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Abstract: Idiopathic pulmonary fibrosis (IPF) is a lethal interstitial lung disease of unknown etiology
with a poor prognosis. It is a chronic and progressive disease that has a distinct radiological and
pathological pattern from common interstitial pneumonia. The use of immunosuppressive medication
was shown to be completely ineffective in clinical trials, resulting in years of neglect of the immune
component. However, recent developments in fundamental and translational science demonstrate
that immune cells play a significant regulatory role in IPF, and macrophages appear to be among the
most crucial. These highly plastic cells generate multiple growth factors and mediators that highly
affect the initiation and progression of IPF. In this review, we will provide an update on the role
of macrophages in IPF through a systemic discussion of various regulatory mechanisms involving
immune receptors, cytokines, metabolism, and epigenetics.
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1. Introduction
1.1. Generalities about IPF

IPF is a fatal lung disease characterized by irreversible fibrosis of the lungs, leading
to increased cough, dyspnea, and decreased quality of life. It is seen among middle-aged
and elderly adults [1,2]. The incidence of IPF ranges from 0.09 to 1.30 per 10,000 persons
globally, and the prevalence of the disease ranges from 0.33 to 4.51 per 10,000 persons [1].
Males seem to have higher exposure to fibrotic triggers and are more susceptible to the
early development of disease as compared to females [3]. The mechanism behind the
pathophysiology of IPF development remains still poorly understood. According to the
current paradigm, recurrent alveolar epithelial cell (AEC) injuries occur as a result of pre-
disposing factors such as environmental, genetics, epigenetics, immune, and gerontologic
factors, which cause metabolic dysfunction, senescence, aberrant epithelial cell activation,
and dysregulated epithelial repair [4,5]. The dysregulated epithelial cells interact with
mesenchymal, immune, and endothelial cells via numerous signaling systems, activating
fibroblasts and myofibroblasts and causing fibrous content to accumulate in the lungs [5].
Excessive extracellular matrix (ECM) deposition impedes gaseous exchange, eventually
resulting in respiratory failure (Figure 1) [4]. Since IPF clinical symptoms overlap with
other interstitial lung diseases (ILD), early diagnosis can be challenging and could lead
to misdiagnosis. According to guidelines published in 2022 by the American Thoracic
Society, European Respiratory Society, Japanese Respiratory Society, and Latin American
Thoracic Association (ATS/ERS/JRS/ALAT), the precise diagnosis necessitates observation
of clinical characteristics, high-resolution chest imaging, and if necessary lung biopsy, to
confirm the pulmonary pattern [6]. The IPF survival was found to be worse than that of
many cancers. Its mortality rate is very high, and the median survival of patients is only
3–5 years post-diagnosis [7]. Available treatment options include the use of the anti-fibrotic
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drugs pirfenidone (PFD) and nintedanib [6]. PFD blocks multiple fibrogenic pathways,
most likely through inhibiting transforming growth factor-beta (TGF-β)-mediated fibrob-
last proliferation and differentiation, whereas nintedanib interferes with several IPF-related
pathophysiological pathways and mainly blocks tyrosine kinase receptors to limit the
secretion of fibroblast growth factor, platelet-derived growth factor (PDGF), and vascular
endothelial growth factor (VEGF) [6,8]. Nevertheless, it has been shown that these medica-
tions are only partially successful in treating IPF and have adverse effects such as nausea,
anorexia, rash, diarrhea, atherosclerosis, and liver dysfunction [8,9]. Lung transplantation
is currently the only curative therapy for IPF [2,6]. However, only a tiny percentage of
patients benefit from lung transplants due to the paucity of donors, the difficult surgical
procedure, the high cost, and the age of IPF patients. Hence, with the aging population
worldwide, IPF is creating a huge socio-economic and healthcare burden in society. Despite
significant scientific advancements, the current metrics for diagnosis and medication are
still insufficiently sensitive and efficient. Therefore, a better understanding of the molecular
mechanisms and various factors that contribute to lung fibrosis is required to deal with this
deadly disease.
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the activation/recruitment of various immune cells to the site of microinjury. Among these cells, 
pulmonary macrophages release profibrotic mediators such as TGF-β, IL-1β, PDGF, and CCL18, 
which lead to the activation of fibroblasts and their differentiation into myofibroblasts to heal the 
wounded area in the lung interstitium. Defective repair mechanisms and macrophage alternation 
cause excessive ECM production. Gaseous exchange is significantly decreased due to uncontrolled 

Figure 1. The pathogenic potential of pro-fibrotic macrophages that participate in the onset of
pulmonary fibrosis. Repetitive epithelial cell injury caused by a variety of risk factors results in
dysregulated epithelial function. AECs release coagulation factors and inflammatory mediators,
leading to the activation/recruitment of various immune cells to the site of microinjury. Among these
cells, pulmonary macrophages release profibrotic mediators such as TGF-β, IL-1β, PDGF, and CCL18,
which lead to the activation of fibroblasts and their differentiation into myofibroblasts to heal the
wounded area in the lung interstitium. Defective repair mechanisms and macrophage alternation
cause excessive ECM production. Gaseous exchange is significantly decreased due to uncontrolled
scarification, which eventually ends up causing respiratory distress. Created with BioRender.com
(accessed on 27 August 2023).
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1.2. Main Immune Players in IPF

The immune system’s contribution to the onset of IPF is debatable. For a long time,
immune cells were overlooked since the inflammatory hypothesis was not sufficiently
supported by prior investigations. Failure of immunotherapies such as interferon-gamma
(IFN-
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) injections, Tumor necrosis factor alpha (TNFα) neutralization, and immune suppres-
sion suggested a limited implication of the immune system in IPF [10]. In the PANTHER-IPF
clinical trial, IPF patients were treated with prednisone, azathioprine, and the antioxidant
N-acetylcysteine. The combination showed complete failure, leading to an increase in
mortality [11,12]. The result interpretation from the latter study supported the notion
that the pathogenesis of IPF lacks the immune component. However, a different inter-
pretation can suggest that severe immune suppression in IPF is hazardous, and some
immune populations can play important regulatory or anti-fibrotic roles in IPF. There-
fore, immunomodulatory strategies that conserve essential immune populations should
be adopted instead. It is important to note that translational studies are mostly relying
on various animal models to understand the role of different immune cells in pulmonary
fibrosis. These models show acute inflammation that progresses to fibrosis, while IPF onset
might lack this early inflammatory phase. Additionally, animal models do not reproduce
some hallmark pathologic changes seen in IPF, such as predominant lower-lobe fibrosis and
clustered cystic changes called “honeycombing” [13]. Despite all this, animal models pro-
vide a comprehensive mechanistic understanding of the immune responses that is difficult
to obtain in human studies. Interestingly, a common point between numerous studies is
that different immune populations can be involved in triggering or alleviating pulmonary
fibrosis. The role of different lung immune cells is summarized in Table 1. Because of
their dual pro/anti-fibrotic characteristics, macrophages are the most studied cells in this
context [14]. Novel technologies, including multiparametric flow cytometry and single-cell
RNA sequencing (scRNA-seq), have substantially improved the understanding of lung
macrophage heterogeneity. Based on recent human and mouse studies, we will discuss
in this review the complex roles of macrophages in IPF from a variety of perspectives,
focusing on immune, epigenetic, and metabolic pathways.

Table 1. Role of main innate and adaptive immune cells in IPF.

Innate Immune Cells Role in IPF References

Neutrophils

Neutrophil elastase (NE) promotes fibrosis and tissue remodeling.
Forced vital capacity values and bronchoalveolar lavage (BAL)

neutrophil counts have an inverse relationship.
Neutrophil extracellular traps (NETs) are found to be associated

with fibrosis.

[15–20]

Macrophages

Pro-inflammatory and anti-fibrotic properties associated with
M1 macrophages.

Anti-inflammatory, pro-fibrotic, and tissue-regenerating properties are
associated with M2 macrophages.

[14,21–24]

Monocytes
Progenitor cells for pro-fibrotic macrophages and fibrocytes.

Release (pro-fibrotic) inflammatory cytokines.
Increased monocyte count is correlated with poorer survival.

