
Citation: Medzikovic, L.; Azem, T.;

Sun, W.; Rejali, P.; Esdin, L.; Rahman,

S.; Dehghanitafti, A.; Aryan, L.;

Eghbali, M. Sex Differences in

Therapies against Myocardial

Ischemia-Reperfusion Injury: From

Basic Science to Clinical Perspectives.

Cells 2023, 12, 2077. https://doi.org/

10.3390/cells12162077

Academic Editor: Kay-Dietrich

Wagner

Received: 12 July 2023

Revised: 11 August 2023

Accepted: 13 August 2023

Published: 16 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cells

Review

Sex Differences in Therapies against Myocardial
Ischemia-Reperfusion Injury: From Basic Science to
Clinical Perspectives
Lejla Medzikovic, Tara Azem, Wasila Sun , Parmis Rejali, Leana Esdin, Shadie Rahman, Ateyeh Dehghanitafti,
Laila Aryan and Mansoureh Eghbali *

Department of Anesthesiology & Perioperative Medicine, Division of Molecular Medicine, David Geffen School
of Medicine, University of California Los Angeles, 10833 Le Conte Ave, CHS BH-550 CHS,
Los Angeles, CA 90095, USA; sunwasila@gmail.com (W.S.)
* Correspondence: meghbali@ucla.edu

Abstract: Mortality from myocardial infarction (MI) has declined over recent decades, which could
be attributed in large part to improved treatment methods. Early reperfusion is the cornerstone of
current MI treatment. However, reoxygenation via restored blood flow induces further damage to the
myocardium, leading to ischemia-reperfusion injury (IRI). While experimental studies overwhelm-
ingly demonstrate that females experience greater functional recovery from MI and decreased severity
in the underlying pathophysiological mechanisms, the outcomes of MI with subsequent reperfusion
therapy, which is the clinical correlate of myocardial IRI, are generally poorer for women compared
with men. Distressingly, women are also reported to benefit less from current guideline-based thera-
pies compared with men. These seemingly contradicting outcomes between experimental and clinical
studies show a need for further investigation of sex-based differences in disease pathophysiology,
treatment response, and a sex-specific approach in the development of novel therapeutic methods
against myocardial IRI. In this literature review, we summarize the current knowledge on sex dif-
ferences in the underlying pathophysiological mechanisms of myocardial IRI, including the roles of
sex hormones and sex chromosomes. Furthermore, we address sex differences in pharmacokinetics,
pharmacodynamics, and pharmacogenetics of current drugs prescribed to limit myocardial IRI. Lastly,
we highlight ongoing clinical trials assessing novel pharmacological treatments against myocardial
IRI and sex differences that may underlie the efficacy of these new therapeutic approaches.
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1. Introduction

Cardiovascular diseases (CVDs) remain the most prevalent cause of death world-
wide [1]. However, for a long time, the risk of CVD has been underestimated among
women, as it was historically seen as a health condition predominantly impacting men.
Coronary artery disease (CAD), which is the leading cause of myocardial infarction (MI),
accounts for about 50% of CVD [2]. While a higher incidence of MI was observed in
younger age groups among men compared with women [3,4], this gap was reported to
narrow with increasing age [5]. Early and rapid reperfusion of affected coronary arteries
with percutaneous coronary intervention (PCI) is the cornerstone of current MI treatment.
However, reoxygenation via restored blood flow may induce further damage to the my-
ocardium, leading to ischemia-reperfusion injury (IRI) [6]. Indeed, experimental studies
showed that up to half of the ultimate infarct size may be due to IRI rather than the initial
ischemic incident [6]. Outcomes of MI with subsequent reperfusion therapy, which is the
clinical correlate of myocardial IRI, are generally poorer for women, particularly in the
short term, which translates into higher in-hospital mortality compared with men [7–10].
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Overall, the mortality rate for MI has declined over recent decades, which can be
attributed in large part to the rapid progress in the development of new, improved treatment
methods [11]. However, evidence suggests that decreases in mortality have been slower
among women and have stagnated particularly among young women [12]. While studies
consistently show worse outcomes for MI among women [8,9,13,14] and the benefits of
current guideline-based therapies are less clear in female patients, the underlying reasons
are poorly understood. New pharmacological strategies to limit myocardial IRI are the
subject of numerous past and ongoing experimental studies and clinical trials [15,16].
It is becoming increasingly clear that the pharmacokinetics, pharmacodynamics, and
pharmacogenetics of several drugs, including those prescribed to limit IRI, are subject to
sex differences. Together with reported sex differences in disease pathophysiology, clinical
presentation, and utilization of guideline-based recommended care [17], this indicates a
need for further investigation of sex-based differences in treatment response and a sex-
specific approach in the development of novel treatment methods.

