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Abstract: Osteosarcoma is a primary malignant bone tumor affecting adolescents and young adults.
This study aimed to identify proteomic signatures that distinguish between different osteosarcoma
subtypes, providing insights into their molecular heterogeneity and potential implications for per-
sonalized treatment approaches. Using advanced proteomic techniques, we analyzed FFPE tumor
samples from a cohort of pediatric osteosarcoma patients representing four various subtypes. Dif-
ferential expression analysis revealed a significant proteomic signature that discriminated between
these subtypes, highlighting distinct molecular profiles associated with different tumor character-
istics. In contrast, clinical determinants did not correlate with the proteome signature of pediatric
osteosarcoma. The identified proteomics signature encompassed a diverse array of proteins involved
in focal adhesion, ECM-receptor interaction, PI3K-Akt signaling pathways, and proteoglycans in
cancer, among the top enriched pathways. These findings underscore the importance of considering
the molecular heterogeneity of osteosarcoma during diagnosis or even when developing personalized
treatment strategies. By identifying subtype-specific proteomics signatures, clinicians may be able
to tailor therapy regimens to individual patients, optimizing treatment efficacy and minimizing
adverse effects.

Keywords: pediatric cancer; osteosarcoma; proteomics

1. Introduction

Osteosarcoma is the most prevalent malignant primary bone tumor, constituting
almost one-fifth of all primary sarcomas and around 20–22% of all primary malignant bone
tumors. Although rare, pediatric osteosarcoma affects approximately 8.7% of children
under 20 years old and is more common in males [1,2]. It has a bimodal age distribution,
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with the first peak in the second decade of life and the second peak in older individuals [3].
The five-year overall survival rate for patients with non-metastatic osteosarcoma is 60%,
whereas patients with lung or bone metastasis have 20% and 13% five-year overall survival
rates, respectively. Similarly, patients with recurring diseases have a poor prognosis [4].

Osteosarcoma is a mesenchymal cell tumor that is classified according to the World
Health Organization (WHO) into conventional (osteoblastic, chondroblastic, and fibroblas-
tic) and non-conventional (telangiectatic, small cell, high-grade surface, and low-grade) [5].
However, it is difficult to determine the biological differences between these subtypes
because their identification relies heavily on sampling, and heterogeneous histologies are
often present in a single tumor. Therefore, the commonality of many histologies in a single
tumor makes it challenging to draw significant conclusions about the differences between
these subtypes [6].

The development of osteosarcoma involves complex etiological factors and patho-
genetic mechanisms, but significant progress has been made in understanding its causes.
Research efforts in recent decades have been focused on identifying “driver” mutations,
which are present in cases of inherited predisposition and sporadic osteosarcoma [7].
These mutations are found in cancer-causing genes, also known as driver genes, and
give cancer cells a growth advantage, leading to the outgrowth of the tumor clone. Pa-
tients with germline disorders, including Li Fraumeni syndrome, Rec Q abnormalities
(Werner syndrome, Rothmund–Thompson syndrome, and Bloom syndrome), and inherited
retinoblastoma, are more likely to develop osteosarcoma. CDKN2A, PTEN, mTOR, and
TGF-Beta are other driver genes implicated in osteosarcoma etiology [8]. Although ad-
vances in high throughput genomics and transcriptomics-based screening have increased
our understanding of the genetic factors that contribute to osteosarcoma development, the
characterization of the disease proteomics landscape is still in its early stages [9].

Proteins are essential for all cellular functions and play a crucial role in disease patho-
genesis and progression. Furthermore, proteomic techniques based on mass spectrometry
(MS) have emerged as critical tools in biomarker discovery, prognosis, and treatment
follow-up. In the current study, we aimed to investigate the proteomic signature of 33
pediatric osteosarcoma subtypes. We further characterized the relationship between clinical
variables of patient outcomes and proteome signatures of osteosarcoma subtypes.

2. Materials and Methods
2.1. Patients Details

Archived formalin-fixed paraffin-embedded (FFPE) osteosarcoma tissue specimens
from 33 patients at the Children’s Cancer Hospital Egypt 57,357 (CCHE) between 2007
and 2015 were provided by the pathology department. Samples were obtained after the
Institutional Review Board’s (IRB) approval of CCHE’s waiver of consent (7.20.6). All
FFPE samples provided in this study were obtained as part of an initial biopsy at the time
of diagnosis before induction chemotherapy. Patient information and follow-up data are
available in the Supplementary Table S1.

