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Abstract: Physiological aging causes a decline of motor function due to impairment of motor cortex
function, losses of motor neurons and neuromuscular junctions, sarcopenia, and frailty. There is
increasing evidence suggesting that the changes in motor function start earlier in the middle-aged
stage. The mechanism underlining the middle-aged decline in motor function seems to relate to
the central nervous system rather than the peripheral neuromuscular system. The motor cortex is
one of the responsible central nervous systems for coordinating and learning motor functions. The
neuronal circuits in the motor cortex show plasticity in response to motor learning, including LTP.
This motor cortex plasticity seems important for the intervention method mechanisms that revert
the age-related decline of motor function. This review will focus on recent findings on the role
of plasticity in the motor cortex for motor function and age-related changes. The review will also
introduce our recent identification of an age-related decline of neuronal activity in the primary motor
cortex of middle-aged mice using electrophysiological recordings of brain slices.
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1. Introduction

Voluntary activation of skeletal muscle tends to weaken with age, particularly in
the elderly with sarcopenia or frailty [1,2]. Physiological aging causes a decline of motor
function due to losses of muscle mass and strength, denervation of neuromuscular junctions
(NMJs), a loss of motor neurons in the spinal cord, and impairment of motor cortex function.
Losses of muscle mass and strength (sarcopenia) are more pronounced in the elderly [3–7].
Meanwhile, a decline in motor function has been reported in studies of middle-aged
humans and rodents. Middle-aged healthy subjects (between the late 40s and late 50s)
changed their kinetic characteristics of gait during walking and running [8]. The age-
related decline of motor function has been reported in middle-aged rodents (between
approximately 13 months and 19 months old) using behavioral tests that assess balance
and motor coordination or gait [9–11]. These data suggest that a decline in motor function
in rodents starts much earlier than a decline in survival rates, which is typically around
24 months old. In addition, the mechanism of motor function decline during the middle-
aged stage seems different from that during the advanced-aged stage. This difference is
suggested because NMJ denervation, motor neuron loss, and muscle atrophy are detected
in the advanced-age stage, but NMJ denervation is not detected significantly in middle-
aged mice at or earlier than 18 months old [12,13]. The preservation of NMJs suggests that
the spinal motor neurons are maintained in middle-aged mice. Furthermore, a decline in
muscle contractility is less severe in mice under 20 months old [14].

In the motor cortex, physiological aging also causes cortical atrophy, alteration of
excitability, and decreased neurotransmitter levels (Figure 1) [15,16]. Notably, age-related
alteration of excitability in the motor cortex has been linked to motor function decline in
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humans and animals. In the human motor cortex, physiological aging alters the balance of
excitatory and inhibitory circuits [17,18]. Middle-aged and elderly individuals (between
the late 50s and early 70s) have exhibited more intracortical inhibition and less intracortical
facilitation in the motor cortex than young adults. The hypoexcitability in the motor cortex
correlates with behavioral impairments in chronic obstructive pulmonary disease (COPD)
and amyotrophic lateral sclerosis (ALS) patients [19,20]. Therefore, alteration of motor
cortex function may be part of the underlying mechanism for the age-related decline of
motor function, especially in the middle-aged stage.
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Figure 1. Age-related changes in the motor cortex excitatory connections. Physiological and structural
properties change in the motor cortex excitatory connections during physiological aging. These age-
related changes cause impairment of motor cortex excitability. The excitatory connection from layers
II/III to V is the major intralaminar connection in the motor cortex. Gray arrows from pyramidal
neurons in layers II/III or V indicate intralaminar horizontal connections. Abbreviations: CST,
corticospinal tract; AP, action potential; fEPSP, field excitatory postsynaptic potential.

Physiological aging alters synaptic plasticity. In rat hippocampal slices, NMDA
receptor-dependent long-term potentiation (LTP) decreases with age [21,22]. Meanwhile,
neuronal plasticity enhancers have been shown to accelerate the rehabilitation-like effect
that improves motor function [23,24]. Rehabilitation training restores motor function after
stroke and nervous system damage. Therefore, neuronal plasticity seems to play a role in
the maintenance and/or improvement of motor function. However, there has been less
focus on the role of synaptic plasticity in the study of age-related decline of motor cortex
function. This review highlights recent articles reporting age-related alterations of neuronal
activity and synaptic plasticity efficiency in the motor cortex, which may cause a decline in
motor function. We will discuss potential intervention methods by supplementing brain
substances that decrease with age. These endogenous substances can directly or indirectly
enhance LTP and may ameliorate the age-related alterations of motor cortex function.

