulting in the expansion of the vascular network [34]. Several vascu‑
lature and bone‑derived angiogenic factors and stimulators play a role in angiogenesis to
counterbalance the exigencies of nutrients and oxygen to the necrotic area [35]. They are hy‑
poxia inducible factor‑1α (HIF1‑α), vascular endothelial growth factor (VEGF), vascular en‑
dothelial growth factor receptor (VEGFR), neuropilin 1 (NRP1), angiopoietin 1 (ANGPT1),
angiopoietin 2 (ANGPT2), platelet‑derived growth factor (PDGF), transforming growth
factor‑β (TGF‑β), C‑C motif chemokine ligand‑2 (CCL‑2), integrins αvβ3, αvβ5., vascu‑
lar endothelial cadherin (VE‑cadherin), cluster of differentiation 31 (CD31), plasminogen
activators, inhibitor of DNA binding‑1/inhibitor of DNA binding‑3 (ID1/ID3), bone mor‑
phogenetic protein (BMP), prostaglandins (PTG), adenosine, pleiotrophin (PTN), delta‑
like canonical Notch ligand 4‑Notch‑Noggin (DLL4‑NOTCH‑NOG), receptor activator of
nuclear factor‑kappa β ligand/receptor activator of nuclear factor‑kappa β/osteoprotegerin
(RANKL/RANK/OPG), semaphorin (SEMA), nitric oxide (NO) andmatrixmetalloproteinases
(MMPs) [36]. Nonetheless, molecular pathways between vasculature and bone interact and
collaborate to initiate angiogenesis–osteogenesis coupling, which is required for the over‑
all regeneration and repair of the necrotic area [37]. Endothelial cells along with pericytes
initiate endocrine signaling, whereas osteoblasts and osteoclasts trigger angiogenesis to
manage and maintain vasculature.

After ischemia, hypoxic conditions emerge, which induce HIF‑1α and VEGF in re‑
sponse [38]. It has been considered that HIF‑1α is the precursor for the upregulation of
VEGF, which is corroborated by the finding that transplantation of HIF1‑αwith transgenic
bone marrow cells onto the necrotic area upregulated VEGF and increased angiogenesis,
resulting in the repair of the necrotic area [35]. The nuclear signal transduction augments
the translocation of HIF1‑α to form a complex with HIF1‑β and transcriptional co‑activator
E1A‑associated protein/CREB binding protein (p300/CBP), which helps them to bind with
the hypoxia response element [39]. It translates into the activation of several angiogenic
genes such as VEGF, ANGPT‑2 and nitric oxide synthase (NOS). VEGF plays the main role
in bone remodeling via differentiation of osteoblasts and promoting endothelial cells at
the affected area [40]. Besides the involvement of other forms of VEGF (VEGF‑B, VEGF‑C,
VEGF‑D and placenta growth factor), VEGF‑A is primarily involved in angiogenesis and
vasculogenesis during ischemic insult by binding and activating both VEGF receptors, i.e.,
VEGFR‑1 and VEGFR‑2, for vascular permeability, cell migration, vascular function and
vessel maintenance [41].

Besides promoting endothelial cell differentiation, migration and proliferation, VEGF
initiates the recruitment of bone‑marrow‑derived endothelial progenitor cells at the af‑
fected area [42] (Figure 2). Consequently, it promotes morphogenesis of the growth plate,
blood vessel formation and remodeling of the affected cartilage [43]. The mechanism of
VEGF‑induced angiogenesis is essential in cartilage revascularization at both early stage
and end stage after necrosis [44]. It is expressed in the edematous area of the necrotic zone
and plays a significant role in the repair of the ongoing hypoxia‑induced osteonecrotic
area [45]. In the absence of VEGF, angiogenesis has been observed to be arrested, and the
process of trabecular and cortical bone repair is significantly attenuated [46]. Moreover,
it directly influences the osteoblast activity by increasing nodule formation and alkaline
phosphatase, thereby promoting mineralization in a dose‑dependent manner [47]. This
suggests that the upregulation of VEGF in osteoblasts during hypoxia participates in and
contributes to the healing process by promoting initial calcification at the site of injury [48].
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Endothelial cells have oxygen sensors and hypoxia‑inducible factors: hypoxia‑inducible
factor‑2 alpha (HIF‑2α) and prolyl hydroxylase domain 2 (PHD2) [49]. After obtaining sub‑
tle hypoxemic stimuli, vessels start readjusting their size by vasodilation to receive blood
flow. These endothelial cells adjust as a monolayer of phalanx cells and establish inter‑
connections through the adhesion activity of VE‑cadherin and claudins [50]. These layers
are overlaid with pericytes, which signal for survival to VEGF and ANGPT‑1. Angiogenic
signaling is initiated due to hypoxia, and pericytes are separated from the vessel wall and
detach from the basement membrane via proteolytic degradation controlled by MMPs [51].
Consequently, interconnections are loosened, and the naked vessel starts enlarging. Extra‑
cellular matrix support is provided by VEGF signaling, whereby endothelial cells migrate
owing to integrin signaling [52]. Angiogenic molecules such as VEGF and FGF are released
due to the action of proteases. Special endothelial cells, tip cells in the presence of factors
such as VEGF receptors, DLL4‑NOTCH, Jagged1 and neuropilins, form the tube‑like struc‑
ture and inhibit endothelial cells from migrating toward angiogenic signals [51]. Prompted
and mediated by the signaling of NOTCH, WNTs, Placental growth factor (PlGF), FGF,
NOTCH‑regulated ankyrin repeat protein (NRARP), VE‑cadherin, VEGF, Hedgehog and
CD34, the tip cells of the flanking region are established as stalk cells, which split and ex‑
tend to form lumen [53]. Local environmental stimuli are sensed by filopodia of the tip
cells with the help of ephrins and semaphorins, whereas angiogenic signals are sensed
by HIF‑1α. In response, myeloid cells establish a link with another vessel, allowing the
free flow of the blood [51]. These vessels must be stable and properly formed, other‑
wise they become leaky and promote hypoxia and ischemia [18]. To acquire maturity
and stability, endothelial cells become quiescent, and these signals are responded to by
NOTCH, PDGFB, ANGPT‑1, TGF‑β and ephrin‑B2 to form a layer of pericytes on endothe‑
lial cells [54]. Some protease inhibitors such as tissue inhibitor metalloproteinases (TIMPs)
and plasminogen activator inhibitor‑1 (PAI‑1) arrange the basement membrane, whereby