2.2. Tissue Sample Processing

Four 10-µm scrolls were combined and subjected to dewaxing followed by direct tissue
trypsinization for each sample. Dewaxing was performed through three incubations in
800 µL of xylene for 1 min each, followed by centrifugation. Sections were then rehydrated
through a series of ethanol and distilled water washes (100% ethanol for 2 min, 95% ethanol
for 1 min, 70% ethanol for 1 min, distilled water for 1 min). The tissue pellets were dried
using speed vacuuming for 20 min at room temperature (RT) after rehydration. Samples
were then subjected to direct protein digestion. Briefly, dried tissue pellets were, as in [10],
re-suspended in 20 ng/µL trypsin in 50 mM ammonium bicarbonate at pH 8.0, where
the volume was adjusted according to the size of the sections (1 µL/mm2). Samples
were incubated overnight at 37 ◦C, after which trypsinization was deactivated by adding
1–2 µL of 50% trifluoroethanol (TFA) per sample and centrifuged at 3000 rpm for 5 min,
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then incubated at RT for 1 min. The resultant peptide mixture was desalted using C18 stage
tips (Pierce™ C18 Spin Tips; prod#84850) and sonicated for 15 min prior to LC–MS/MS
injection. Peptides were quantified using the BCA quantification assay.

2.3. LC–MS/MS Analysis

Samples were analyzed by nanoLC–MS/MS analysis and carried out using a TripleTOF
5600+ mass spectrometer (AB Sciex, Toronto, ON, Canada) coupled with an Eksigent
nanoLC-400 autosampler and an Ekspert nanoLC 425 pump at the front end in Trap and
Elute modes. Samples were automatically injected into a trap column on CHROMXP
C18-CL 5 um (10 × 0.5 mm) (SCIEX, Canada). Peptides were performed using a 3 µM
ChromXP C18CL, 120 A, 150 × 0.3 mm (SCIEX, Canada) reversed-phase column at a
5 µL/min flow rate. A linear gradient of solution A (100% water containing 0.1% formic
acid) and B (100% acetonitrile containing 0.1% formic acid) from 3 to 80% B over 55 min.
Calibration was scheduled during the batch to correct any possible TOF deviation using
50 fmol of PepCalMix (MS synthetic peptide calibration kit, SCIEX, Canada). The top
40 most abundant parent ions with charge states 2–5 were picked for subsequent fragmen-
tation with an exclusion time of 8 ms. Analyst TF1.7.1 (SCIEX, Canada) recorded peptide
spectra over the mass range of 400 to 1250 Da for MS1 and 170 to 1500 for MS2. For MS2
fragmentation, collision-induced dissociation (CID) was used. The MS proteomic data were
deposited in the PRIDE repository with the study ID number PXD040681.

2.4. Clinical Data Analysis

All statistical analyses were performed using R statistical environment 4.1.3 (10 March
2023). Descriptive statistics were summarized for categorical variables as frequencies, while
continuous variables were summarized as the mean and the median. For the univariate
and multivariate survival analyses, hazard ratios, 95% confidence intervals (95% CI), and
log-rank differences between groups were derived using the “survminer” and “survival”
packages with the endpoints of overall survival (OS) and event-free survival (EFS). The
OS was calculated from the initial diagnosis to the last follow-up or death. EFS was
defined as the time interval from the initial diagnosis to the time of an event, namely tumor
progression, recurrence, or death. Both OS and EFS were estimated by the Kaplan–Meier
method. Two patients who underwent upfront surgery and one who received palliative
treatment were excluded from the analysis. Multivariate analysis was performed for
statistically significant OS and/or EFS univariate analyses.

2.5. Proteomics Identification

Mascot generic format (mgf) files were generated from raw files using a script supplied
by AB Sciex. MS/MS spectra of samples were searched using the X Tandem algorithm
within SearchGUI (Galaxy version 3.3.12) and Peptide shaker (Galaxy version 1.16.38)
against Uniprot Homosapiens (Swiss-Prot and TrEMBL databases containing 195,194 pro-
teins), with target and decoy sequences. The search of all fully and semi-tryptic peptide
candidates was adjusted up to 2 missed cleavages maximum. Precursor mass and fragment
mass were identified with an initial mass tolerance of 20 ppm and 10 ppm, respectively.
Carbamidomethylation of cysteine (+57.02146 amu) was considered a static modification,
with oxidation at methionine (+15.995), acetylation of the protein at the N- terminal and K
(+42.01 amu), and pyrrolidone from the carbamidomethylated C (−17.03 amu) as variable
modification. The false discovery rate (FDR) was set at 1% at the protein level.