2. Motor Cortex
2.1. Pathway

The motor cortex is the center of cortical control of voluntary movements [25,26].
The functional involvement of motor cortex networks in motor control has long been
studied mainly by microstimulation of the rodent motor cortex [27,28]. Recently, high-
precision stimulation techniques using scanning laser light stimulation and optogenetics
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have revealed intralaminar excitatory connections in the motor cortex [29–31]. These
cell-selective stimulation experiments demonstrate that the excitatory connection from
layers II/III to V is the major intralaminar connection in the motor cortex [29,32–34].
Layer V of the motor cortex contains pyramidal neurons that are projection neurons [35].
Corticospinal and cortico-brainstem projection neurons are located in the deeper layer,
layer Vb. Approximately 60% of total corticospinal projections originate from the primary
motor cortex (M1) in humans [35,36].

2.2. Plasticity in the Motor Cortex
2.2.1. Synaptic Plasticity and Motor Learning

The motor cortex plays an essential role in motor learning [37]. Neuronal plasticity in
the motor cortex during and after motor learning has been studied in humans and animals
(Table 1) [38–43]. A rotor rod task induces glutamatergic or GABAergic synaptic plasticity
in layer V pyramidal neurons of the rat primary motor cortex [41]. Motor learning in mice or
stimulation of brain slices using electrodes can induce LTP in the motor cortex [39,40,44–48].
Changes in motor cortex excitability have a functional relationship with LTP. After LTP
expression, field excitatory postsynaptic potential (fEPSP) shows enhanced amplitudes in
the motor cortex [42,49,50]. A pellet-reaching task with one forelimb of rats increases the
fEPSP amplitude of layer II/III horizontal connections in the brain slices of the trained side
of the primary motor cortex [6,44]. When an LTP induction method has been applied to
these slices, the amount of LTP induced in the trained contralateral side of the primary
motor cortex has been less than that in the untrained ipsilateral side of the primary motor
cortex in the same slice. This difference has been assumed that the trained side of the
primary motor cortex had fewer LTP induction trials to reach LTP saturation, at which
point LTP was no longer induced, than the untrained side of the primary motor cortex.
Even under LTP saturation, LTP could be induced again if long-term depression (LTD)
was induced by electrical stimulation in the motor cortex of the rat slice [42]. Similarly, the
temporal occlusion of LTP in the human motor cortex is necessary to retain motor learning
according to transcranial magnetic stimulation experiments [38,51–53]. Consequently, these
studies in animals and humans have revealed that the mechanism of motor learning involves
induction and occlusion of LTP.
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Table 1. Plasticity in the motor cortex.

Species Age
Motor Learning
Task or In Vivo

Stimulation

Stimulation
Layer/Area

Recording
Layer/Neuron Plasticity Type Amount of

Plasticity

Recording or
Measurement

Method
References

Female rats Adult Pellet-reaching task

Layer II/III at
500 µm horizontally
from the recording
electrode in the M1

forelimb area *

Layer II/III at
200–350 µm below
the pial surface in

the M1 forelimb area
*

LTP FP amplitude ↑ Field potential
recording [42–44]

Male rats Not mentioned Pellet reaching task
Layer II/III at

3.0 mm lateral to the
midline

Layer II/III at
2.0 mm lateral to the

midline in the M1
forelimb area *

LTP fEPSP amplitude ↑
Field potential

recording
In vivo recording

[45]

Male rats Not mentioned

In vivo white matter
stimulation
(previously

potentiated rat)

Layer II/III in the
primary motor

cortex
Layer V in the
primary motor

cortex

Layer II/III in the
primary motor

cortex
Layer V in the
primary motor

cortex

FP FP amplitude ↑
FP amplitude↔

Field potential
recording [54]

Male rats 8–10 weeks None
Layer II/III at

2–2.5 mm lateral to
the midline

Layer II/III at
500 µm lateral to the
stimulation electrode

in the M1 forelimb
area *

LTP

fEPSP amplitude ↓
(D1 or D2 receptor

antagonist after LTP
induction vs.