In this literature review, we summarize current knowledge on sex differences in the
underlying mechanisms of myocardial IRI, as well as sex differences in responses to the
current pharmacological treatment of myocardial IRI. Furthermore, we highlight possible
sex differences in ongoing clinical trials assessing novel therapeutic drug strategies against
myocardial IRI.

2. Pathophysiological Sex Differences in Myocardial IRI

MI most often arises from ruptured atherosclerotic plaques, resulting in acute throm-
botic occlusion of coronary arteries and leading to ischemia in the myocardium [18]. Is-
chemia causes intracellular ATP levels to drop and calcium to accumulate in the cell [19,20].
Reperfusion restores the oxygen supply to cardiomyocytes; however, reoxygenating mi-
tochondria take in built-up cytosolic calcium ions [19]. As a result of increasing the
mitochondrial calcium levels, the mitochondrial membrane potential dissipates and en-
ables non-selective mitochondrial permeability transition pores (mPTPs) to open [19]. Not
long after the opening of mPTPs, ATP production halts, the mitochondria swells, and
cytochrome C proteins abandon the membrane, ultimately causing apoptosis [1]. Damaged
mitochondria also produce excessive reactive oxygen species (ROS), which are central in the
induction of apoptotic and necrotic cardiomyocyte death [19]. Injured and dying cardiomy-
ocytes release a plethora of substances that act as danger-associated molecular patterns.
These patterns activate the innate immune system and trigger a pro-inflammatory response
characterized by the production of pro-inflammatory cytokines and the recruitment of
neutrophils and pro-inflammatory monocytes [21]. While excessive inflammation causes
further tissue damage, early activation of the pro-inflammatory response is necessary for the
transition to reparative responses, where anti-inflammatory monocytes predominate [21].
Additionally, fibroblasts proliferate and differentiate into myofibroblasts, depositing an
extracellular matrix to maintain the structural integrity of the infarcted myocardium [21].
Myocardial IRI also promotes metabolic dysfunction in the myocardium [20]. During
ischemia, the oxygen shortage suppresses the oxidative metabolism of fatty acids and other
substrates and activates anaerobic glycolysis. Reperfusion washes out ischemic metabolites
and supplies new oxygen, leading to a sudden start-up of oxidative metabolism leading
to aerobic glycolysis [20]. These metabolic switches have a large effect on the myocardial
IRI outcome.

Existing experimental models overwhelmingly demonstrate that females not only
experience greater functional recovery from MI and decreased infarct size but also the
decreased outcome severity of the canonical pathophysiological mechanisms of myocardial
IRI [22–25] (Figure 1). However, there is no singular explanation for the disparities in IRI
severity between sexes. Experimental studies proposed intersectional origins.
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Figure 1. Factors contributing to sex differences in outcomes of myocardial ischemia-reperfusion in-
jury. Sex differences underlie biological pathophysiology, clinical characteristics, pharmacodynamics
of and response to cardiovascular drugs, and standard of care. ACE: angiotensin-converting enzyme,
CYP: cytochrome P450, E2: 17β-estradiol, MI: myocardial infarction, P-gp: the efflux membrane
transporter P-glycoprotein. Created with BioRender.com, accessed on 27 June 2023.