[10,25–27]

Fibrocytes Fibrocytes contribute to fibroblast-mediated tissue remodeling. [27,28]

Myeloid-derived suppressor
cells (MDSCs)

Increased MDSC numbers are associated with poor lung functions,
severe pulmonary hypertension, and increased regulatory T cells.
Involved in pro-fibrotic and immune-dysregulated environments.

[26,27,29]
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Table 1. Cont.

Innate Immune Cells Role in IPF References

Type-2 innate lymphoid
cells (ILC2s)

Increased ILC2 count in IPF patients’ BAL associated with an enhanced
type-2 immune environment.

ILC2s potentiate ECM synthesis and tissue remodeling via
IL-13 production.

[27,30–32]

Dendritic cells (DCs)

Immature DCs accumulate in regions of epithelial hyperplasia and
fibrotic lesions.

Mature DCs are concentrated in lymphoid follicles along with T and B
cells in IPF patients.

Possibly involved in ongoing inflammation in IPF lungs.

[10,33,34]

Adaptive Immune Cells

B cells

Increased number of IgA+ memory B cells and plasmablasts in the
blood and lungs of IPF patients.

High levels of B cell activation factor (BAFF) and CXCL13 in the serum
of IPF patients.

CpG and β-glucan stimulation of B cells promotes inflammatory and
fibrotic changes in IPF patients.

[35–38]

Th1 cells Attenuate fibrosis via the production of IFN-γ. [26,38,39]

Th2 cells

Dominant in IPF and antagonizes Th1 cells.
Enhance fibrosis through the production of type 2 cytokines such as

IL-4, IL-5, and IL-13. IL-4 and IL-13 stimulate (myo) fibroblast
activation and proliferation while predisposing macrophages to a

pro-fibrotic phenotype.

[26,38–40]

Th9 cells Unclear role in IPF etiology contradictory effects of Th9 cells and IL-9
have been observed in the development of fibrosis. [10,41,42]

Th17 cells Pro-fibrotic function via the production of IL-17, which stimulates
fibroblast proliferation and collagen secretion. [17,38,39,41,43]

Regulatory T cells
(Tregs)

Tregs have opposing roles in the progression of IPF. Promotion or
inhibition depends on the disease stage. [38,44–46]

2. Macrophages in Lung Fibrosis

Macrophages are mainly antimicrobial phagocytes that build a vital bridge between
innate and adaptive immunity. They are found in almost all tissues of the body and
play an important role in homeostasis maintenance. The tissue and environment of the
organ in which these heterogeneous cells reside determine their functions, such as pul-
monary macrophages, adipose tissue macrophages, kupffer cells in the liver, and microglia
cells in the central nervous system [14,47]. The respiratory tract and lungs are in direct
contact with ambient air, and the alveolar epithelium is, therefore, constantly exposed
to particles from both external and host environments. Pulmonary macrophages act as
primary immune cells in the lungs and are the first line of defense against inhaled sub-
stances. The maintenance of pulmonary macrophage populations is assumed to rely on
either the differentiation of blood-derived monocytes or on the proliferation of pre-existing
macrophages [22]. Following an injury, damaged epithelial cells contribute to the recruit-
ment of inflammatory cells and fibroblasts in order to promote healing and tissue repair [48].
Pulmonary homeostasis is then reestablished through the activation of apoptotic pathways
and phagocytosis by macrophages. However, repeated injury to the alveolar epithelium
triggers a dysregulated wound-healing cascade and perturbates macrophage reparative
activity. This dysregulation is associated with the release of pro-fibrotic mediators such
as TGF-β1, CCL18, Galectin, Connective tissue growth factor (CTGF), and Matrix met-
alloproteinases (MMPs) that trigger fibroblast migration, proliferation, activation, and
differentiation into myofibroblasts [5,38,47]. Pro-fibrotic macrophages have also been re-
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ported to transform directly into myofibroblasts through the macrophage-to-myofibroblast
transition (MMT) process [26,27,49].

2.1. Main Macrophage Populations in the Lungs

Two broad sub-populations of macrophages are defined in the lungs and play distinct
roles in the fibrotic process: alveolar macrophages (AMs) and interstitial macrophages (IMs).

i-Alveolar macrophages (AMs): AMs derive from embryonic precursors that reside in
the lung’s alveoli and are responsible for immune effector properties. Human AM surface
markers include CD11b, HLA-DR, CD206, CD169, CD64, and CD141, with minimal CD14
expression [22]. Surface markers found in mice AM include SiglecF, CD11c, CD64, F4/80,
and myeloid epithelial reproductive tyrosine kinase (MERTK) [22,50]. AMs are responsible
for pathogenic clearance and the release of inflammatory mediators like IL-6, macrophage
inflammatory proteins (MIP)-1 and MIP-2, TNF-α, TNF-β, TGF-β, PDGF, etc. [51]. In IPF,
circulating monocytes act as a fresh source of macrophages, enhancing the AM pool [52,53].
IPF patients have higher numbers of AMs as compared to healthy individuals and elevated
TGF-β secretion, which has been proposed as one of the probable factors causing fibrotic
lung disease [26]. As a matter of fact, AMs from IPF fibrotic lungs express more fibrotic
genes, such as IL1RN (encoding IL-1RA) and CHI3L1 (encoding chitinase-3-like protein 1),
than AMs from healthy lungs in scRNA-seq studies [54].

ii-Interstitial macrophages (IMs): IMs are present in the lung’s parenchymal tissue
and participate in the maintenance of immune homeostasis in the respiratory system [55].
Human IM surface markers include CD14, CD16, CD169low, and CD206 [56]. The iden-
tification of IM-specific genes LGMN, MARCKS, TMEM37, and MERTK in human IMs
using scRNA-seq helps in distinguishing them from other macrophage populations [57].
In mice, depending on the expression of macrophage markers MERTK and CD64, distinct
IM subpopulations—IM1, IM2, and IM3 have been identified [21,58]. The ability of IMs
to phagocyte particles and to produce reactive oxygen species (ROS) and chemotactic
complement is lower than that of AMs, but they express more MHC-II (HLA-DR) to fulfill
the role of antigen-presentation [59]. There is limited information on the involvement of
IMs in IPF due to their localization in the pulmonary interstitium attached to ECM and the
limited access to lung samples.

2.2. Macrophage Polarization in IPF

At the functional level, macrophages are commonly further sub-characterized into
two principal phenotypes: classically activated macrophages termed (M1) and alternatively
activated macrophages (M2) [23,60]. Although this dichotomy is now the subject of debate
in many inflammatory contexts, the M1/M2 functional classification is still helpful in
understanding the role of macrophages in IPF. M1 and M2 macrophages are both engaged in
inflammatory responses, with M1 macrophages directly associated with pro-inflammatory
responses and M2 macrophages predominantly involved in anti-inflammatory responses
(Figure 2).

i-Classically activated macrophages (M1): Upon activation with LPS and IFN-γ, naïve
M0 or polarized M2 macrophages differentiate into M1 macrophages [23,61]. The expres-
sion of CD80, Toll-like receptor (TLR) 4, MHC-II, and CD86 is enhanced in M1 cells [23].
Following stimulation of nitric acid synthase (iNOS), macrophages generate reactive nitric
oxide (NO) and produce pro-inflammatory cytokines/chemokines such as IL-1β, IL-12,
IL-23, CCL2, CXCL10, and TNF-α [62,63]. The interactions between IFN-γ and its receptors
activate Janus Kinase (JAK). Subsequently, JAK phosphorylates the transcription factor
signal transducer and activator of transcription (STAT) 1, which then binds to the promoters
of class II major histocompatibility complex transactivator (CIITA), iNOS, and IL-12 [27,60].
STAT1 activation is crucial for macrophage polarization to the M1-like phenotype and
for protecting against viral infections and intracellular parasites [22]. Additionally, the
LPS/TLR4 pathway has been recognized as an important player in the polarization of M1
macrophages. In this pathway, nuclear factor-kappa B (NF-κB) and interferon regulatory
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factor 3 (IRF3) are activated and promote the release of pro-inflammatory cytokines such as
IL-6 and TNF-α [23,64,65]. Several investigations have shown that M1 macrophages have
anti-fibrotic characteristics. In particular, M1 macrophages generate CXCL10 and MMPs,
which promote matrix degradation and inhibit fibrosis [21].
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ii-Alternatively activated macrophages (M2): M2 macrophages represent an exten-
sively studied population in fibrosis. They arise in response to stimulation with IL-4, IL-10,
IL-13, and TGF-β [66]. Human M2 macrophages are characterized by the expression of
macrophage mannose receptor (CD206) and CD163, while murine macrophages express
arginase-1 (Arg1) chitinase-like proteins Ym-1 and Ym-2 [65]. The polarization of M2
macrophages involves the induction of transcriptional factors and intercellular proteins
such as tuberous sclerosis complex 1 (TSC1), stress-responsive activating transcription
factor 7 (ATF 7), peroxisome proliferator-activated receptor gamma (PPARγ), ten-eleven
translocation (Tet) methylcytosine dioxygenase (Tet2), STIP1 homology and U-Box contain-
ing protein 1 (STUB1), Krueppel-like factor 4 (KLF-4) and interferon regulatory factor 4
(IRF4) [14]. They are broadly involved in angiogenesis, tissue remodeling, wound healing,
and anti-inflammatory processes [21,60,67]. The M2 phenotype is further classified into
4 subtypes: M2a, M2b, M2c, and M2d.