control)

Field potential
recording [55]

Mice
1 month

>4 months
1 month

Accelerated rotor
rod task

Layer V pyramidal
neurons in the M1

forelimb area *

Structural plasticity
(2-days trained mice)
Structural plasticity

(After previous
2-days training)

Spine formation ↑
(2-days)

Spine formation↔
(Next 2-days)

In vivo two-photon
imaging [56]

Mice 1 month Pellet reaching task
Layer V pyramidal

neurons in the motor
cortex

Structural plasticity Spine formation ↑
Spine elimination↔

In vivo two-photon
imaging [57]

Male rats
Male and female

mice

5–6 weeks
1 month

None
None

Pellet reaching task

Layer II/III 2–4 mm
lateral to the midline

Layer II/III at
500 µm lateral to the
stimulating electrode
Layer V neurons in

the motor cortex
Layer II/III

pyramidal neurons
in the motor cortex

LTP
Structural plasticity
Structural plasticity

fEPSP amplitude ↑
(anti-Nogo A vs.

control)
Spine formation ↑
(anti-Nogo A vs.

control)
Spine density ↑

(sham and anti-Nogo
A)

Field potential
recording

In vivo two-photon
imaging

[58]
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Table 1. Cont.

Species Age
Motor Learning
Task or In Vivo

Stimulation

Stimulation
Layer/Area

Recording
Layer/Neuron Plasticity Type Amount of

Plasticity

Recording or
Measurement

Method
References

Male and female PD
model mice 1–3 months Dopamine depletion Superficial layers of

the motor cortex

Layer V pyramidal
neurons in the M1

forelimb area *
Layer V pyramidal
neurons 10–100 µm
below the cortical

surface in the motor
cortex

LTP
Structural plasticity

EPSC amplitude ↓
(DA depletion vs.

control)
Spine turnover in the

dendritic spine ↑
(DA depletion vs.

control)

Whole-cell recording
In vivo two-photon

imaging
[59]

Male rats 10–12 weeks Pellet reaching task Layer V neurons Structural plasticity Dendritic length ↑
(after 1 month) Histological analysis [60]

Rats 55–59 days Pellet reaching task

Entire cortical slice
centered over the

recorded neurons in
the primary motor

cortex

Layer V neurons in
the caudal forelimb

area
Photo-induced EPSC EPSC amplitude↑

PPR↔ Whole-cell recording [47]

Male Rats 4 weeks Accelerated rotor
rod task

Layer II/III at
200–300 µm laterally

from the recorded
neurons in the
primary motor

cortex

Layer II/III
pyramidal neurons
in the M1 forelimb

area *

mEPSC
mIPSC

Amplitude ↑ (1-day
and 2-days trained)

Frequency↔
(1-day), ↑ (2-days

trained)
AMPA/NMDA ↑
(1 day),↔ (2-days

trained)
PPR↔ (1-day), ↓
(2-days trained)
Amplitude↔

(1-day),↔ (2-days
trained)

Frequency ↓ (1 day),
↔ (2-days trained)
PPR ↑ (1 day),↔
(2-days trained)

Whole-cell recording [40,48]

Male and female
mice

1 month,
4 months Pellet reaching task

Layer II/III
pyramidal neurons
Layer V pyramidal

neurons

Structural plasticity
Structural plasticity

Spine formation and
elimination↔

Spine formation and
elimination ↑

In vivo two-photon
imaging [61]
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Table 1. Cont.

Species Age
Motor Learning
Task or In Vivo

Stimulation

Stimulation
Layer/Area

Recording
Layer/Neuron Plasticity Type Amount of

Plasticity

Recording or
Measurement

Method
References

Male mice 30–45 days Repeated tDCS
Layer II/III in the

primary motor
cortex

Layer II/III at
~200 µm lateral to

the stimulation
electrode in the
primary motor

cortex

LTP
mEPSC
mIPSC

Structural plasticity

fEPSP amplitude ↑
PPR (interval: 20 ms)

↓
AMPA/NMDA ratio

↑
Amplitude↔,
Frequency ↑

Amplitude and
frequency↔

Spine density ↑

Field potential
recording

Whole-cell recording
Histological analysis

[49]