Cells 2023, 12, 2278 6 of 21

junctions are formed to provide ideal blood flow. Vessels may regress if perfusion is not
established [55].

Perturbedhomeostasis due to an imbalance betweenpro‑angiogenic and anti‑angiogenic
factors leads to abnormal angiogenesis, which may enhance the problem of necrosis due to
its proinflammatory and profibrotic signaling and inability to resolve vascularization [56].
Overtly dilated or constricted conduits due to abnormal branching angles have been ob‑
served when anti‑angiogenic factors such as endostatin and angiostatin are abundantly
produced in the case of systemic sclerosis [57]. Interestingly, VEGF may have two iso‑
forms, i.e., VEGF165a and VEGF165b, due to alternative splicing in the pre‑mRNA termi‑
nal exon [58], a probable reason that some studies have observed impaired angiogenesis
even in the presence of higher levels of VEGF [59]. When angiogenesis is coupled with
proinflammatory and profibrotic signaling, a pro‑angiogenic isoform of VEGF (VEGF165)
can be switched to an anti‑angiogenic isoform (VEGF165b) in platelets [60]. Causes and
consequences of abnormal or impaired angiogenesis for the risk of necrosis of the femoral
head during and post‑ischemia have not been investigated so far; nonetheless, concerns are
similar, and hence clarifications are convincing, that angiogenesis resolves while impaired
angiogenesis worsens the clinical outcome of ANFH.

4. Coagulopathy: A Culprit Alliance of Thrombophilia and Hypofibrinolysis
Following the revelation from the first study by Hamilton et al. in 1965, several stud‑

ies have endorsed that the pathology of osteonecrosis resulting from vascular ischemia is
strongly influenced by coagulopathy [61]. Intravascular coagulation and thrombosis cou‑
pled with excessive thrombophilia and hypofibrinolysis are the major reasons [62]. Throm‑
bophilia, sometimes called hypercoagulability, is an abnormality of the clotting mecha‑
nismwhich promotes thrombus formation withinwalls of blood circulatory vessels. Throm‑
bophilia predominantly develops into deep venous thrombosis (DVT) and pulmonary em‑
bolism (PE), two chief reasons for cardiovascular morbidity and mortality. Both of these hy‑
percoagulable conditions are termed venous thromboembolism (VTE). VTE deteriorates fib‑
rinolytic machinery causing hypofibrinolysis, an abnormal condition whereby clot‑resolving
factors are dysregulated and clot‑forming conditions are promoted. Fibrinolysis is the pro‑
cess of breaking down thrombus or clots and is strictly regulated by activators such as
tissue plasminogen activator (tPA) and urokinase‑type plasminogen activator (uPA) as
well as inhibitors like tissue factor plasminogen inhibitor (TFPI) and plasminogen activa‑
tor inhibitor‑1 (PAI‑1) and a fibrinolytic protease, plasmin. Plasminogen converts to plas‑
min via FXIa, FXIIa and kallikrein. This step triggers fibrinolysis by activating tPA within
endothelial cells and uPA through the urinary epithelium, monocytes and macrophages.
These factors play a significant role in breaking down and clearing clots from vasculature,
whereas hypofibrinolysis (decreased levels of tPA and increased levels of PAI‑1) impairs
clot breakdown and prolongs its clearance. Several primary factors such as low levels of ac‑
tivated protein C (APC), protein S, factor V Leiden, activated protein C resistance (APCR),
low levels of tPA or high levels of PAI‑1, high levels of von Willebrand factor (vWF), high
levels of lipoprotein(a) (Lp(a)) and homocystinuria along with secondary factors such as
antiphospholipid antibodies, corticosteroid use, systemic lupus erythematosus (SLE) and
caisson disease hemoglobinopathies, hemato‑oncological diseases such as chronic myel‑
ogenous leukemia, acute lymphoblastic leukemia and multiple myeloma also participate
in and contribute to causing hypofibrinolysis [62–70].