2.6. Proteomic Data Analysis

Before the analysis, data normalization was performed using probabilistic quotient
normalization (PQN) [11]. Features with more than 50% missing values per group were
removed. Then, a modified imputation strategy was employed on the rest of the fea-
tures. Median random imputation with a range of ±1% around the median was applied.
This approach maintains the features’ median in a group and prevents tied observations
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in the data [12]. Finally, auto-scaling (mean-centered and divided by the standard de-
viation of each variable) was performed. To detect the statistically significant proteins
between the groups, a t-test or Wilcoxon Mann–Whitney test (based on the data distribu-
tion tested using the Shapiro–Wilks test) was used with a false discovery rate (FDR) of 5%, a
p-value < 0.05, and a fold change of (FC2) ± 2. For more than two groups, an ANOVA
was used with the same parameters. Cluster analysis using features under an FDR of 10%
was applied to the data using correlation distance and ward.D clustering 16, represented
as a heatmap. Also, multivariate statistical analyses were performed, including principal
component analysis (PCA) using in-house R codes, and the ggplot2 package was used for
graphical visualization. Pathway enrichment analysis employing the Kyoto Encyclopedia
of Genes and Genomes (KEGG) (ref) was performed using the significant features on the
g:Profiler web server [13]. Protein–protein interaction (PPI) network construction and
GO enrichment analysis were performed using the STRING database [14]. Cytoscape
(version 3.9.1) was used to visualize the PPI networks.

3. Results
3.1. Patient Cohort Description, Clinical Characteristics, and Outcomes

The patient’s clinical characteristics are described in Table 1. Samples were chosen
based on the availability of enough tumor tissue for proteomics analysis.

Table 1. Clinical characteristics of the osteosarcoma cohort.

Variable No. of Cases

Age 33

Mean =12.85

Median =13.32

Age group

<10 9

≥10 24

Gender 33

Female 17

Male 16

Pathology 33

Conventional Subgroup 28

Chondroblastic 9/28

Fibroblastic 5/28

Osteoblastic 14/28

Non-conventional Subgroup 5

Telangectatic 5/5

Histological response to chemotherapy 30

Good (≥90% necrosis) 7

Bad (<90% necrosis) 23

Initial metastasis 33

Yes 10

No 23

Type of event 33

Event 21

>1 year-to-event 8/21

≤1 year-to-event 13/21

No event 12
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Table 1. Cont.

Variable No. of Cases

Site of event 21

Local recurrence 1

Local recurrence and Distant Metastasis 4

Distant Metastasis 16

Relative tumor size * 31

Mean = 629.2

Median = 268.9

Tumor volume 31

≥200 19

<200 12
* p < 0.01.

In univariate analysis, both histological response to chemotherapy and years-to-
event showed significant contributions to the patient’s outcome (OS p-value = 0.01, EFS
p-value = 0.005, and OS p-value = 0.00003, respectively) (Figure 1A,B), while pathological
subtypes, initial metastasis, and tumor volume did not correlate with the patient’s outcomes
(Table 2).

Cells 2023, 12, x FOR PEER REVIEW 5 of 13 
 

 

Yes 10 
No 23 

Type of event 33 
Event 21 

>1 year-to-event 8/21 
≤1 year-to-event 13/21 

No event 12 
Site of event 21 

Local recurrence  1 
Local recurrence and Distant Metastasis 4 

Distant Metastasis 16 
Relative tumor size * 31 

Mean = 629.2  
Median = 268.9  
Tumor volume 31 

≥200 19 
<200 12 

* p < 0.01. 

In univariate analysis, both histological response to chemotherapy and years-to- 
event showed significant contributions to the patient’s outcome (OS p-value = 0.01, EFS p-
value = 0.005, and OS p-value = 0.00003, respectively) (Figure 1A and 1B), while patholog-
ical subtypes, initial metastasis, and tumor volume did not correlate with the patient’s 
outcomes (Table 2). 