Male mice 15–18 months
CoQ10

suppllementation
None

Layer II/III in the
radial direction from

the recording
electrode

Layer V in the
primary motor

cortex

fEPSP
LTP

fEPSP amplitude ↑
(CoQ10 middle-aged

vs. age-matched
control)

fEPSP amplitude ↑
(CoQ10 during LTP

induction vs.
age-matched control)

Field potential
recording [50]

Male rats
Male mice

4 weeks
8–10 weeks

Accelerated rotor
rod task

Accelerated rotor rod
task

Layer II/III at
200–300 µm laterally

from the recorded
neurons in the
primary motor

cortex

Layer V pyramidal
neurons in the M1

forelimb area *
Layer V pyramidal

neurons in the motor
cortex

mEPSC
mIPSC

Structural plasticity

Amplitude↔
(1 day), ↑ (2 days

trained) Frequency
↔ (1 day), ↑ (2 days

trained)
AMPA/NMDA ratio
↔ (1 day), ↑ (2 days

trained)
PPR↔ (1 day and

2 days trained)
Amplitude ↓ (1 day),
↔ (2 days trained)

Frequency ↓ (1 day),
↔ (2 days trained)
PPR ↑ (1 day),↔
(2 days trained)

Volume of spines ↑

Whole-cell recording
In vivo two-photon

imaging
[41]

Abbreviations: ↑, increase; ↓, decrease;↔, no change; the M1 forelimb area *, the region corresponding to forelimb representation in the primary motor cortex * [62]; FP, field potential;
fEPSP, field excitatory postsynaptic potential; mEPSC, miniature excitatory postsynaptic current; mIPSC, miniature inhibitory postsynaptic current; PPR, paired-pulse ratio; PD,
Parkinson’s disease model.
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Furthermore, the amount of LTP in the motor cortex is related to the success rate
of motor learning. Several brain substances have been reported to affect the amount of
LTP in the motor cortex. Impairment of dopaminergic signaling reduces the amount of
LTP in layer II/III in the rat primary motor cortex, resulting in lower skill acquisition
rates [55,59,63]. Blockade of Nogo-A, an inhibitor of axonal outgrowth and regeneration in
the brain, enhances the amount of LTP in layer II/III in the rat primary motor cortex and
improves motor learning [58]. These recent studies have shown that modulating neuronal
plasticity in the motor cortex may alter motor learning performance.

2.2.2. Cortical Plasticity Induced by Non-Invasive Stimulation

Cortical plasticity in the motor cortex has been suggested in studies of motor function
in healthy subjects [64,65], motor deficits in Parkinson’s disease [59,66,67], and rehabil-
itation after brain damage [24,68]. These studies indicate that the induction of cortical
plasticity in the motor cortex could be beneficial for motor function. Cortical plasticity can
be induced by non-invasive brain stimulation techniques like transcranial magnetic stim-
ulation and transcranial direct current stimulation (tDCS) [69]. These non-invasive brain
stimulation through the scalp to the motor cortex induces motor evoked potentials (MEPs),
which are recorded from the muscles. Generally, human cortical plasticity in the motor
cortex has been monitored by changes in the amplitude of peripherally recorded MEPs [64]
because it is currently difficult to directly measure long-term changes in excitability in the
human motor cortex. Importantly, tDCS has been suggested to directly induce synaptic
plasticity based on studies using cortical slices of rodents [49,70,71]. When tDCS electrodes
were used to stimulate brain slices, the stimulation-induced NMDA receptor-dependent
synaptic potentiation in layer II/III of the mouse primary motor cortex in brain slices [50].
The brain slices of tDCS-treated mice showed LTP enhancement at layer II/III horizontal
connections of the primary motor cortex [49].

2.2.3. Structural Plasticity and Motor Learning

In addition, neurons in the motor cortex show structural plasticity concurrently to the
LTP induced by motor learning or experimental induction methods. In the motor cortex
of rats, spine dynamics differ in a laminar structure and cell-dependent manner [54,61].
Interestingly, motor learning causes the stabilization of new dendritic spines [56,57,72].
Furthermore, new dendritic branches and increased dendritic length have been observed
among layer V pyramidal neurons of rats that learned a pellet-reaching task. After com-
pleting these motor tasks, the degree of these dendritic changes peaks in one month in the
motor cortex, after which these newly formed dendrites are pruned [60].