The coagulopathy cascade comprises a localized and speedy activation of inactive
serine proteases (clotting factors) sequentially to generate thrombin resulting in clot for‑
mation (fibrin mesh) [71]. This pathway is triggered by sub‑endothelial mural cells and
fibroblasts of vascular adventitia. Coagulation may also trigger due to low levels of cir‑
culating polymorphonuclear neutrophils and monocytes/macrophages [72]. The first and
foremost trigger is the exposure of tissue factor (TF) due to the severity of endothelial cell
damage [73]. This exposed TF combines with factor VII to activate it to FVIIa, culminat‑
ing in a sequence of activating factors such as FIX to FIXa and FX to FXa [7]. FXa turns
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prothrombin to thrombin, which further activates FV and FVIII to FVa and FVIIIa, a step
responsible for converting prothrombin to thrombin by activating FX to FXa [7]. Further‑
more, this thrombin‑mediated fibrin clot is solidified by FXIa and interlinked by FXIIIa [74].
Activated platelets aggregate to form this clot as TF‑presenting cells, ultimately augment‑
ing coagulation and thrombus formation [75]. This process is simultaneously regulated by
inhibitors of coagulation so that clot formation is not unnecessary and remains localized.
TFPI, anti‑thrombin (AT) and protein C are three major inhibitory molecules that check
and resolve excessive coagulation within vessel walls [76] (Figure 3). Furthermore, the
fibrinolytic pathway mediates vessel wall agility, integrity and healing.
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Innate immune response and inflammatory reaction play roles simultaneously within
endothelium to resolve ensuing damage and support the healing process. Phagocytes,
antigen‑presenting cells, monocytes and neutrophils are prompted upon encountering
danger‑associated molecular patterns (DAMPs) and pathogen‑associated molecular pat‑
terns (PAMPs) [77]. Consequently, activated monocytes and neutrophils initiate an im‑
mune response against cellular debris referred to as immunothrombosis, which emerges
in response to atherosclerotic connotations within vessel walls. Vascular debris due to dam‑
aged endothelium and plaque formation is sensed by PAMPs and DAMPs and in response
initiates tissue factor expression on monocytes and neutrophils, furthering immunothrom‑
bosis [78]. This unresolved and uncontrolled immunothrombosis forms disseminated in‑
travascular coagulation (DIC). Side by side, DAMPs and PAMPs induce a proinflammatory
cascade along with antimicrobial cytokines and chemokines by upregulation of intracellu‑
lar cell adhesion molecules (ICAMs) and vascular cell adhesion molecules (VCAMs) [77,78].
This mechanism plays a significant role in resolving the ischemic insult and repairing tis‑
sue damage. DAMPs were efficiently disposed of by initiating a complement activation
cascade triggered by membrane‑anchored proteins and soluble regulators.

Etiopathology of osteonecrosis of the femoral head is influenced by two molecu‑
lar pathways, i.e., thrombophilia and hypofibrinolysis. Their clinical causative conse‑
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quences are heightened intraosseous venous pressure and reduced arterial flow sup‑
porting hypoxia‑induced ischemic insult in the bone vasculature. Both familial and
acquired thrombophilia/hypofibrinolysis contribute to osteonecrosis of the jaw/hip in
both children and adults [79]. Primarily, glucocorticoids attenuate fibrinolytic activity
by increasing PAI‑1 levels and decreasing tPA levels [80]. PAI‑1 and tPA work in unison
to resolve thrombosis by increasing fibrinolysis because their PAI‑1/tPA complex inhibits
plasmin generation from plasminogen. Glucocorticoids increase the functional activity of
PAI‑1 and reduce tPA levels, thereby triggering a hypercoagulable state [81,82]. Resulting
in osteonecrosis of the femoral head, this thrombophilia‑hypofibrinolysis duo is further
supported by higher levels of fibrinogen and Lp(a) promoting platelet activation resulting
in delayed lysis of thrombosis [83]. Furthermore, P1A1/A2 polymorphism in glycoprotein
IIIa, lupus anticoagulant, reduced levels of protein C, S and anti‑thrombin III along with
cardiolipin antibodies contribute to the thrombophilia‑hypofibrinolysis axis‑induced os‑
teonecrosis of the femoral head. In secondary ANFH, endothelial dysfunction rather than
thrombophilia collaborates with hypofibrinolysis in worsening ANFH outcomes [84].