 
Figure 1. Histological response to chemotherapy and years-to-event predict the outcome of osteo-
sarcoma patients. (A) Kaplan–Meier plot of overall (OS) and event-free survival (EFS) for 30 OS 
patients stratified according to histological response to chemotherapy (≥90% and <90%). (B) Kaplan–
Meier plot of OS for patients stratified according to years-to-event (≤1 year and > 1 year). Survival 
probability (y-axis) and time indicated in months (x-axis). p-values were calculated using the log-
rank test. 

  

Figure 1. Histological response to chemotherapy and years-to-event predict the outcome of os-
teosarcoma patients. (A) Kaplan–Meier plot of overall (OS) and event-free survival (EFS) for
30 OS patients stratified according to histological response to chemotherapy (≥90% and <90%).
(B) Kaplan–Meier plot of OS for patients stratified according to years-to-event (≤1 year and >1 year).
Survival probability (y-axis) and time indicated in months (x-axis). p-values were calculated using the
log-rank test.
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Table 2. Univariate analysis of 30 osteosarcoma patients.

OS EFS
Variable Number of

Cases HR 95% CI p-Value HR 95% CI p-Value

Pathology 30 0.5 0.7

Conventional vs.
Non-conventional 25 vs. 5 1.741 0.1319–2.502 0.46 0.8034 0.2342–2.756 0.728

Conventional 28 0.8

Fibroblastic vs.
Chondroblastic 4 vs. 8 1.6688 0.3223–8.641 0.542 0.8729 0.2074–3.674 0.853

Fibroblastic vs.
Osteoblastic 4 vs. 13 1.7914 0.3843–8.350 0.458 1.0878 0.2926–4.044 0.900

Histological response
to chemotherapy 30 0.01 * 0.005 *

Good (≥90% necrosis)
vs. Bad (<90% necrosis) 7 vs. 23 0.121 0.01602–0.9132 0.0406 * 0.9656 0.01282–

0.7273 0.0233 *

Age group 30 0.06 0.09

<10 vs. ≥10 8 vs. 22 0.4068 0.1523–1.087 0.0729 0.454 0.1784–1.156 0.0976

Gender 30 0.4 0.3

Female vs. Male 15 vs. 15 1.48 0.5825–3.759 0.41 1.563 0.6452–3.778 0.322

Initial metastasis 30 0.2 0.09

Yes vs. No 9 vs. 21 1.795 0.6947–4.636 0.227 2.177 0.877–5.402 0.0936

Tumor Volume 28 0.9 0.6

≥200 vs. <200 18 vs. 10 1.038 0.3763–2.866 0.942 0.7848 0.4774–3.401 0.629

Years-to-event 20 0.00003 ****

>1 vs. ≤1 8 vs. 12 0.0365 0.00445–0.2993 0.00205 ****
Not Applicable

* p < 0.01, **** p < 0.001.

Multivariate analysis was performed on clinical criteria with a p-value ≤ 0.1 in the
univariate analysis (histological response to chemotherapy, age group, initial metasta-
sis, and years-to-event). Although initial metastasis is a known prognostic factor for
osteosarcoma tumors, due to the small sample size, histological response to chemother-
apy was the only factor with a significant effect on both OS and EFS of the patients (OS,
p-value = 0.0345; EFS, p-value = 0.0295) (Table 3).

Table 3. Multivariate analysis of 30 osteosarcoma patients.

OS EFS
Variable

HR 95% CI p-Value HR 95% CI p-Value

Histological response
to chemotherapy 0.1137 0.0150–0.8618 0.0354 * 0.1051 0.01382–0.7989 0.0295 *

Age group 0.9066 0.8014–1.0256 0.1192 0.9046 0.79947–1.0236 0.1118

Initial metastasis Not Applicable 1.8208 0.70743–4.6862 0.2141
* p < 0.01.

In addition, a separate multivariate analysis was performed for the 20 patients with
an event. An event is described as a recurrence, metastasis, or death. Only years-to-event
significantly affected OS (OS, p-value = 0.00162), as shown in Table 4.



Cells 2023, 12, 2179 7 of 13

Table 4. Multivariate analysis of 20 osteosarcoma patients showing events.