3. Aging in the Motor Cortex
3.1. Structural and Functional Alteration in the Motor Cortex

Physiological aging induces changes in the human motor cortex, including cortical
atrophy, impaired excitability, and decreased neurotransmitter levels [15,16,73,74]. Gener-
ally, cortical atrophy in physiological aging is considered to be due to structural changes
in individual neurons, such as shrinkage in the soma size, a reduction in the dendrite
arborization complexity and length, and a loss or regression of dendritic spines but not a
decrease in cell number [75]. These age-related structural changes occur in parallel with
alterations in the electrophysiological properties of neurons. In the aged primate prefrontal
cortex, single action potential amplitude and fall time significantly decrease in layer II/III
and layer V pyramidal neurons [76–78]. Furthermore, action potential firing rates in layer
II/III increase with age and are related to cognitive function. Subjects with intermediate
firing rates demonstrate higher performance in delayed non-match to sample (DNMS)
basic learning, DNMS performance at 2 min delays, and the delayed recognition span task
compared to subjects with low or very high firing rates [76,79]. Age-related alterations in
the electrophysiological properties impair the excitability of neural networks at the cellular
level in the cortex [80].
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In the motor cortex, age-related structural changes in dendritic spines occur prior
to neuronal cell death. Repeated in vivo imaging of the same dendrites has revealed
that dendritic spine density increases and long-term spine survival decreases in layer
V pyramidal neurons of aged mice (20 to 22 months old) compared to young mice (3 to
4 months old) [81].

According to young-adult rodent studies, the excitability of layer V in the motor cortex
plays an important role in motor function. Layer V pyramidal neurons in the motor cortex
control the rhythm of whisker movements [82]. Interestingly, enhancing the activity of
layer V neurons in the motor cortex improves bradykinesia and hypokinesia in Parkinson’s
disease model mice [31]. Human studies have demonstrated the age-related decline in motor
cortex excitability by measuring peripheral neural activity that indirectly represents motor
cortex activity [73,83]. However, age-related changes in motor cortex activity have not been
recorded directly in humans or animals. Importantly, we have discovered an age-related
decline in field excitatory postsynaptic potential (fEPSP) amplitude in the pathway from
layers II/III to V of the primary motor cortex of middle-aged mice (15 to 18 months old) for
the first time to the best of our knowledge [50]. These middle-aged mice performed slower
on the pole test than younger mice (6 months old) [10,50]. Therefore, layer V neuronal
activity may be a valuable target for examining the relationship between motor cortex
excitability and age-related motor function decline.

3.2. Aging and Cortical Plasticity in the Motor Cortex

Age-related alteration of plasticity in the motor cortex is related to age-related reduc-
tion in motor function. As mentioned above, middle-aged mice show behavior impairment
in the pole test compared to younger mice [10,50]. These mice show age-related alteration
of neuronal plasticity in the pathway from layers II/III to V of the primary motor cortex,
which will be described in detail in section four [50]. Aged mice (18 to 20 months old) could
learn the pasta matrix reaching tasks as the young mice (3 to 5 months old). However, the
brain mapping study using intracortical microstimulation of layer V in the motor cortex
has revealed age-related alteration in the motor map plasticity after the reaching task [84].
In humans, magnetoencephalography and functional magnetic resonance imaging (fMRI)
studies have shown age-related alteration of plasticity in the motor cortex by measuring
movement-related beta desynchronization during motor execution in the elderly [85]. These
studies about motor learning and motor function have shown that cortical plasticity in the
motor cortex differs between young and older animals.

3.3. Aging and Mitochondria in the Motor Cortex

It is essential to maintain adequate mitochondrial activity for producing ATP to meet
the high energy requirements of neurons. ATP production correlates highly with the
complex I activity in mitochondrial oxidative phosphorylation. The non-synaptic and
synaptic mitochondria in the brain have different ATP production efficiency. In non-
synaptic mitochondria of the brain, ATP production is not affected until the complex
I activity is reduced by 72% [86]. However, ATP production is significantly reduced
when the complex I activity of synaptic mitochondria of the brain is reduced by 25% [87].
These findings suggest that ATP production at cortical synapses seems sensitive to modest
dysfunction of mitochondria. Interestingly, mitochondrial activity is significantly impaired
in synaptic mitochondria but not in non-synaptic mitochondria during physiological aging
in middle-aged rodents (14 or 17 months old) [88,89].