5. Endothelial Dysfunction: Holding Hands with Inflammation
The endothelium is a cell lining positioned on the inner surface of the blood vessels di‑

viding circulating blood from the tissue. In response to various physical and chemical stim‑
uli, such as perturbed blood flow, excessive intramural pressure, oxidative stress, cellular
damage, high levels of homocysteine, hyperlipidemia, toxic chemicals and bacterial/viral
infections, it initiates endocrine, paracrine and autocrine functions to produce vasodilators
such as nitric oxide (NO), prostacyclin (PGI2) and endothelium‑derived hyperpolarizing
factors (EDHFs) and vasoconstrictors such as endothelin‑1 (ET‑1) and thromboxane‑A2
(TXA2) [85]. The endothelium regulates homeostasis by maintaining the balance between
vasodilators and vasoconstrictors, anticoagulants and procoagulants, inflammatory and
anti‑inflammatory molecules, oxidants and antioxidants as well as profibrinolytics and an‑
tifibrinolytics (Figure 4) [86]. Due to several risk factors, this homeostasis is lost and is
termed endothelial dysfunction. In prolonged endothelial dysfunction, cholesterol micro‑
crystals, monocytes and lymphocytes enter layers of endothelium and initiate inflamma‑
tory response, which helps in the formation of fatty streaks resulting in plaque setup, its
progression and rupture. Plaque rupture expounds thrombus formation, which couples
with coagulation cascade, resulting in atherogenesis and vascular ischemia [87]. Alluding
to its contribution to the pathology of several diseases, endothelial dysfunction has been
recognized as the diagnostic and prognostic marker for developing atherosclerotic plaque
at all phases of initiation, progression and its worst outcomes of plaque rupture [88].

The first and foremost trigger that leads to endothelial dysfunction is inflammation [85].
It plays a major role in the initiation of vascular lesions, which progresses due to the collab‑
orative role of inflammation and endothelial dysfunction. The cellular debris generated as
a consequence of inflammation‑induced atherosclerosis such as vascular permeability and
trapping of lipoproteins incites endothelial dysfunction [89]. Endothelial dysfunction, syn‑
chronized with inflammation, sets forth a pathological pathway comprising recruitment
of monocytes from the circulating blood into the intima, transcytosis of micro‑cholesterol
crystals, foaming of lipid‑laden cells, generation of cytokines/chemokines and synthesis of
growth factors. All this contributes significantly to developing the skeleton of the plaque
whereby structurally unstable plaque ruptures, which releases highly thrombogenic con‑
tents into the luminal area, triggering atherothrombotic occlusion [90]. Otherwise, if the
atherosclerotic plaque is stable, then superficial plaque erosions induce apoptosis of the
endothelial cells causing endothelial denudation and thrombus formation [91].

Several risk factors such as smoking, hypercholesterolemia, diabetes and hyperten‑
sion participate in the generation of reactive oxygen species (ROS) within vessel walls.
ROS increase oxidative stress, which in turn impairs vascular health and its function [92].
Increased vascular oxidative stress due to ROS chemically inactivates bioactive NO by
producing dysfunctional superoxides and toxic peroxynitrates. This oxidative stress im‑
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pairs the paracrine function of endothelial cells in regulating vasomotor function, vascular
tone, platelet aggregation and proliferation of vascular smooth muscle. This way, oxida‑
tive stress‑induced endothelial dysfunction promotes vasospasm, atherothrombosis and
vascular inflammation [93].
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Largely, all the pathological stimuli incite the endothelium to initiate vasodilation. Va‑
sodilation is primarily carried out by the synthesis of NO, which enters endothelial intima
and localizes at the layer of smooth muscle cells (SMCs) within vessel walls. In response
to lesser NO bioavailability, nitrosylation of heme causes degradation of cyclic guanosine
monophosphate (cGMP), which mediates the cytosolic calcium concentration and encour‑
ages the smooth muscle fibers to relax causing vasodilation. NO is produced by three iso‑
forms of NO synthase (NOS) by using L‑arginine. This reaction requires molecular oxygen
as substrate, cofactors such as nicotinamide adenine dinucleotide phosphate (NADPH),
flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN) and tetrahydrobiopterin
(BH4) [94]. During lesser production of NO, impaired vasodilation ensues due to delinked
soluble guanylylcyclase/cGMP/protein kinase G cascade in SMCs. Several other processes
such as uncoupling of endothelial nitric oxide synthase (eNOS), faulty phosphorylation of
eNOS, inhibition of eNOS by endogenous N‑methylarginine and enzymatic degradation of
NO by oxidative damage and ROS generation also contribute [95,96]. eNOS expression is
controlled at different levels of transcription, translation and post‑translation. MicroRNAs
(miRs) modulate eNOS expression post‑translationally, promoting endothelial dysfunc‑
tion leading to atherosclerosis. The miR‑221/222 cluster influences vascular remodeling
in response to vascular injury by inhibiting angiogenesis, proliferation and migration of
endothelial cells [97]. Similarly, miR‑195 and miR‑222 promote thrombosis and are hence
negatively correlated with eNOS signaling and expression [98]. Similarly, miR‑92a of the
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miR‑71 cluster inhibits angiogenesis by targeting mRNA of pro‑angiogenic proteins such
as integrin subunit alpha 5.