The M2a subtype is referred to as wound-healing macrophages that are activated by
IL-4, IL-13, fungal, and helminthic infections. M2a cells express Arg1, CD206, CD163, and
secrete CCL17, CCL18, and CCL24, which are involved in tissue repair [24,68,69]. M2b cells
are known as regulatory macrophages and are induced by IL-1 receptor ligands, immune
complexes, and LPS. M2b cells express CD86 and MHC-II and significantly increase IL-1,
IL-10, and TGF-β expression upon stimulation [23,57]. M2c cells are known as acquired
deactivation of macrophages since they do not achieve M1 polarization [24]. M2c cells
are elicited by IL-10, TGF-β1, and glucocorticoids. M2c has high expression of CD206,
CCR2, CD163, and MERTK [21]. M2c cells secrete high levels of IL-10 and TGF-β, thus
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being involved in mediating immunosuppressive responses and tissue remodeling [70].
M2d cells are monocyte-derived macrophages known as tumor-associated macrophages.
M2d macrophages are induced by IL-6, M-CSF, leukemia inhibitory factor (LIF), and TLR
agonists [23,50]. They highly express VEGF and CD163, secrete IL-6, IL-10, TGF-β, CXCL10,
CXCL16, and CCL5, and display a reduced secretion of IL-12. M2d cells are efficient in pro-
moting angiogenesis, matrix remodeling, and adaptive immunity suppression [23,61,71,72].

Overall, M2 macrophages constitute the most represented phenotype during IPF pro-
gression and might be implicated in triggering lung fibrosis mainly via the production of
TGF-β and CCL18 [21,73,74]. Indeed, M2-derived TGF-β promotes lung fibrosis, whereas
its depletion ameliorates fibrosis [75]. Recent studies in mice showed that deficiency of
the M2-associated small GTPase Rac2 gene leads to the inhibition of M2 polarization and
consequently protects against bleomycin-induced lung fibrosis [76]. In parallel, injecting
Rac2-deficient mice with in vitro-polarized M2 macrophages rescued bleomycin sensitiv-
ity, while injecting M1 macrophages did not [77]. Consistently, mice overexpressing the
transcription factor Fos-related antigen-2 (Fra-2) exhibit increased M2 marker expression
on lung macrophages and develop spontaneous lung fibrosis. The deletion of Fra-2, on
the other hand, protects mice from bleomycin-induced fibrosis and is linked to reduced
M2 marker expression [78]. S100a4, also known as FSP-1 (fibroblast-specific protein-1),
belongs to the small Ca2+ binding protein family. M2-polarized AMs produce and release
S100a4, which enhances lung fibroblast activation and proliferation [79]. Targeting specific
macrophage subsets or their polarization in IPF using different strategies is becoming
the focus of several investigations. A recent study has demonstrated that intravenous
injection of mesenchymal stem cells (MSCs) in bleomycin-treated mice drastically reduces
the M2c macrophage population. This suggested that MSC administration can ameliorate
pulmonary fibrosis by inhibiting the M2 activation of monocyte-derived macrophages
and modulating classical monocytes [25]. The Src homology domain 2 (SH2)-containing
tyrosine phosphatase-1 (SHP-1; PTPN6) is a protein tyrosine phosphatase. Using a SHP-1
agonist against lung fibrosis in mice was found to restrict M2 polarization and to prohibit
M2-macrophage-orchestrated fibroblast-to-myofibroblast transition [80]. TWIK-related
potassium channel (TREK-1, also known as KCNK2) overexpression was also found to
be associated with increased M2 phenotype. In parallel, TREK-1 knockdown and phar-
macological inhibition restricted the M2 phenotype and diminished bleomycin-induced
lung fibrosis [81].

Overall, these findings, along with numerous studies, clearly reveal that M2 macrophages
have a crucial implication in the progression and exacerbation of pulmonary fibrosis, while
targeting these pro-fibrotic cells and their polarization may help in developing novel
therapeutic interventions against IPF.

3. Macrophage-Related Mechanisms in IPF

Although macrophages have long been associated with the progression of pulmonary
fibrosis, the mechanisms underlying the responses of these cells in IPF are not fully un-
derstood. Due to the heterogeneity and plasticity seen in macrophages from healthy and
diseased lungs, it has been difficult to uncover their complex role and interplay with the
different pulmonary cells. Recent works have identified novel mechanisms that contribute
to the dysregulation of macrophage activity in IPF (Figure 3). This section sheds light on
the relevant macrophage-related mechanisms that were described during the last five years.
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factors are shown in red. Protective /anti-fibrotic factors are shown in green. (A) Surface receptor-
dependent mechanisms—Above-shown receptors were found to be upregulated in macrophages
and implicated in lung fibrosis. (B) Metabolism-related mechanisms—Illustrating various fibrosis-
related metabolites and metabolic regulators in macrophages. (C) Transcriptional and epigenetic
mechanisms—Illustrating various transcriptional regulators and epigenetic modifications related to
macrophages in lung fibrosis. (D) Subsets and macrophage-derived cytokines—Illustrating different
cytokines and distinct subsets of lung macrophages in lung fibrosis. Created with BioRender.com
(accessed on 27 August 2023).

3.1. Surface Receptor-Dependent Mechanisms

Cell surface receptors are membrane-anchored proteins that coordinate macrophage
responses to environmental cues and ensure cell-to-cell communication. Alteration of the
downstream pathways can dysregulate a range of processes, such as proliferation, migra-
tion, phagocytosis, cytokine production, and immune polarization. Therefore, targeting
cell-surface receptors is a direct and efficient way to affect cellular signaling and responses.
Recently, many studies have demonstrated the capacity of specific receptors to regulate
macrophage responses in IPF.

The role of TREM2, a receptor that belongs to the triggering receptors expressed on
myeloid cells (TREM), was recently uncovered in IPF. Based on a transcriptomic approach,
Luo et al. have demonstrated the upregulation of the TREM2 gene in BAL cells from
IPF patients as compared to healthy donors. Importantly, the expression of TREM2 is
predominant in macrophages and positively correlates with the number of M2 cells. In
mice, the lack of TREM2 had a protective effect and limited the polarization of macrophages
toward an M2 phenotype via the inhibition of STAT6 activity [82]. With a similar approach,
Tao et al. have investigated the role of the macrophage-inducible C-type lectin (Mincle)
receptor in acute exacerbations of IPF (AE-IPF). Mincle is an innate immune receptor that
can recognize diverse lipidic structures derived from pathogens and damaged cells. The
expression of Mincle, as well as the proportion of CD14+ Mincle+ cells, was significantly
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upregulated in the peripheral blood of AE-IPF and stable IPF patients in comparison with
healthy subjects. Moreover, an increased expression of Mincle was detected in the patient’s
lung tissues. In the AE IPF mouse model, Mincle deletion attenuated acute inflammation
and was associated with a decrease in the percentage of Th17 cells from total CD4 T cells.
This decrease was explained by an altered capacity of Mincle deficient macrophages to
promote the differentiation of Th17 cells [83].