Mitochondria affect synaptic activities, including age-related synaptic plasticity [90,91].
In the mouse brain, the complex I activity in mitochondrial oxidative phosphorylation
decreases with age [10,92]. We have discovered age-related alteration of synaptic plasticity
efficiency in the primary motor cortex in middle-aged mice. LTP in the primary motor
cortex in middle-aged mice has been enhanced by high-frequency stimulation combined
with the administration of the mitochondrial coenzyme, coenzyme Q10 (CoQ10), which
declines with age [50]. However, the same stimulation with CoQ10 administration does not
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affect LTP in the primary motor cortex of young-adult mice [50]. These studies suggest that
mitochondrial dysfunction results from brain aging [93] and is part of the mechanisms that
alter neuronal plasticity in the motor cortex.

4. Interventions for Age-Related Declines of Motor Function

Age-related declines in motor function may be caused partly by mitochondrial dys-
function. Physiological aging is known to cause mitochondrial dysfunction in skeletal
muscles and NMJs of humans and animals. The mitochondria of human skeletal muscle are
altered by physiological aging resulting in decreased enzyme activity, maximal respiration
capacity, and total protein amount [94,95]. The NMJs of aged rats have megamitochon-
dria, which is thought to be generated by age-related mitochondrial fusion [96,97]. A
relationship between the mitochondria function and the motor function has been shown
in exercise intervention studies, which activates mitochondrial biogenesis and improves
muscle performance in humans and rodents [98].

Similarly, studies have reported correlations between age-related declines in brain
mitochondrial function and motor function. The basal ganglia of aged monkeys have
significantly reduced ATP production, pyruvate dehydrogenase activity, and calcium
buffering capacity compared to younger animals. These reductions correlate with age-
related decline in locomotor activity and movement speed [99]. Takahashi et al. have
shown reductions in brain mitochondrial respiratory capacity, coenzyme Q (CoQ) content,
and motor function in middle-aged mice compared to young mice [10]. CoQ is an essential
mitochondrial coenzyme for ATP production [100–102]. Electrons are transported from
complexes I and II to complex III by coenzyme Q10 in humans and coenzyme Q9 and Q10
in mice for ATP production [103–105]. However, CoQ levels decline with aging in the
brain, blood, and other organs. The symptom onset of aging, CoQ10 deficiency, multiple-
system atrophy, and Parkinson’s disease have been alleviated and/or delayed by CoQ10
supplementation in humans [106–108].