6. Therapies Used in Other Diseases: A Possible Avenue for ANFHManagement
ANFH attracted attention when it was confirmed that people with long COVID‑19

are more vulnerable to ANFH [99,100]. The primary reason identified was the use of life‑
saving corticosteroids for patients suffering from COVID‑19 [101]. Several therapies cater‑
ing to resolve pain and improve structure function have been reported [102–107]. These
therapies include core decompression (CD), small‑diameter drilling CD, extracorporeal
shockwave therapy (EPSW), microsurgical fibula flaps (MFFs) and combination therapies
such as alendronate combined with EPSW or autologous bone marrow buffy coat grafting
combined with CD. All these therapies are effective in reducing lesion volume, progres‑
sion of necrosis and pain and improving the endothelial functional status of the femoral
head to some extent but failed to resolve necrosis. This prompted us to also look at ANFH
management from the perspective of other angles, which may help provide solutions as
an adjunct therapy to abovementioned invasive therapies for the proper restoration of the
blood supply for cleansing, repairing and healing the necrotic head. The present study
has attempted to assimilate some current reports showing therapeutic solutions for pro‑
moting angiogenesis, blocking coagulopathy and improving endothelial function in other
diseases including some bone diseases, which may open new vistas for better management
of patients suffering from ANFH (Table 1).

Table 1. Pro‑angiogenesis, fibrinolytic and endothelial‑function‑improving therapies in sev‑
eral diseases.

S.No. Therapy Methodology Functional Output Authors

1. Reperfusion
therapy Crystalloid fluid resuscitation.

Reperfusion therapy enhanced
angiogenesis in a rat model of
hemorrhagic shock.

Li et al. [108]

2.
BMSC‑derived
Li‑exosome
therapy

Surgical implantation of
extracellular
matrix‑mimicking hydrogels
infused engineered exosome.

BMSC‑derived Li exosomes increased
osteogenesis and angiogenesis in rat
models of GIONFH.

Chen et al. [109]

3. Vitamin B2 therapy Intramuscular injection. Vitamin B2 promoted angiogenesis in a
rat model of GIONFH. Guo et al. [110]

4. Gene therapy
Targeted delivery of
pro‑angiogenic factors via
plasmids.

Gene therapy induced angiogenesis in
patients of RA and SLE. Ren et al. [111]

5. Stem‑cell therapy

Targeted delivery of
marrow‑derived and
genetically modified stem
cells.

MSCs triggered angiogenesis in various
pre‑clinical and clinical phases of RA. Sarsenova et al. [112]

6. Hydrogel‑based
VEGF therapy Intraperitoneal injection. VEGF initiated angiogenesis in a rat

model of MRONJ. Sharma et al. [113]

7. BD‑2 therapy
Targeted implantation of
BC‑ALG‑BD2 hydrogel
membranes.

BD‑2 prompted angiogenesis in a rat
model of a calvarial defect. Yuan et al. [114]

8. HBOT
Oxygen administration at a
pressure greater than
atmospheric pressure.

HBOT developed angiogenesis in a
randomized clinical trial of patients with
STEMI.

Martin‑Hernandez
et al. [115]

9. Growth factor
therapy

Targeted implantation of
cryogels infused with VEGF
and BMP‑4.

Coupled growth factor therapy initiated
angiogenesis in a mouse model of cranial
defect.

Lee et al. [116]

10.
CD34+
stem‑cell‑derived
exosome therapy

Intravenous injection.
CD34+ stem‑cell‑derived exosomes
triggered angiogenesis in a rat model of
ONFH.

Zuo et al. [117]

11. LLLT/PBM
Electromagnetic beam of a
particular frequency and
wavelength.

LLLT started angiogenesis in a
randomized clinical trial of patients with
STEMI.

Elbaz‑Greener et al.
[118]
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Table 1. Cont.

S.No. Therapy Methodology Functional Output Authors

12. Combined growth
factor therapy

Subcutaneous implantation of
VEGF‑BMP‑2‑ and
FGF‑2‑BMP‑2‑loaded
composite scaffolds.

Combined growth factor therapy
prompted angiogenesis in a rat model of
a calvarial defect.

Kuttapan et al. [119]

13. b‑FGF therapy Targeted intravenous infusion. b‑FGF initiated angiogenesis for fracture
repair of the femur in a mouse model. Zhang et al. [120]

14. iPS‑MSC‑Exo
therapy Intravenous infusion. iPS‑MSC‑Exo stimulated angiogenesis in

a rat model of ONFH. Liu et al. [121]

15.
Butyl
10‑undecenoate
therapy

Oral administration.
Butyl 10‑undecenoate therapy triggered
angiogenesis in a distraction osteogenesis
rat model.

Ozdel et al. [122]

16. miRNA therapy Targeted intravenous
infusions.

miR‑132 induced angiogenesis in a
hind–limb ischemia mouse model. Gomes et al. [123]

17. BMP‑2 therapy Targeted intravenous
administration.

BMP‑2 promoted angiogenesis in a rat
model of a bone segmental defect. Kumar et al. [124]

18. PDGF therapy Targeted intravenous
injection.

PDGF prompted angiogenesis for
fracture repair of the tibia in a rat model. Hollinger et al. [125]

19. Erythropoietin
therapy

Targeted intravenous
administration.

Erythropoietin enhanced angiogenesis
for fracture repair of the right femur in a
mouse model.