Cao et al. have recently identified a new regulatory axis for monocyte/macrophage
responses in IPF implicating the chemoattractant receptor–homologous molecule expressed
on T-helper type 2 cells (CRTH2). The expression of CRTH2 was upregulated on monocyte-
derived macrophages in different experimental models, including bleomycin-induced
lung fibrosis, TGF-β transgenic overexpression mice, and IL-13 transgenic overexpression
mice. The study demonstrated that the interaction between chitinase-3-like 1 (CHI3L1) and
CRTH2 promotes pulmonary fibrosis, while CRTH2 deficiency is protective. One of the sug-
gested mechanisms is that CRTH2 promotes a profibrotic phenotype in lung macrophages
through CHI3L1–CRTH2 signaling [84]. As collagen deposition represents a key feature in
fibrosis, the receptor tyrosine kinase Discoidin Domain Receptor1 (DDR1), which interacts
and gets activated by collagens, was studied in IPF. It has been demonstrated that DDR1 in-
hibition suppresses the progression of bleomycin-induced pulmonary fibrosis and improves
the survival rate. DDR1 was mainly activated in the different subsets of lung macrophages.
Interestingly, the subsequent mechanistic studies showed that DDR1 promotes Collagen I
stimulation-triggered inflammasome synthesis and activation in macrophages. This impli-
cates an enhanced M1 polarization. DDR1 activation in macrophages was also confirmed
in the lung tissues of IPF patients as compared to healthy donors, strengthening, therefore,
the translational aspects of these findings [85].

Previously associated with T cell inhibition, the expression of several immune check-
points was reported on macrophages. Among these receptors, the V-domain immunoglob-
ulin suppressor of T-cell activation (VISTA) is expressed on macrophages and reduces
proinflammatory cytokines production. In parallel, VISTA agonist enhances the secretion of
anti-inflammatory mediators, including IL-10 [86]. Interestingly, a recent study by Kim et al.
has characterized the expression of VISTA on macrophages in IPF and investigated its
role in the context of pulmonary fibrosis. Using publicly available scRNA-seq data, they
have revealed the upregulation of the VISTA coding gene (VSIR) in monocyte-derived
AMs from IPF patients as compared to healthy donors. VISTA is also inducible on AMs
in bleomycin-induced lung fibrosis. The experimental approaches in VISTA knockout
mice suggested a protective role for VISTA in the bleomycin model of pulmonary fibrosis.
Importantly, the use of VISTA agonists reduced collagen deposition as well as the levels
of relevant innate immunity mediators [87]. Taken together, this work highlights the in-
volvement of VISTA in pulmonary fibrosis, while further studies are required to uncover
the underlying mechanisms and to understand the role of VISTA in IPF. The implication
of another immune checkpoint, T-cell immunoglobulin domain, and mucin domain-3
(TIM-3) was also investigated in IPF. Wang et al. revealed that the levels of TIM-3 are
increased in IPF patients peripheral blood mononuclear cells. In mice, the overexpression
of TIM-3 was associated with the exacerbation of pulmonary fibrosis. Unexpectedly, TIM-3
is mainly expressed on AMs in fibrotic lungs. Consistently, in vitro assays showed that
TIM-3 enhances the production of TGF-β1 and IL-10 by macrophages. Depletion and
adoptive transfer experiments using TIM-3 transgenic mice confirmed that TIM-3 induction
on AMs potentiates pulmonary fibrosis [88]. At the level of immune checkpoint ligands,
Jovanovic et al. have described the expression of PD-1 ligand (PD-L1) in IPF. Based on
histological analyses, they showed that PD-L1 is overexpressed on AMs in IPF patients
when compared to healthy donors, in correlation with increased levels of soluble PD-L1
in the serum [89]. Overall, the available literature on immune checkpoint receptors in IPF
is controversial and remains insufficient to suggest these receptors as promising targets.
The PD-1/PD-L1 axis, which promotes immune exhaustion in cancer, has been studied in
IPF, but its role remains conflicting. Additionally, a closer highlight on TIM-3 and VISTA
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roles in IPF indicates that inhibitory checkpoints might play opposite roles in IPF and,
therefore, targeting these receptors requires different strategies between inhibition and
agonistic activation. While there is an overlap in pathogenic mechanisms between IPF
and cancer, further longitudinal studies are warranted to provide a clear picture of the
possibility of targeting these receptors in fibrosis.

3.2. Metabolism-Related Mechanisms

Metabolic pathways are used by immune cells to provide optimal energy stores
to ensure their survival and fulfill their effector functions. In macrophages, as in most
immune populations, cell activation and cytokine production are closely dependent on
the mechanisms of energy production. Particularly, the metabolism of macrophages can
strongly affect their polarization, and metabolic adaptations are crucial to shift macrophage
responses in specific inflammatory contexts. In IPF, changes in fatty acid composition
perturbate the homeostasis of alveolar type II epithelial cells, while it is believed that
macrophages and fibroblasts rely on glycolysis to meet their metabolic requirements [90].
When glycolytic pathways are activated, lactate accumulation occurs in the pulmonary
microenvironment and enhances fibroblast proliferation, differentiation, and collagen syn-
thesis, aggravating fibrotic remodeling [91,92]. Tightly linked to metabolic reprogramming,
mitochondria dysfunction, and oxidative stress are also prominent features of profibrotic
responses. Iron-dependent mitochondrial dysfunction is one of the main mechanisms that
are highlighted for their contribution to the pathogenesis of pulmonary fibrosis. Recent
works have highlighted several metabolic events involved in macrophage polarization in
IPF, providing, therefore, a new promising angle based on immunometabolism.

The family of microRNA-33 (miR-33) is known to control cellular lipid metabolism in
macrophages and to repress genes involved in cholesterol efflux and fatty acid oxidation.
A recent study by Ahangari et al. revealed the role of the miR-33 family in IPF through
the reprogramming of macrophage metabolism. The study first showed increased levels
of miR-33 in monocytes/macrophages isolated from the patient’s BAL and lungs. Using
a myeloid-specific miR-33–knockout mouse, it has been demonstrated that miR-33 en-
hances the profibrotic contribution of myeloid cells in bleomycin-induced lung fibrosis.
Interestingly, the loss of miR-33 leads to an increased mitochondrial function in AMs.
This is associated with the induction of autophagy and mitophagy to limit the metabolic
alterations in the context of bleomycin injury. Last, pharmacological inhibition of miR-
33 in mouse and human ex vivo models suggested a new potent therapeutic strategy
against pulmonary fibrosis based on a metabolic reprogramming of macrophages [93].
Wu et al. have investigated the effect of adiponectin/carnitine palmityl transferase 1A
—(APN/CPT1A-) mediated fatty acid metabolism on lung fibrosis progression. They
demonstrated in vitro that activated macrophages can suppress fatty acid oxidation in
fibroblasts and decrease autophagy. In contrast, the activation of APN/CPT1A signaling
enhances fatty acid metabolism and reverts the effect of M1 macrophages on fibroblasts. In
particular, APN/CPT1A activation decreases the expression of TGF-β, α-SMA, and Colla-
gen I in fibroblasts and ameliorates autophagy. Consistently, the induction of APN/CPT1A
signaling limits pulmonary fibrosis in a rat model of pulmonary fibrosis. Taken together,
this study suggests that macrophages could potentiate the fibrotic activity of fibroblasts
via the alteration of their fatty acid metabolism in IPF [94]. Among other functions, pro-
tein kinase C delta type (PKCδ) is considered a metabolic regulator for insulin sensitivity,
glycolysis, and mitochondrial respiration. Wang et al. studied the implication of PKCδ

in the pathogenesis of pulmonary fibrosis. They demonstrated that IPF patients exhibit
higher phosphorylation of PKCδ in the lungs as compared to healthy controls. In mice,
PKCδ deficiency worsens bleomycin-induced pulmonary fibrosis and potentiates lung
inflammation. In vitro assays showed that the lack of PKCδ in macrophages increases the
secretion of IL-1β, IL-6, TNF-α, and IL-33. PKCδ does not have any significant effect on the
phosphorylation of JNK, ERK, and p38 MAPK; however, it suppresses the NF-κB pathway
along with direct phosphorylation of A20 [95]. Although this study did not investigate
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the effect of PKCδ deficiency on macrophage metabolism in IPF, it clearly highlighted this
metabolic regulator as a potential target against IPF.