CoQ is a fat-soluble substance whose bioavailability varies between formulations [109–111].
Optimal concentrations and effective administration periods differ depending on the CoQ10
formulation supplemented. In a Parkinson’s disease model mouse, an intervention utilizing
CoQ10 nano micelles with enhanced brain penetration capability has shown neuroprotection
and improved motor function [112]. Another water-soluble nanoformula-type CoQ10 supple-
mentation by drinking water has improved complex I activity in brain mitochondria, CoQ
contents in the brain, and motor function in middle-aged mice [10,92]. We have discovered
that CoQ10 supplementation by drinking water also improves the age-related decline of fEPSP
amplitude in the pathway from layers II/III to V of the primary motor cortex of middle-aged
mice. In addition, CoQ10 administration combined with high-frequency stimulation induces
age-dependent LTP and enhances the basal fEPSP amplitude level in brain slices of the primary
motor cortex. This LTP induction is age, CoQ10, and NMDA receptor-dependent [50]. Layer
V of the motor cortex was thought to be a region unlikely to induce LTP compared to layer
II/III of the motor cortex based on brain slice experiments [54]. However, layer V neurons in the
primary motor cortex show dynamic alteration of synaptic plasticity after motor learning [41].
Stimulation of superficial layers of the motor cortex using a concentric bipolar electrode induces
LTP in layer V pyramidal neurons in the M1 forelimb area [59]. Our data suggest that LTP could
be induced in layer V neurons of the primary motor cortex in slice preparation under certain
conditions. The CoQ10-dependent enhancement of NMDA receptor components in our study
may be similar to the ability of growth hormone to reverse the age-related decrease in NMDA
receptor function in basal excitatory transmission. This is because chronic growth hormone treat-
ment restores NMDA receptor-dependent basal neuronal activity in aged rat hippocampus [113].
The LTP or related neuronal plasticity mechanism in vivo during CoQ10 supplementation may
have boosted neuronal activity in the primary motor cortex and improved the motor function
of middle-aged mice [50]. These findings indicate that restoration of mitochondrial function
enhances neuronal activity and improves motor function, at least in middle-aged mice.
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In addition, studies have reported correlations between CoQ10 and neurotrophin,
brain-derived neurotrophic factor (BDNF). Rats exposed to chronic unpredictable mild
stress or toxic propionic acid show a decline in BDNF protein levels. CoQ10 treatment in
these rats results in a modest increase in BDNF protein [114,115]. BDNF is associated with
synaptic plasticity in the hippocampus [116]. In the motor cortex, layer II/III and V neurons
express BDNF protein. Running wheel exercise increases the number of BDNF-expressing
pyramidal neurons in layer II/III and the expression level of BDNF protein in the mice
motor cortex. However, reduced BDNF protein levels in conditional BDNF knockout
mice impair motor learning [117], suggesting that BDNF protein is required in the motor
cortex during motor learning. Fritsch et al. have suggested that direct current stimulation
combined with repetitive low-frequency stimulation increases activity-dependent BDNF
secretion and improves motor learning by enhancing NMDA receptor-dependent LTP
at layer II/III in the primary motor cortex of mice [70]. These results are consistent with
the study demonstrating that BDNF secretion modifies neuronal plasticity in an activity-
dependent manner in the hippocampus [118]. Based on these results, intervention methods
to improve motor function and learning via the effects of BDNF have been investigated in
combination with stimuli such as exercise and tDCS [70,119,120]. The correlation between
the amount of activity-dependent BDNF secretion and motor learning has been examined
using BDNF valine-methionine substitution (Val66Met) polymorphism. The Val66Met
polymorphism is a single nucleotide polymorphism in the BDNF gene related to episodic
memory in humans and the activity-dependent secretion of BDNF [121,122]. The Val66Met
substitution decreases activity-dependent secretion of BDNF in cultured rat hippocampal
neurons [121]. Healthy subjects (mean age 22.7 ± 1.4 years) with the Met allele show
reduced motor evoked potentials (MEPs) and brain motor map area changes with training
using right index fingers compared to subjects without the polymorphism [123]. In both
humans and mice, direct current stimulation enhances motor skill acquisition rates in Val/Val
subjects without the polymorphism but not in Met allele carriers [70].

The BDNF mRNA expression level declines with age in the human prefrontal cor-
tex [124] and the monkey motor cortex [125]. BDNF protein levels have affected motor
function in the mice lacking one BDNF allele. These BDNF heterozygous mice at the middle-
aged (11 to 13 months old) and the aged (19 to 21 months old) stages walk slower on a
horizontal beam than age-matched wild-type mice. BDNF protein levels in the striatum
of aged BDNF heterozygous mice are 15% lower compared to aged wild-type mice [126].
The relationship between age-related decline in BDNF levels and motor function in the
elderly is not yet well understood. The serum BDNF level correlates positively with the
eigenvector centrality obtained from resting-state fMRI data in the premotor and motor
cortex of the elderly [127]. The eigenvector centrality analyzes connectivity patterns of
the human brain in fMRI data [128]. Although the Val66Met polymorphism affects motor
performance in young people, this effect is not well understood in the elderly. Healthy
elderly subjects (mean age 73.2 ± 1.8 years) show slower reaction time speed, a larger
baseline of brain motor map area, and smaller MEP amplitude compared to young subjects
(mean age 24.3 ± 1.1 years) [129]. Among these healthy elderly subjects, the polymorphism
difference between BDNF Val/Val and Val66Met has not affected reaction time speed, the
motor tasks using hands or fingers, driving test of cognitive/motor learning, and change in
MEPs with 30 min exercise [129]. The difference between these and the aforementioned
results may imply that compensation for the long-term impacts of BDNF polymorphisms
may have occurred. Some studies suggest that interventions reverting BDNF levels in the
motor cortex might prevent the age-related decline in motor function. However, it is still
debatable whether such intervention is truly beneficial [117,119,126,127].