Holstein et al. [126]

20. Dual growth factor
therapy

Targeted delivery of BMP‑2
and VEGF via retroviral
vectors.

Dual growth factor therapy promoted
angiogenesis in a mouse model of
calvarial defects.

Peng et al. [127]

21. VEGF therapy Targeted intravenous infusion. Targeted VEGF therapy induced
angiogenesis in RA patients. Ballara et al. [128]

22. PPS therapy Oral administration.
PPS initiated fibrinolysis in a
non‑randomized trial of patients with
knee osteoarthritis.

Liu et al. [129]

23. Dual‑antiplatelet
therapy

Oral administration of
clopidogrel combined with
aspirin.

Dual‑antiplatelet therapy enhanced
thrombolysis in a randomized trial of
elderly patients with symptomatic ICAS.

Song et al. [130]

24. Alteplase Intravenous infusion.
Standard‑dose alteplase increased
fibrinolysis in acute‑ischemic stroke
patients in a clinical trial.

Wang et al. [131]

24. Heparin therapy Oral and intravenous
administration.

Unfractioned heparin helped to induce
thrombolysis in non‑STEMI patients. Tashani et al. [132]

25. Urokinase
Black phosphorous
nanosheet‑loaded intravenous
infusion.

Urokinase helped to enhance fibrinolysis
in a mouse model of middle‑cerebral
artery occlusion.

Wang et al. [133]

26. Tenecteplase
therapy Intravenous administration.

Tenecteplase treatment helped to
promote thrombolysis in acute ischemic
stroke patients.

Tsivgoulis et al., 2022,
[134]

27. Rivaroxaban
therapy Oral administration.

Rivarobaxan promoted thrombolysis in a
randomized trial of chronic coronary
syndrome patients.

Adik‑Pathak et al.
[135]

28. Fondaparinux
therapy Subcutaneous injection. Fondaparinux enhanced thrombolysis in

acute coronary syndrome patients. Khan et al. [136]

29. Streptokinase
therapy Intravenous administration. Streptokinase promoted thrombolysis in

STEMI patients. Koh et al. [137]

30.
Coupled
anticoagulant
therapy

Oral administration of
etanercept combined with
celecoxib.

Coupled anticoagulant therapy helps to
induce thrombolysis in a randomized
trial of patients with ankylosing
spondylitis.

Tu et al. [138]

31. Fibrinolytic factor
therapy

Targeted delivery of different
fibrinolytic factors.

Fibrinolytic factor therapy promoted
fibrinolysis in mouse models of various
bone‑diseases.

Okada et al. [139]

32. Enoxaparin
therapy Direct oral administration. Enoxaparin reduced hypofibrinolysis in a

case report of a patient with ONFH. Haydock et al. [140]



Cells 2023, 12, 2278 12 of 21

Table 1. Cont.

S.No. Therapy Methodology Functional Output Authors

33. tPA therapy Intravenous infusions,
hydrogels, liposome systems.

tPA administered via liposomal drug
delivery systems induced thrombolysis
in ischemic stroke patients.

Fukuta et al. [141]

34. NK1R antagonists Oral administration. Aprepitant stimulated fibrinolysis in
patients with RA. Liu et al. [142]

35. MQEP therapy Oral administration. MQEP helped to induce fibrinolysis in
patients with non‑traumatic ONFH. Li et al. [143]

36. Desmoteplase
therapy Intravenous infusion.

Desmoteplase helped to promote
thrombolysis in acute ischemic stroke
patients.

Li et al. [144]

37. Reteplase therapy Intravenous injection. Reteplase increased thrombolysis in
acute ischemic stroke patients. Ozluer et al. [145]

38. Vitamin E therapy Oral and intravenous delivery. Vitamin E helped to start fibrinolysis in
osteoarthritis patients. Li et al. [146]

39. NO donors Oral, sublingual and
intravenous administration.

NO donors helped to increase endothelial
function in ischemia‑reperfusion injury
in multiple randomized clinical trials.

Dou et al. [147]

40. DimethyloxalylglycineIntravenous infusion.
Dimethyloxalylglycine enhanced
endothelial function in a rat model of
ONFH.

Shao et al. [148]

41. CircHIPK3 therapy Targeted intravenous
injection.

CircHIPK3 improved endothelial
function in patients with ONFH. Peng et al. [149]

42. Chromolaena odarata
therapy

Oral administration of
aqueous extract.

Chromolaena odarata extract helped to
induce endothelial function in a rat
model of ONFH.

Nguenum et al. [150]

43. Icariin therapy Oral administration.
Icariin helped to increase endothelial
function in osteonecrosis and
osteoporosis patients.

Zhang et al. [151]

44. Statins Oral administration. Statins improved endothelial function in
ONFH patients and in vivo studies. Yu et al. [152]

45. Tissue regeneration
therapy

Targeted delivery of BMP‑2
via PEM‑coated scaffolds.

Tissue regeneration therapy enhanced
endothelial function in a rat model of
calvarial defects.

Martin et al. [153]

46. PTEN inhibitors Intravenous infusion.
VO‑OHpic reduced endothelial
dysfunction in an in vivo study of an
ONFH animal model.