OS
Variable Number of Cases

HR 95% CI p-Value

Histological response to
chemotherapy 20 0.49406 0.056282–4.337 0.52466

Age group 20 1.04510 0.908952–1.202 0.53564

Years-to-event 20 0.02558 0.002617–0.250 0.00162 **
** p < 0.05.

3.2. Clinical Determinants Do Not Correlate with the Proteome Signature of
Pediatric Osteosarcoma

Shotgun proteomics analysis identified 4305 proteins across all 33 samples (Supple-
mentary Table S2). To explore the intrinsic proteome signature, unsupervised hierarchical
clustering using the consensus clustering algorithm was used for proteins that appeared in
80% or more of all samples (Figure 2A). The proteome did not identify a clear signature
segregating any clinical features. Accordingly, we performed differential protein expression
between samples based on clinical characteristics that significantly impact the patient’s
outcome. Next, we screened for differentially expressed proteins (DEPs). Only three
(KHDRBS1, ANXA4, and HNRNPA2B1) and four proteins (EXOSC3, ALDOA, FUBP1, and
HSPA9) were found to be significant (p-value ≤ 0.05 and log2 fold change (?)) (Figure 2B)
(Table S3) for histological response and years-to-event, respectively. Hierarchical clustering
heatmap for the histological response to chemotherapy (≥90% (n = 7) and <90% (n = 23))
as well as years-to-event (>one year (n = 8) and <1 year% (n =13)) using ordered p-values
for the top 20 genes differentiated between the two groups (Figure 2C).
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Figure 2. Clinical features do not affect the proteome signature of osteosarcoma patients. (A) Heat
map and hierarchical clustering based on the total proteome identified. (B) Volcano plots of all
proteins significantly altered by the (top) histological response to chemotherapy and (bottom) years-
to-event (log2-fold-change threshold = 1, Benjamini–Hochberg corrected p-value threshold = 0.1).
(C) Heat map and hierarchical clustering based on the top 20 genes differentiated between groups
of (top) Histological response to chemotherapy and (bottom) years-to-event. Heat map colors are
based on the z-scored (log2) intensity values. Grey and red correspond to decreased and increased
expression levels, respectively.

However, principal component analysis (PCA) (Figure S1A) did not differentiate
between groups within both clinical characteristics. Partial least squares discrimination
analysis (PLS-DA) showed segregation in both clinical aspects but with no significance
(Figure S1B,C).



Cells 2023, 12, 2179 8 of 13

3.3. Pathological Subtypes Are Defined by Different Proteome Signatures

Osteosarcoma pathological subtypes show controversial clinical significance in the
literature [15], since they often present with mixed histologies. Therefore, we extended our
analysis to compare proteome signatures among pathological subtypes to evaluate whether
the difference in subtypes shows up in the proteome signatures. Among pathological sub-
types, 793 proteins (18.4%) were shared by all subtypes, whereas 408 proteins (9.5%) were
shared among the conventional subtypes (chondroblastic, osteoblastic, and fibroblastic). A
total of 573, 555, 766, and 147 proteins were unique to fibroblastic, osteoblastic, chondrob-
lastic, and telangiectatic subtypes, respectively (Figure 3A). Differential expression analysis
between pathological subtypes identified 39 significant proteins (Figure 3B, Table S4).
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Figure 3. Proteome signatures of osteosarcoma samples segregate patients according to the patho-
logical subtypes. (A) Venn diagram showing protein distribution among pathological subtypes.
(B) Anova diagram showing differentially expressed proteins (DEPs) among pathological subtypes
(p-value < 0.05). (C) Partial least squares discrimination analysis (PLS-DA) based on DEPs showing
segregation of pathological subtypes (left) and PLS permutation plot showing PLS-DA significance
(right). (D) Heat map and hierarchical clustering based on DEPs differentiated between pathological
subtypes. Heat map colors are based on the z-scored (log2) intensity values. Grey and red correspond
to decreased and increased expression levels, respectively. (E) KEGG pathways according to DEPs
among pathological subtypes. (F) PPI networks and molecular functions of DEPs unique to fibrob-
lastic osteosarcoma. (G) PPI networks and molecular functions of DEPs unique to chondroblastic
osteosarcoma, respectively.