Utilizing neuronal plasticity in the motor cortex to improve impaired brain function
has been a research topic recently (Table 2). Some neuronal plasticity enhancers have
improved motor learning in rodent studies [23,58]. The membrane protein Nogo-A and
its receptor (NgR1) are expressed in layer II/III and V pyramidal neurons in the motor
cortex. Functional blocking antibodies against Nogo-A or NgR1 enhance LTP in the layer
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II/III primary motor cortex and increase spine formation in vivo in the layer V neurons.
Anti-Nogo-A antibody treatment using an osmotic minipump has improved the success
rate in the pellet-reaching task of rats [58]. Meanwhile, a small compound edonerpic
maleate facilitates synaptic delivery of AMPA receptors, enhances mEPSC amplitudes, and
enhances LTP in layer II/III pyramidal neurons of the barrel cortex. This effect is abolished
in the absence of whiskers, indicating that the effects of ednerpic maleate are exerted in an
experience-dependent manner. The combination of edonerpic maleate administration and
rehabilitative training has accelerated the success rate in the pellet-reaching task of the mice
with cortex cryoinjury [23].

Table 2. Intervention methods for targeting CNS for the decline of motor function.

Intervention
Type

Administration
Method Species Age

Effects on
Motor

Function

Cell or Brain
Region

Target
Mechanism

Commercial
Availability References

Nanomicellar
formulation of
CoQ10 supple-

mentation

Oral Male MPTP
treated-mice 8–10 weeks

Decrease of
hindlimb

faults number
during the

beam walk test

Substantia
nigra,

Striatum

Neuroprotection,
Astrocytic

activation in
the midbrain

Yes [112]

Water-soluble
nano

formula-type
CoQ10

(ubiquinone)
supplementa-

tion

Oral Male and
female mice 15 months

Improvement
of the pole test

latency
Motor cortex

Brain
mitochondrial

oxidative
phosphoryla-

tion
dysfunction

Yes [10]

Oral Male mice 15–18 months
Improvement
of the pole test

latency

Primary motor
cortex

Age-related
decline of
neuronal
activity in

layer V in the
primary motor
cortex, Brain

mitochondrial
oxidative

phosphoryla-
tion

dysfunction

Yes [50]

High-dose
CoQ10

(ubiquinol)
supplementa-

tion

Oral

Male and
female

multiple-
system
atrophy
patients

Median age
61.0 years

Improvement
of SARA score

and time
required to
walk 10 m

Cerebellum,
Motor cortex,

Putamen

CoQ10
deficiency

(COQ2
mutation)

Yes [108]

Anti-Nogo-A
antibodies
treatment

Continuous
intrathecal

infusion
Male rats 5–6 weeks

Increase in the
success rate of

the
pellet-reaching

task

Layer II/III
and V neurons

in the motor
cortex

Spine
formation,

Spine density
modulation
upon motor

learning in the
primary motor

cortex

Limited [58]

Combination
of edonerpic

maleate
administration

and
rehabilitative

training

Oral

Male mice after
motor cortex
cryoinjured
Male monkey
after motor

cortex
cryoinjured

5–13 weeks
5 or 6 years

Facilitation of
recovery from
injury of the
motor cortex

(the
food-reaching

task
performance)

Layer V
pyramidal

neurons in the
motor cortex

Experience-
dependent

synaptic
AMPA

receptor
delivery

Limited [23]

Exercise
(Increase in

activity-
dependent

BDNF secre-
tion/TrkB

phosphoryla-
tion)

Mice/Human Not
mentioned

Improvement
of motor
learning

Layer II/III
neurons in the
motor cortex

Activity-
dependent

BDNF secre-
tion/TrkB

phosphoryla-
tion,

BDNF-
mediated
synaptic
plasticity

(LTP)

Not
applicable

[70,117,119,
120,126,127]

Abbreviations: CNS, central nervous system; CoQ10, coenzyme Q10; BDNF, brain-derived neurotrophic factor;
TrkB, BDNF tyrosine receptor kinase B; SARA score, Scale for the Assessment and Rating of Ataxia score.
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5. Conclusions

Many unanswered questions remain about the relationship between age-related alter-
ation of synaptic plasticity and motor function decline in the motor cortex. Nevertheless,
evidence from rehabilitation and other studies suggests that enhancing motor function by
modulating synaptic plasticity can be an effective intervention for humans. The use of brain
substances that decrease with age is an important aspect of developing preventive methods
against age-related motor decline.
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