The mevalonate pathway is an essential metabolic pathway that provides the cells with
sterol and non-sterol isoprenoids. Larson-Casey et al. reported in IPF a link between the
flux of the mevalonate pathway and the posttranslational modification of the Rho GTPase
Rac1 in macrophages. They observed that the activity of mitochondrial Rac1 is upregulated
in BAL cells from IPF patients in comparison with healthy donors. The increased activity
of Rac1 in mice fibrotic lungs and human BAL was associated with an increase in Arginase
1 activity. Interestingly, the geranylgeranylation of Rac1 is required to enhance Rac1
activity and induce a profibrotic phenotype in macrophages. This polarization depends
on mitochondrial ROS. While statins promoted pulmonary fibrosis via Rac1 activation in
macrophages, deletion of Rac1 has a protective effect. Taken together, this study indicated
that the posttranslational modification of Rac1 through the mevalonate pathway leads
to profibrotic polarization of macrophages in IPF and suggested, therefore, a promising
metabolic target [96]. In another study, Larson-Casey et al. uncovered a novel mechanism
related to oxidative metabolism. This study revealed that BAL cells from IPF patients
display upregulated mitochondrial biogenesis when compared to healthy donors. This
necessitates an increased activity of the positive regulator PPAR
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enhance mitochondrial electron transport. Importantly, Akt1-mediated mitochondrial ROS
potentiates PGC-1α activity in monocyte-derived macrophages and provides these cells
resistance to apoptosis. In parallel, conditional deletion of PGC-1α in monocyte-derived
macrophages dampens bleomycin-induced fibrosis in mice [97]. This indicates that the
inhibition of the metabolic regulator PGC-1α in macrophages could be a promising strategy
against IPF.

Itaconate is an inflammation-related mitochondrial metabolite that steers oxidative
stress in macrophages through metabolic reprogramming. A study by Ogger et al. eluci-
dated the effect of Itaconate on macrophage fibrotic response. They revealed a decrease in
itaconate and itaconate-synthesizing cis-aconitate decarboxylase (ACOD1) levels in AMs
from IPF patients in comparison with controls, suggesting a dysregulated axis. The lack of
ACOD1 leads to the exacerbation of lung fibrosis in mice. In particular, ACOD1-deficient
AMs promote the profibrotic response. Importantly, itaconate modulates the metabolism of
macrophages via the upregulation of oxidative phosphorylation, as revealed by the sea-
horse mitostress test. Consistent with the observed anti-fibrotic effects, mice treatment with
exogenous itaconate limits collagen deposition and improves lung functions in bleomycin-
induced pulmonary fibrosis [98]. Cyclooxygenase-2 (COX-2) regulates the metabolism of
innate immunity mainly via the production of prostaglandins (PGs). Furthermore, PGs can
affect macrophage polarization through the increase in mitochondrial oxidative phospho-
rylation. Zannikou et al. identified the MAPK kinase MAP3K8 as a regulator of PGE2 in
the context of lung fibrosis. They observed that MAP3K8 expression is altered in fibrotic
lungs from IPF patients and bleomycin-treated mice. Importantly, MAP3K8 deficiency in
macrophages is associated with enhanced recruitment of inflammatory cells to the lungs
and, consequently, worsened pulmonary fibrosis in mice. Moreover, MAP3K8 deficiency
disturbs cellular metabolism in bleomycin-induced pulmonary fibrosis, as revealed by the
reduced expression of COX-2. Consistently, PGE2 levels are decreased in the absence of
MAP3K8, promoting, therefore, the exacerbation of pulmonary fibrosis. Taken together, an
altered MAP3K8 signaling worsens pulmonary fibrosis via a COX-2-dependent metabolic
mechanism, highlighting a potential protective role for MAP3K8 in IPF [99]. In the same
context, Tsitoura et al. elucidated mitochondrial homeostasis in AMs. Results from this
study demonstrated an increased level of mitochondrial ROS in AMs associated with
an altered transcriptional phenotype and an increase in the expression of the scavenger
receptor CD163. Moreover, dysmorphic and contained disorganized cristae were detected
in AMs from IPF patients using transmission electron microscopy. The potential effect of
mitochondrial activity impairment on IPF progression highlights the importance of a new
class of targets in limiting the profibrotic response of macrophages [100].
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Given the critical contribution of ROS in lung fibrosis, several studies investigated
new oxidative pathways in macrophages. Hanaka et al. compared the seral levels of perox-
iredoxin 4 (PRDX4), an antioxidant enzyme, between stable and exacerbated IPF patients.
Interestingly, the progression from the stable to the acute form is associated with a signifi-
cant increase in the levels of PRDX4 in correlation with the increase in relevant biomarkers,
including Krebs von den Lungen-6 and surfactant protein D. In mice, the overexpression
of human PRDX4 worsens the progression of lung fibrosis and reduces the survival time
following bleomycin injury. Histological analysis confirmed that PRDX4 is mainly ex-
pressed in AMs and epithelial cells, suggesting a new diagnosis and therapeutic target in
IPF related to macrophages [101]. On the opposite side, a study by Liu et al. elucidated the
therapeutic effect of NF-E2-related factor-2 (Nrf2) modulation in macrophages. Nrf2 is a
major regulator of cellular oxidative and electrophilic stress that enhances the production
of antioxidant enzymes such as superoxide dismutase (SOD) [102]. The study showed
that the accumulation of M2 macrophages in bleomycin-induced fibrosis is associated with
a decrease in the levels of SOD and excessive production of malondialdehyde (MDA), a
principal pro-oxidant molecule formed during the peroxidation of polyunsaturated lipids.
ROS-responsive liposomes potentiating Nrf2 activity in macrophages via the delivery of
dimethyl fumarate were designed and tested in the context of lung fibrosis. First, these lipo-
somes were able to inhibit fibroblast-to-myofibroblast differentiation in vitro through the
activation of the Nrf2 axis in macrophages and therefore limited the production of collagen.
In vivo, the activation of Nrf2 limited the accumulation of macrophages and dampened
lung fibrosis [103]. Taken together, these studies confirm the capacity of macrophages to
regulate the progression of lung fibrosis via their oxidative systems.

Iron is a key micronutrient needed for the metabolic and bioenergetic functioning of
cells. Excessive iron accumulation in IPF may induce iron-driven oxidant injury in epithelial
cells, leading to mitochondrial dysfunction and worsening lung functions [104,105]. The
link between iron accumulation and macrophage polarization toward a profibrotic activity
in IPF has gained interest during the last decade. Lee et al. revealed that the intracellular
level of iron in AMs, as well as iron-dependent ROS, are upregulated in IPF patients in
comparison with healthy donors. Consistently, iron chelation reduces the accumulation
of ROS in murine AMs, while the induction of iron-dependent ROS enhances their pro-
inflammatory phenotype [106]. In line with the abovementioned study, Allden et al.
elucidated the mechanisms related to transferrin receptor 1 (CD71) expression by AMs
in IPF. In normal conditions, transferrin can bind circulating iron to limit iron-mediated
oxidative stress. Of interest, this study showed that the proportion of CD71− AMs increases
in IPF patients as compared to healthy donors. Moreover, CD71+ and CD71− AMs were
phenotypically and functionally different. In particular, CD71− cells have a pronounced
profibrotic phenotype with an upregulated expression of IL10, CCL3, and VEGFA [52]. This
indicates that CD71+ cells play a protective role in IPF via the sequestration of free iron
and suggests targeting the CD71− alveolar macrophage subset in IPF. Ali et al. expanded
upon clinical data and demonstrated that iron accumulation in transferrin receptor 2 (Tfr2)
mutant mice and homeostatic iron regulator deficient mice promotes collagen deposition
and deteriorates lung functions. Furthermore, iron levels were increased in bleomycin-
induced pulmonary fibrosis, while a panel of iron-related genes was affected. Importantly,
the highest amount of iron was detected in macrophages, and the number of CD71+

macrophages increased significantly. This suggested that the accumulation of CD71+

macrophages is linked to higher cellular sequestration of iron. Further analysis showed that
CD71+ cells have a dominant M2-like phenotype characterized by an enhanced expression
of M2 genes such as Il10, Arg1, and Timp1. Iron-chelating molecules were efficient in
reducing the number of CD71+ macrophages and abrogating pulmonary fibrosis [105].