PCA analysis showed mild segregation of chondroblastic and fibroblastic groups, while
osteoblastic and telangiectatic groups showed an overlapped signature (Figure S1D). Using
PLS-DA based on the protein expression of DEPs, a separation between pathological sub-
types was observed (Figure 3C), where chondroblastic and fibroblastic groups showed
better segregation than that observed with osteoblastic and telangiectatic groups. A hier-
archical clustering heat map using DEPs showed a similar pattern of sample segregation
based on pathology (Figure 3D).

Pathway analysis of the 39 DEPs using KEGG revealed focal adhesion (q-value = 0.0001),
ECM-receptor interaction (q-value = 0.0002), PI3K-Akt signaling pathways (q-value = 0.0005),
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and proteoglycans in cancer (q-value = 0.0017) among the top enriched pathways (Figure 3E,
Table S5).

To determine the relationships among DEPs, PPI networks were built to include sev-
enteen DEPs unique to fibroblastic and eight DEPs unique to chondroblastic (Figure 3F).
GO analysis for these sets of DEPs showed enrichment in the RNA-binding and cadherin-
binding molecular functions in the fibroblastic subtype. In contrast, in the case of the
chondroblastic subtype, enriched molecular functions included extracellular matrix struc-
tural constituents and collagen binding (Figure 3F, Table S6).

4. Discussion

High-grade osteosarcoma is considered the most common primary malignancy of
bones, with a high mortality rate among children and adolescents. Many inherited germline
mutations predispose to osteosarcoma; however, most cases are sporadic. Although
genome-based studies have provided significant insights into the mutation landscape
of osteosarcoma, incorporating proteomics can aid in understanding the complexity of
genomic signatures [16]. Thus, this study aimed to use MS methodology to capture the
proteomic signature of pediatric osteosarcoma.

The proteome of 33 pediatric osteosarcoma patients was analyzed and correlated with
clinical characteristics. There was no clear segregation based on unsupervised clustering analysis
that correlated with clinical characteristics. Furthermore, clinical features impacting patient
outcomes in our cohort, histological response, and years-to-event only identified three and
four proteins, respectively, which did allow for pathway enrichment analysis. Interestingly,
three proteins, KHDRBS1, FUBP1, and HNRNPA2B1, are involved in either RNA processing or
RNA modification, highlighting the potential role of RNA regulation in osteosarcoma patho-
genesis [17–19]. Moreover, HNRNPA2B, an N6-methyladenosine (m6A) reader, has previously
been identified as an independent risk factor in osteosarcoma [20–23]. The aberrant accumula-
tion of m6A modification is the most prevalent modification in eukaryotic RNAs and has
been linked to many cancers, including osteosarcoma [24]. Furthermore, genes regulating
m6A-mediated gene expression are a promising therapeutic target in osteosarcoma [25,26].

In terms of pathological subtypes, proteomics analysis showed mild segregation with
distinct proteome profiles for chondroblastic and fibroblastic subtypes, which correlates
with our cohort, where the chondroblastic group was known to be associated with inferior
prognosis and response to chemotherapy and shorter overall survival when compared
to other groups. Osteoblastic and telangiectatic groups showed overlapping protein sig-
natures, which closely correlated to the histopathological features, as it is known that
telangiectatic osteosarcoma is quite similar to osteoblastic osteosarcoma and known to be
derived from osteoblasts or stem cells [27,28].

Among the top DEPs identifying fibroblastic groups from other pathological subtypes
are POSTN, TPM4, RTN4, HNRNPK, and RACK1, which were directly associated with
osteosarcoma progression and prognosis. POSTN, periostin, originally named osteoblast-
specific factor 2 (OSF-2), has been involved in regulating the adhesion and differentiation
of osteoblasts. It was found that POSTN may have an essential role in tumor progression
and may be used as a prognostic biomarker for patients with osteosarcoma [29]. TPM4,
or Tropomyosin α-4 chain, was found to be among the differentially expressed proteins
in osteosarcoma tissues compared with soft callus tissues [30]. Disrupting RTN4 (reticu-
lon 4)-mediated ER remodeling may impair cancer pathogenicity in U2OS osteosarcoma
cells by altering ER homeostasis and nuclear envelope assembly and disassembly during
mitosis [31]. Arginine methylation of HNRNPK was shown to suppress the apoptosis of
U2OS osteosarcoma cells by interfering with the DDX3-hnRNPK interaction.