Yao et al. [154]

47. L‑Arg therapy Oral and intravenous
administration.

L‑Arg promoted endothelial function in
ischemic diseases in various clinical trials.

Gamberdella et al.
[155]

48. ROS inhibitors Oral and intravenous infusion. ROS inhibitors attenuated endothelial
dysfunction in multiple bone disorders. Agidigbi et al. [156]

49.
Se@SiO2
nanocomposites
therapy

Intraperitoneal injection.
Se@SiO2 nanocomposites lessened
endothelial dysfunction in rat models of
ONFH.

Deng et al. [157]

50. Antioxidant
therapy

Oral and intravenous
administration.

Antioxidant therapy improved
endothelial function in hip fracture
patients.

Sprague et al. [158]

51. ARBs Oral and intravenous infusion.
ARBs helped to reduce endothelial
dysfunction in various clinical trials of
different cardiovascular diseases.

Radenkovic et al.
[159]

52. ACE inhibitors Oral administration.

ACE inhibitors increased endothelial
function in a randomized controlled trial
of T2DM patients with myocardial
infarction.

Sun et al. [160]
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Table 1. Cont.

S.No. Therapy Methodology Functional Output Authors

53. ET‑1 therapy Intravenous injection.

ET‑1 improved endothelial function in
in vivo studies using recombinant
endothelial progenitor cells and
osteoblasts.

Wang et al. [161]
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bone morphogenetic protein-4, CD34+: cluster of differentiation 34+, LLLT: low-level laser therapy, 
PBM: photobiomodulation, FGF-2: fibroblast growth factor-2, BMP-2: bone morphogenetic pro-
tein-2, b-FGF: basic fibroblast growth factor, iPS-MSC-Exos: induced pluripotent stem-cell-derived 
mesenchymal cells, mi-RNA: micro-RNA, PDGF: platelet-derived growth factor, PPS: pento-

 Therapies for improving endothelial function.
BMSC: bone‑marrow‑derived stem cell, GIONFH: glucocorticoid‑induced osteonecrosis of femoral head,
OTF‑PNS/nHAC/Mg/PLLA: osteopractic total flavone—panax notoginseng saponin/nano‑hydroxyapatite col‑
lagen/magnesium/poly (L‑lactic acid), Cu‑Li‑nHA: copper–lithium‑doped nanohydroxyapatite, ONFH: os‑
teonecrosis of femoral head, RA: rheumatoid arthritis, SLE: systemic lupus erythematous, MSCs: mesenchymal
stem cells, VEGF: vascular endothelial growth factor, MRONJ: medication‑related osteonecrosis of jaw, BD‑2:
beta‑defensin‑2, HBOT: hyperbaric oxygen therapy, STEMI: ST‑segment elevation myocardial infarction, BMP‑
4: bone morphogenetic protein‑4, CD34+: cluster of differentiation 34+, LLLT: low‑level laser therapy, PBM:
photobiomodulation, FGF‑2: fibroblast growth factor‑2, BMP‑2: bone morphogenetic protein‑2, b‑FGF: basic
fibroblast growth factor, iPS‑MSC‑Exos: induced pluripotent stem‑cell‑derived mesenchymal cells, mi‑RNA:
micro‑RNA, PDGF: platelet‑derived growth factor, PPS: pentosanpolysulfate sodium, ICAS: intracranial artery
stenosis, LMWHs: low‑molecular‑weight heparins, tPA: tissue–plasminogen activator, NK1R: neurokinin‑1 re‑
ceptor, MEQP: modified Qing’e pill, NO: nitric oxide, CircHIPK3: circular RNA homeodomain‑interacting pro‑
tein kinase 3, HF‑ESWT: high‑energy focused extracorporeal shock wave therapy, PEM: polyelectrolyte multi‑
layer PTEN: phosphate and tensin homolog deleted on chromosome 10, VO‑OHpic: 3‑hydroxypicolinate vana‑
dium, Arg: arginine, ROS: reactive oxygen species, Se@SiO: Se.particle@porous.silica, ARBs: angiotensin‑II re‑
ceptor blockers, ACE: angiotensin‑converting enzyme, T2DM: type 2 diabetes mellitus, ET‑1: endothelin‑1.

Although therapies shown in the Table 1 have been utilized for other diseases, they
also have the potential to prevent necrosis of the femur head and its worst outcomes. Some
pro‑angiogenic therapies such as reperfusion, VEGF, stem cells, PDGF, hyperbaric oxygen
and gene therapy can be adapted and applied to different phases of ANFH pathology so
that it can improve and restore blood supply and facilitate tissue repair and healing. Sim‑
ilarly, several thrombolytic and fibrinolytic therapies used to preserve coagulation home‑
ostasis in acute limb ischemia, intracranial artery stenosis, non‑ST‑segment elevated my‑
ocardial infarction and acute coronary syndromes can be utilized in attempts to resolve
emboli within vessel walls feeding blood to the necrotic area of the femoral head. Like‑
wise, several therapies have been shown to improve endothelial function in cardiovascular
diseases. It is reasonable to believe that without maintaining endothelial health, restora‑
tion of the free flow of blood to the bone remains incomplete. Therefore, therapies such as
antioxidant therapy, using androgen receptor agonists such as ticagrelor, infusions of NO,
statins, angiotensin‑II receptor blockers, CircHIPK3 therapy and L‑arginine therapy may
demonstrate promising effects on the recovery of endothelial function, hence promoting
repair, preserving bone remodeling and potentiating healing.