Altogether, the key link between macrophage metabolic dysregulation and fibrosis
development is getting more recognized in the IPF field. Understanding the different
aspects of macrophage metabolism in IPF might, therefore, open the door to potential
therapeutic strategies that delay the progression of fibrosis via metabolic reprogramming.
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3.3. Transcriptional and Epigenetic Mechanisms

Several factors regulate gene activity and whether genes are turned on or off, including
transcription factors and epigenetic modifications. Transcription factors are proteins that
recognize specific DNA sequences to control the initiation of gene transcription. Epigenetic
marks, such as DNA methylation and histone modifications, could modulate regions of
the genome to promote gene activation or repression [107,108]. Of note, the epigenetic
machinery could block the binding of transcription factors to gene promoters. Numerous
studies have emphasized that histone changes, including acetylation, methylation, and
ubiquitination, affect the expression of genes responsible for fibrotic processes. Targeting
DNA methylation and histone-modifying enzymes has shown promise in preclinical mod-
els, indicating the potential for epigenetic treatments to slow down the progression of IPF.
These therapies have the potential to halt or even reverse fibrotic remodeling by restoring
the balance of gene expression in macrophages. For instance, new molecules that could
modulate epigenetic modifications, such as FibroGen-FG-3019, are being tested in clinical
trials. In this section, we will highlight recently described transcriptional and epigenetic
mechanisms that steer macrophage activity in IPF.

DNA methyltransferase (DNMT)3B is an oxygen-sensitive enzyme that ensures de
novo DNA methylation via its catalytic role and, therefore, participates in the maintenance
of chromosomal homeostasis. A recent study by Qin et al. investigated the impact of
DNA methylation on macrophages focusing on DNMT3B. They first showed that DNMT3B
deficiency enhances macrophage polarization toward the M2 phenotype in response to
IL-4 and TGF-β1. The inhibition of Arg1 promoter methylation is one of the suggested
mechanisms that could explain the effect of DNMT3B on macrophage polarization. Then,
using a myeloid cell-specific DNMT3B deficient mice, they demonstrated in the bleomycin-
induced pulmonary fibrosis model that the lack of DNMT3B increased the recruitment of
fibrotic AMs (SiglecFlowCD11bhi) as compared to classic alveolar macrophage population
(SiglecFhiCD11blow). This was associated with an increased expression of M2 genes
such as Arg1, Fizz1, Pdgfa, and Mmp8. Consistently, DNMT3B deficiency in myeloid cells
exacerbates pulmonary fibrosis, suggesting a protective role for DNMT3B in IPF via the
regulation of macrophage polarization [109].

The methyl–CpG-binding domain (MBD) proteins belong to the epigenetic machin-
ery. Indeed, they bind to the methylated CpG DNA and promote the formation of a
suppressive complex. Wang et al. studied the effect of MBD2 on macrophage activity
in IPF. Interestingly, MBD2 is highly expressed in CD206+ macrophage lungs from IPF
patients as compared to an undetectable expression in healthy donors. Using myeloid
cell-specific MBD2 deficient mice, it was demonstrated that MBD2 deficiency decreases
collagen deposition and significantly ameliorates bleomycin-induced fibrosis. Further anal-
yses showed that the lack of MBD2 contributes to the attenuation of TGF-β1 secretion by
lung macrophages as well as the downstream pathways. Other results supported the notion
that MBD2 deficiency dampens the M2 polarization via the inhibition of the PI3K/Akt
signaling pathway. Consistently, a therapeutic strategy based on the administration of
Mbd2 siRNA liposomes exhibits a protective effect against bleomycin-induced pulmonary
fibrosis [110]. Within the family of epigenetic regulators, the methyl-CpG-binding protein
2 (MECP2) can also bind CpG islands at the methylation sites. Mou et al. have revealed
that the expression of MECP2 is specific to macrophages in fibrotic lungs from IPF patients,
while the expression is undetectable in healthy subjects. Similar results were obtained
in the bleomycin-induced lung fibrosis model, confirming the induction of MECP2 in
fibrotic lungs. In vitro results indicated that MECP2 enhances the M2 phenotype via the
induction of IRF4 in macrophages. Interestingly, Mecp2 siRNA-loaded liposomes targeting
lung macrophages are able to suppress pulmonary fibrosis in mice, suggesting a novel
epigenetic target in IPF [111].

The citrullination of several structural proteins, including vimentin, could represent a
key mechanism for the epigenetic control of the innate immune system under pathological
conditions [107,112]. Li et al. have addressed the involvement of vimentin citrullination
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in IPF development. They first measured in IPF patients elevated levels of two cigarette
smoke molecules, cadmium (CD) and carbon black (CB). Importantly, the levels of these
pollutants were correlated with the amount of secreted citrullinated vimentin by lung
macrophages and with the severity of the disease. Three-dimensional lung pulmospheres
showed the capacity of citrullinated vimentin to induce an invasive subtype of fibrob-
lasts. Furthermore, citrullinated vimentin promotes profibrotic cytokine production via
the activation of the TLR4/NF-κB signaling pathway [113]. Altogether, this study high-
lighted macrophage-derived citrullinated vimentin in IPF as a critical danger signal for the
activation of fibroblasts.

The importance of DNA methylome-encoded information in AMs during lung fibrosis
was assessed by McErlean et al. DNA methylation profiling uncovered the epigenetic
heterogeneity of AMs in IPF. In particular, data suggest that aberrant AM metabolism
during IPF may be partly related to discrete modifications in macrophage methylome.
Indeed, differentially regulated regions were identified in metabolism-related genes, such
as LPCAT1 (lysophosphatidylcholine acyltransferase 1) and PFKFB3 (6-phosphofructo-2-
kinase/fructose-2,6-biphosphatase 3). Importantly, the described epigenetic modifications
correlate with the disease severity and confirm the capacity of the epigenetic machinery to
orchestrate different aspects of macrophage responses [114].

Tripartite motif-containing 33 (TRIM33) is an E3 ubiquitin ligase known as a tran-
scriptional repressor. Given the negative effect of TRIM33 on TGF-β/SMAD signaling,
Boutanquoi et al. investigated its role in IPF. The expression of TRIM33 is mainly upreg-
ulated in myofibroblasts and macrophages in IPF patients in comparison with control
subjects. Similar results were obtained in rats and mice after bleomycin injection. Using
bone marrow-derived macrophages, it has been shown that TRIM33 deficiency potentiates
the production of TGF-β1 as well as other fibrotic mediators in response to bleomycin
stimulation. Consistently, hematopoietic-specific TRIM33 deficient mice exhibited an ag-
gravated fibrotic progression, confirming the protective role of TRIM33 in pulmonary
fibrosis, at least partly through the regulation of the TGF-β1 pathway in macrophages [115].
A study conducted by He et al. has recently unpinned the role of another E3 ubiquitin
ligase F-box and WD repeat domain–containing 7 (Fbxw7) in IPF. The mRNA expression
of Fbxw7 is downregulated in the BAL cells of IPF patients in comparison with healthy
donors. In mice, the expression of Fbw7 is lower in circulating monocytes and lung
macrophages after 21 days of bleomycin administration. To reveal the role of Fbxw7 in lung
macrophages, a myeloid-specific deficient mouse was created. This mouse displayed an ex-
cessive deposition of collagen in response to bleomycin, as well as an increased recruitment
of monocytes/macrophages to the lungs. Importantly, the lack of Fbxw7 increased the
secretion of TGF-β1 through ubiquitin-dependent degradation [116]. This study highlights,
therefore, the protective role of Fbxw7 in lung fibrosis through the inhibition of macrophage
profibrotic responses.

miRNAs (microRNAs) are short, non-coding RNAs known for their role in post-
transcriptional regulation of gene expression via the degradation of target RNA. The
involvement of miRNAs in IPF pathogenesis, notably in the transcriptional regulation of
epithelial cells and fibroblasts, has been revealed. Drosha ribonuclease III (DROSHA) is
a ribonuclease enzyme that participates in the nuclear biogenesis of miRNAs. Cho et al.
have elucidated the role of DROSHA in macrophage activation in IPF. They first reported
an upregulated expression of DROSHA in AMs from IPF patient lungs in comparison
with control donors. Moreover, DROSHA protein significantly colocalizes with absent
in melanoma 2 (AIM2) inflammasome in AMs. Similar results were observed in the
bleomycin mouse model, suggesting a potential link between DROSHA induction and
AIM2 activation. As a matter of fact, DROSHA deletion in mouse macrophages confirmed
the role of DROSHA in promoting AIM2 inflammasome activation through a miRNA-
mediated mechanism [117]. The involvement of exosomal miRNAs was also studied by
Guiot et al. in IPF. Exosome isolation from sputum and plasma revealed higher expression
of miR-142-3p in sputum-derived and plasma-derived exosomes from IPF patients than
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in healthy donors. Correlation analysis identified macrophages as the primary source of
exosomes in IPF. Interestingly, macrophage-derived exosomes can transfer miR-142-3p
to fibroblasts and epithelial cells and consequently reduce the profibrotic responses of
these target cells [118]. Taken together, macrophage capacity to release miR-142-3p-loaded
exosomes represents a potential antifibrotic mechanism that allows the downregulation
of IPF.