On the other hand, the DDX3-hnRNPK interaction with a proapoptotic role may
serve as a target for promoting apoptosis in osteosarcoma cells [32]. RACK1 (receptor
for activated C-kinase 1) was dose-dependently decreased by catalpol both in MG63 and
U2OS osteosarcoma cells, indicating that catalpol could inhibit osteosarcoma progression
via epithelial–mesenchymal transition inhibition [33]. GO analysis of DEPs pertaining
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to fibroblastic osteosarcoma showed enrichment in RNA binding and cadherin binding
functions that have been widely shown to have a role in osteosarcoma [34–38].

TNC, LUM, COL12A1, COL6A3, and BGN are among the DEPs that differentiate the
chondroblastic group from other subtypes of osteosarcoma. TNC, or tenascin, was highly
expressed in osteosarcoma tissues compared to normal [39]. LUM, or lumican, may be
positively correlated with the differentiation and negatively correlated with the progression
of osteosarcoma [40]. Lumican was also found to be an endogenous inhibitor of TGF-β2
activity, resulting in downstream effector modulation, including pSmad 2, integrin β1,
and pFAK, to regulate osteosarcoma adhesion [41]. COL12A1 and COL6A3 were among
the proteins enriching the extracellular matrix (ECM) structural constituents and collagen-
containing extracellular matrix GO terms. Collagen dysregulation may affect the formation
of primary osteosarcoma tumors and metastasis to the lungs [42].

Moreover, upon inhibition of COL6A3, the expression of the PI3K/AKT pathway-
related markers changed significantly, suggesting a crucial role for COL6A3 in modulating
various aspects of the progression of osteosarcoma, which would provide a potentially
effective treatment for osteosarcoma [43]. Transcription of the BGN, biglycan, promoter
in bone cells was found to be increased due to elevated levels of intracellular cAMP,
which in turn implicates cAMP/protein kinase-A signal transduction pathway in the
regulation of biglycan gene expression in osteosarcoma [44]. GO analysis of DEPs defin-
ing chondroblastic osteosarcoma revealed dysregulation in the ECM. Previous studies
showed that the various components of the ECM, including collagens, fibronectin, laminins,
and proteoglycans, may contribute to osteosarcoma progression and metastasis through
distinct and intertwining mechanisms, making them potential clinical biomarkers and
therapeutic targets.

Among the DEPs identifying oseoblastic and telangiectatic osteosarcoma subtypes are
CAT, FGA, SLC4A1, and ACTA2. In MG63 osteosarcoma cells, HIF-1α was found to inhibit
reactive oxygen species accumulation by directly regulating FoxO1, which interfered with
CAT catalase activity, thus resulting in anti-oxidation effects [45]. FGA, or fibrinogen alpha
chain, was highly elevated in untreated osteosarcoma cells [30]. SLC4A1, solute carrier
family 4 member 1, was found to be among the highly significant differentially expressed
genes in osteosarcoma [46]. ACTA2, or actin alpha 2, was found to be a potential prognostic
indicator for osteosarcoma [47].

Although the prognostic impact of known histologic subtypes of high-grade osteosar-
coma is not evident in the literature, our study provides a new insight upon which a
proteome profile can be used in future larger studies to provide a more prognostically
relevant classification of these variants [48]. Therefore, improving diagnostic strategies for
early tumor detection may lead to an increase in patient survival [5].

The first limitation of this study that might affect our analysis was the extraction of
proteins from FFPE blocks. Additionally, the FFPE preservation method might impact the
stability of mitochondrial-related proteins [49]. Moreover, the low number of used samples
(the total number was 33) and the lack of normal adjacent tissue are also limitations. Hence,
we recommend further analysis of this data, but in larger cohorts using fresh tissues [50].

In conclusion, proteomic analysis of osteosarcoma tissues gave insight into the molec-
ular mechanisms underlying the pathogenesis of osteosarcoma, thus identifying potential
biomarkers and therapeutic targets.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/cells12172179/s1, Figure S1: Clinical features: proteome
signature PCA and PLS-DA; Table S1: Patient information and follow-up data; Table S2: Proteins
identified by shotgun proteomics analysis; Table S3: Differentially expressed proteins identified
upon comparing proteomes significantly affecting clinical features; Table S4: Differentially expressed
proteins between pathological subtypes; Table S5: Pathway analysis of DEPs between pathological
subtypes; Table S6: GO analysis for DEPs between pathological subtypes.
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