7. Clinical Implications: A Call of a Crackling Tone of the Collapsing Bone
The present review aims to draw the attention of orthopedists, surgeons and health

care providers to a deceptive but painful skeletal disorder which in its early stage is dif‑
ficult to diagnose, as its pathology mimics cysts or lesions in subchondral bone, vasculi‑
tis, transient osteoporosis of the hip or osteoarthritis. Management modalities such as
core depression, bone grafting, bone reshaping and bone marrow stem‑cell supplementa‑
tion are provided before collapse; otherwise, surgical joint replacement is the only option.
Therefore, clinical implications must be harnessed so that knowledge acquired would be
beneficial and directly translate to the diagnosis, prognosis and therapeutic management
of ANFH.

In the early phases of ANFH, the patient feels fatigue and lethargy, which are gener‑
ally considered to be the artifacts of either occupational hazards (wrong posture, prolonged
load on the bone, sitting for longer durations) or affiliated complications of obesity and
sedentary lifestyle. Thorough investigation of clinical chapters has suggested that intra‑
muscular injections of vitamin B2 or implantation of cryogels containing VEGF and bone
morphogenetic protein‑4 (BMP‑4) or administration of hyperbaric oxygen to the vessels
feeding articular cartilage can trigger angiogenesis, which compensates the oxygen and
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nutrient demand by establishing alternative routes. Similarly, at the stage where plaque
has formed and started obstructing the free flow of blood to the bone, coagulopathy is
the stubborn clinical entity which needs to be resolved. Oral administration of pentosan
polysulfate sodium (PPS), clopidogrel combined with aspirin or rivaroxaban or coupled
therapy of anticoagulants and antiplatelets may promote thrombolysis, an invincible and
imperative remedy to open obstructed areas of vasculature supplying blood to the bone.
Endothelial dysfunction not only disturbs the dynamic paradigm of vasculature but also
encourages the inflammatory signaling to start blocking the flow of blood.

In the clinical arena of orthopedic research, it is a compelling argument that tests and
trials are essential to understanding the complex skeletal pathologies such as ANFH. With
reference to this, one may have reason to believe that oral, sublingual or intravenous admin‑
istration of nitric oxide; intravenous infusion of dimethyloxalyglycine; oral supplementa‑
tion of Icarrin, Statins, L‑arginine, or use of anticoagulants; angiotensin converting enzyme
inhibitors; and angiotensin‑II receptor blockers would be very beneficial for the preser‑
vation, protection and promotion of the endothelial health of the individual. Although
this study puts forth a perspective that impaired angiogenesis, coagulopathy and endothe‑
lial dysfunction should be treated simultaneously because of their interactive intentions
to harm the femoral head, future observational and interventional trials will clarify which
therapy is most suitable at which stage.

8. Conclusions
The present study elaborates on the pathological events of the clinical trajectory that

traverses from impaired angiogenesis, progresses via coagulopathy and worsens from en‑
dothelial dysfunction. Nonetheless, this study has a limitation, namely that only three
signaling pathways were investigated, and thus it cannot be correlated with the invasive
surgical techniques that correct femoral head degradation/collapse. In‑depth analysis of
the signaling pathways involved for the risk of ANFH suggests that a joint management
regime is required to curtail the impaired angiogenesis, coagulopathy and endothelial dys‑
function rather than an individual approach. This treatise exhibits some possible avenues
of pharmacological interventions for alleviating risk of ANFH.

9. Future Directions
Owing to complex and multifactorial etiology, ANFH development has been exam‑

ined from the perspective of signal transduction and signaling pathways. These path‑
ways such as impaired angiogenesis, coagulopathy and endothelial dysfunction are un‑
der strong genetic control. Genes and genetic variants that may change the course of
action from their beneficial effects to causative connotations remain to be explored thor‑
oughly from the perspective of ANFH risk. Moreover, genes interact with locally occur‑
ring environmental factors that may enhance the severity and exacerbate the outcome
of ANFH. Interestingly, response to putative drug therapies is substantially associated
with the genetic endowment of the individual. Apropos of this, more than 200 FDA‑
approved drugs have been labeled as pharmacogenetic drugs with a note that these drugs
should be prescribed according to the individual’s genetic profile (PharmGKB. Drug la‑
bels https://www.pharmgkb.org/ (accessed on 31 July 2023)). Future studies incorporating
such genetic hotspots and their response to suggested therapies may expose those poly‑
genic risk‑score‑based predictive markers, which can switch bone resorption and degrada‑
tion to bone remodeling, leading to repair and healing of necrotic area of the femoral head.
Such strategies will open new vistas of precision and personalized medicine, where every
ANFH patient will be treated according to their unique genetic carriage and consequent
response to that drug regimen.
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