The Forkhead box M1 (FOXM1) is a proliferation-associated transcription factor. In
IPF, FOXM1 is abnormally expressed in fibroblasts and seems to be involved in epithelial-
to-mesenchymal transition [119,120]. Goda et al. recently reported that FOXM1 is inducible
on AMs from IPF patients within fibrotic scars, while the expression is not detectable in
healthy donor macrophages. In mice, myeloid-specific deficiency of FOXM1 was associ-
ated with an increased accumulation of collagen in bleomycin-treated mice as well as an
increased number of αSMA+ myofibroblasts. Furthermore, the lack of FOXM1 potentiates
the expression of profibrotic cytokines in AMs, leading to fibroblast activation. Mechanisti-
cally, the study shows that Dusp1 transcriptional regulation by FOXM1 inhibits p38 MAPK
phosphorylation in macrophages [121]. This could explain, therefore, the anti-fibrotic role
of FOXM1 in macrophages during pulmonary fibrosis. It is worthwhile mentioning here
that previous studies revealed that FOXM1 inhibition in fibroblasts and epithelial cells has
a protective effect on lung fibrosis. This suggests that FOXM1 could have opposite roles in
different cell types [119,120].

Fra-2 is known to be highly implicated in cellular transcriptional regulation and was
described in several lung pathologies [122]. In particular, Fra-2 transgenic mice develop
spontaneous lung fibrosis with high levels of IL-4 [123]. The role of this transcription factor
was elucidated in IPF by Ucero et al. They showed that Fra-2 transgenic mice have an
increased expression of M2 macrophage markers, suggesting an enrichment in profibrotic
macrophages. Using different preclinical models, it was shown that macrophages that
express Fra-2 are highly involved and required for the development of pulmonary fibrosis.
The study also reported the production of collagen VI by profibrotic macrophages in a
Fra-2-dependent manner. These data were confirmed in lung biopsies from IPF patients
that display elevated levels and colocalization of Fra-2 and collagen VI in both alveolar and
interstitial macrophages when compared with healthy tissues [78]. Altogether, the study
suggests that Fra-2 strengthens the profibrotic response of macrophages in lung fibrosis.

Lee et al. identified a new genetic modifier of TGF-β1 pathway that is involved in
macrophage activation during pulmonary fibrosis. A transgenic mouse with inducible
expression of bioactive TGF-β1 was generated and bred onto different strains. Based
on haplotype-based computational genetic mapping and mRNA profiling, Laminin α1
(Lama1) was chosen for analysis among other candidates due to its high genetic effect on
TGF-β1-induced pulmonary fibrosis. Lama1 aggravates pulmonary fibrosis, as revealed by
collagen deposition and collagen-related gene expression. Moreover, Lama1 is implicated
in the M2 polarization of macrophages and enhances their fibrotic activity. Unexpectedly,
however, Lama1 is expressed in pulmonary macrophages from C57 TGF-β1 transgenic mice
but not in BALB/c mice, revealing, therefore, a strain-specific expression in mice. Human
data confirmed that Lama1 expression is upregulated in fibrotic lungs of IPF patients
in comparison with healthy donors and that macrophages and fibroblasts are the major
Lama1+ cells in the lungs [124].

It is becoming evident that transcriptional and epigenetic machinery is crucial to
program macrophage differentiation, polarization, and activation. The dysregulation of
gene expression critically participates in the development of IPF, and a better understanding
of the underlying mechanisms may lead to significant progress. The specific mechanisms
and therapeutic possibilities, however, still require additional study.

3.4. Macrophage Subsets and Cytokines/Chemokines

Circulating monocytes are drawn towards the wounded area of the lung follow-
ing injury and differentiate into either the pro-inflammatory/cytotoxic (M1) or the anti-
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inflammatory/wound-healing (M2) macrophage subpopulations. Apart from the classical
functional subsets, new studies are identifying novel subsets of lung macrophages ac-
cording to the expression of distinct surface markers in order to uncover their role in the
development of IPF. In particular, most research focuses on the secretory profile of these
different subsets, offering, therefore, relevant insights into IPF etiology. In this section, we
will highlight recent studies that investigated novel macrophage subsets in IPF as well as
macrophage-derived cytokines/chemokines.

3.4.1. Subsets

Integrin α M (CD11b) is an adhesion molecule involved in various cell functions
and migrations. Once lung injury occurs, CD11b+ monocytes/macrophages migrate into
the injured lung interstitial compartments, polarize into CD206+ M2 macrophages, and
promote pulmonary fibrosis. For the purpose of investigating the precise role of CD11b+

monocytes/macrophages, Wan et al. conditionally depleted CD11b cells in a CD11b-
diphtheria toxin receptor (CD11b-DTR) mouse. CD11b depletion eventually inhibited the
polarization of macrophages in the fibrotic lungs. Sphingosine-1-phosphate (S1P) and its
receptor S1pr2 have been implicated in pulmonary fibrosis, and they demonstrated that
CD11b deficiency inhibits sphingosine 1-phosphate receptor 2 (S1PR2)/sphingosine kinase
2 (SphK2) signaling during pulmonary fibrosis. Additionally, SphKs axis was found to be
necessary for TGF-β1 induced myoblast-to-myofibroblast trans-differentiation [125]. In the
same context, McCubbrey et al. focused on macrophages that display high expression of
CD11b. Interestingly, CD11bhi macrophages were found to be increased in the lungs and
to be distinct from SiglecFhi macrophages as they show higher expression of pro-fibrotic
chemokines, including CCL2, CCL12, and CCL24. The latter promotes the survival of
fibroblasts, while CCL2 stimulates the proliferation and production of collagen. CD11bhi

macrophages were found to have a higher expression of epithelial and fibroblast prolifer-
ative factors. Therefore, a novel transgenic hCD68rtTA system was created to selectively
target CD11bhi macrophages without affecting SiglecFhi macrophages. The survival of
CD11bhi macrophages was manipulated by deleting the anti-apoptotic protein, cellular
FADD-like IL-1b–converting enzyme–inhibitory protein (c-FLIP) upon administration of
doxycycline. Hence, the loss of CD11bhi macrophages protected mice from the devel-
opment of lung fibrosis. Further, hCD68rtTA targets both alveolar and tissue CD11bhi

macrophages, whereas alveolar and tissue CD11bhi macrophages are different subsets, and
it will be interesting to investigate their pro-fibrotic effects separately [126].

Morse et al. investigated macrophage subsets in human fresh lung explants from
various fibrotic lobes that resembled the disease. The upper fibrotic lobes showed early
disease, whereas the lower fibrotic lobes reflected late disease conditions. The various
degrees of fibrosis and disease severity were indicated by a graded pattern of cell type
changes between the normal, upper, and lower lobes of IPF. They found three discrete
macrophage subsets: one expressing monocyte markers, one highly expressing FABP4
and INHBA (FABP4hi), and one expressing SPP1 and MERTK (SPP1hi). Furthermore,
Morse et al. analyzed the Secreted Phosphoprotein 1 (SPP1) marker on macrophages from
healthy and IPF lungs and discovered that SPP1hi macrophages in IPF originate from a pre-
existing macrophage population. SPP1 expression, on the other hand, rises considerably
in macrophages found in fibrotic IPF lower lobes. At the same time, Spp1 deletion in
bleomycin mice downregulated the expression of collagen type 1 and MMP2, ultimately
ameliorating fibrosis. SPP1hi macrophages were suggested to constitute a pro-fibrotic
macrophage population in IPF lungs. SPP1hi macrophages in fibrotic lower lobes exhibited
substantially elevated SPP1 and MERTK expression. FABP4 expression in macrophages
was associated with pro-inflammatory macrophages and the release of IL-1β. Alternatively,
in IPF lungs, FABP4hi macrophages account for the majority of macrophages in alveoli
and may differentiate into SPP1hi macrophages. FCN1hi macrophages form the third
group found largely in the interstitial compartment, expressing markers closely related
to monocytes. The study suggested that SPP1hi macrophages contribute to lung fibrosis
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in IPF, and therapeutic strategies targeting MERTK and macrophage proliferation might
provide novel treatment options for the disease [58].

Nouno et al. worked on lung tissue biopsies from patients with IPF and autopsies
from AE IPF to analyze the association between pulmonary accumulation of M2-like
macrophages and survival in IPF patients. Subset identification was based on three markers:
CD68 (pan-macrophage marker), CD163, and CD204 (M2-like macrophage markers). They
found that lung tissues from IPF patients contained more CD68+, CD163+, and CD204+

cells and had higher CD163+/CD68+ and CD204+/CD68+ cell ratios than those from the
control group. In situ hybridization of TGF-β1 mRNA was performed and revealed a
histological co-localization with stained CD163+ cells in lung tissue sections of IPF patients.
Poorer clinical outcomes in IPF patients were associated with the elevation of CD163+ and
CD204+ macrophages. The study concluded that suppressing macrophage activation or
macrophage-derived TGF-β1 production might be a therapeutic target against IPF [127].

Li et al. observed that bleomycin-treated mice had more S100A4+ macrophages in
their lung tissues. During the inflammatory phase, S100A4+ macrophages were found to
be the most prominent cells stimulating fibroblast activation. Whereas S100A4 deficiency
(S100A4−/−) or blocking of S100A4 using a neutralizing antibody has reduced fibrosis.
They further performed the adoptive transfer of S100A4+ and S100A4− macrophages
in S100A−/− mice and found that the transfer of S100A4+ macrophages causes the de-
velopment of fibrosis. Additionally, S100A4 protein levels and the number of S100A4+

macrophages were found to be correlated with the occurrence of IPF in patients [128].

3.4.2. Cytokines/Chemokines

Besides classical macrophage-derived cytokines, recent studies demonstrated the
capacity of lung macrophages to modulate the progression of IPF via a wide spectrum of
cytokines, including IL-9, IL-11, and IL-37, and chemokines such as CCL17 and CXCL13.

Sugimoto et al. explored the effect of IL-9 on pulmonary fibrosis using the silica-
induced mouse lung fibrosis model. They discovered elevated levels of IL-9 in BAL of a
silica-induced fibrotic group, while neutralization of IL-9 with an anti-IL9 neutralization
antibody suppressed the inflammation and fibrosis. Similarly, in human studies, cells in IPF
lungs had significant levels of IL-9 expression compared to healthy controls. Immunohisto-
chemistry analysis clearly showed that mainly CD4+ and AMs express IL-9. The study also
showed that IL-9 induces pro-fibrotic TGF-β production by AMs, which has been known
to be implicated in pulmonary fibrosis exacerbation [129].

Kortekaas et al. investigated the function of IL-11 in the pathogenesis of IPF. The
ability of IL-11 to initiate the differentiation of fibroblasts into myofibroblasts and to induce
the production of collagen has been associated with the development of fibrosis. It’s
interesting to note that in this study, the IL-11 protein was also found to be expressed by
AMs. Although the precise function of IL-11 in AMs and its connection to IPF are still
unknown, more research will be intriguing [130].

Kim et al. demonstrated the effect of the anti-inflammatory cytokine IL-37 in pul-
monary fibrosis. They found that IL-37 protein was expressed in AECs and AMs in healthy
controls but significantly reduced in patients with IPF. As lung cell apoptosis is very impor-
tant in lung fibrosis, they performed siRNA-mediated silencing of IL-37 in primary mouse
AECs or A549 cells and found that IL-37 was protective against oxidative stress–induced
AEC death. Further, IL-37 was found to reduce the constitutive expression of fibronectin
and collagen in IPF lung fibroblasts. IL-37 inhibits fibroblast proliferation and downregu-
lates TGF-β1 signaling. Autophagy is an intrinsic cellular defense mechanism in innate and
adaptive immune systems. Kim et al. checked how IL-37 regulates autophagy, especially in
lung fibrosis, and found that IL-37 suppresses mTOR, the mediator of PI3K/AKT signaling
that inhibits macroautophagy. Further research revealed that the anti-fibrotic properties
of IL-37 were reversed when autophagy was inhibited by 3-MA (3-methyladenine). The
study concluded that, in addition to autophagy, the blockage of TGF-β1 signaling and the
inhibition of PI3K/AKT signaling contributed to the anti-fibrotic effect of IL-37 [131].
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CCL17 has been associated with various inflammatory disorders such as dermatitis,
allergic asthma, atherosclerosis, colitis, and arthritis. CCL17 has recently been revealed to
have an important role in the etiology of fibrotic disorders. Wang et al. demonstrated that
the levels of CCL17 were increased in the lungs of IPF patients and mice with bleomycin-
induced IPF. AMs were identified as the primary source of elevated levels of CCL17 in
the lungs. Furthermore, silencing CCR4 expression significantly reduced the expression
of α-SMA and COL1 in CCL17-treated fibroblasts, suggesting that CCR4 on the fibrob-
last membrane was responsible for CCL17-mediated fibroblast activation. Moreover, the
knockdown of CCR4 by CCR4-siRNA or blockade by CCR4 antagonist C-021 was able to
ameliorate pulmonary fibrosis pathology in mice. The study showed that CCL17 is a pro-
fibrotic mediator of lung fibroblasts, suggesting that CCL17 or CCR4 inhibition may serve
as an effective strategy to suppress lung fibroblast activation and attenuate pulmonary
fibrosis progression [132].

Bellamri et al. investigated CXCL13 in biopsies from IPF patients. Multiplex immune-
fluorescence staining showed that CXCL13 was present in CD68 and CD206-positive AMs.
In vitro studies revealed that both canonical and non-canonical NF-kB signaling increased
the production of CXCL13 in LPS-stimulated and monocyte-derived macrophages. LPS
rapidly induces TNF-α and IL-10 expression, which then triggers the NF-kB and JAK/STAT
pathways, respectively, to facilitate CXCL13 gene activation. They concluded that TNF-α
and IL-10 are mediators of LPS-induced CXCL13 gene expression in AMs [36].

Apart from classical macrophages, various other macrophage subsets have been asso-
ciated with distinct phenotypes, functions, and secretomes. As a matter of fact, targeting
cytokine-specific pathways or depleting specific subsets seems to be an effective way to
attenuate fibrosis. Thus, further clinical and animal studies warrant novel approaches to
modulating mediators and fibrotic macrophage subsets.

4. Conclusions

Over the last decade, our insights into immune cell implications in the pathogenesis of
lung fibrosis have been profoundly revolutionized by the use of new technologies such as
scRNA-seq and proteomic imaging. This review focuses on recently discovered molecular
mechanisms and pathological changes associated with pulmonary macrophages in lung
fibrosis. A pivotal role for macrophages in promoting the progression of lung fibrosis has
been confirmed in IPF patients as well as in mouse models. Targeting macrophages in IPF
is now the subject of clinical research and trials. However, different factors complicate
the task since macrophages do not consist of one homogeneous cell population with a
unique phenotype and functional properties. Moreover, macrophages are highly plastic
cells that undergo functional polarization based on complex pathways and regulatory
networks. Therefore, strategies based on the reprogramming of pro-fibrotic macrophages
toward an anti-fibrotic phenotype should be highly specific in targeting relevant subsets
without compromising others. In this context, some immune receptors can be targeted to
modulate macrophage fibrotic responses. The suggested alignment of lung fibrosis diseases
with cancer further supports the potential effectiveness of these therapeutic options in
IPF. Other studies build upon the impact of metabolic, transcriptional, and epigenetic
factors in shaping macrophage activity during the development of fibrosis. Although very
diverse, all perspectives will drive us toward a better understanding of macrophage-related
mechanisms in IPF and might provide the potential for paradigm shifts in treatment.
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