2.1. Sex Differences in Experimental Models of Myocardial IRI

Sex differences in infarct size are well-studied in various animal models and the
results point to varying magnitudes of the same conclusion: infarct size is significantly
smaller in female animal models, from a conservative 25% in some studies to a nearly
two-fold reduction in infarct size compared with their male counterparts [26–30]. The
ischemic myocardium in females can be characterized by an increased tolerance to IRI,
decreased postischemic contractile dysfunction, and limited fibrotic remodeling compared
with the ischemic myocardium in males [23,28]. Furthermore, female mice exhibited less
myofibroblast differentiation and collagen production in infarcted areas than male mice [23].
Additionally, upon MI, female mice exhibited lower levels of infiltrating pro-inflammatory
monocytes and higher levels of anti-inflammatory monocytes in the infarct zone, while
pro-inflammatory cytokine production was lower in the females in the spleen, but not the
myocardium [23].

The mitochondria also display sexual dimorphisms. Lower numbers of mitochondria
are reported to be present in cardiomyocytes from female rats; however, female mitochon-
dria have higher oxidative capacity than mitochondria in male cardiomyocytes [31]. Rat
and mouse models show that compared with males, female myocardial mitochondria
undergo a greater number of post-translational modifications on enzymes that regulate
ROS production and oxidative phosphorylation, have lower rates of Ca2+ uptake, and have
more efficient recovery times for mitochondrial membrane potential [24,25]. Additionally,
female mitochondria display increased Ca2+ transport regulation with L-type calcium chan-
nels, ryanodine calcium-release channels, and Na+/Ca2+ exchange proteins [24,25]. The
female myocardium was also shown to be more tolerant to ischemia because of its relatively
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enhanced resistance to mitochondrial swelling, in both the rate and magnitude, at high Ca2+

concentrations compared with the male myocardium [24,25]. The resistance to calcium-ion-
induced swelling confers at least partial attenuation of mPTP opening in response to high
Ca2+ concentrations. Finally, lessened IRI severity specifically in female animals may also
be attributed to sex differences in phosphorylation patterns that impact ROS production
and elimination [32]. Augmentation in enzymatic activity of aldehyde dehydrogenase-
2, which detoxes ROS aldehyde products, and phosphorylation of alpha-ketoglutarate
dehydrogenase, which reduces ROS overproduction, contributes to the presentation of
decreased ROS concentrations in female myocytes following IRI [32].

The delicate balance between autophagy and apoptosis after MI is also subject to
sex differences. Autophagy, as a physiological foil to apoptosis, degrades nonfunctional
cytoplasmic proteins and organelles, such as dysfunctional mitochondria with continuously
open mPTP channels. As such, increased autophagy was shown to reduce cardiomyocyte
damage [33]. After MI, levels of several anti-apoptotic proteins, including X-linked in-
hibitor of apoptosis protein, B cell lymphoma-extra large, and activated recruited cofactor,
are decreased in male rats, while levels of these anti-apoptotic proteins remain stable
pre- and post-MI in females [33,34]. Simultaneously, pro-apoptotic markers, including
Bax and phospho-p38, are significantly increased in male rats post-MI compared with
females [33]. On the other hand, cardiac autophagy, which is measured by the LC3B/LC3A
ratio, significantly increases in female rats post-MI [33].

2.2. Roles of Sex Hormones

The female-dominant ischemic tolerance seems to carry the most weight before
menopause, as postmenopausal women experience increased ROS production, chronic
systemic inflammation, metabolic disorder, CAD diagnosis, and mortality from ischemic
heart disease [35]. As such, sex hormones, and in particular estrogen (17β-estradiol; E2),
may regulate myocardial IRI. E2 exerts genomic actions by binding the classical estrogen
receptors (ERs) ERα and ERβ. Alternatively, E2 may activate membrane-bound ERα and
ERβ or the G-protein-coupled receptor GPR30 (G-protein-coupled estrogen receptor) to
exert rapid non-genomic effects [36]. In several rodent studies, both the pre-ischemic and
post-ischemic administration of E2 was shown to result in smaller infarct size, downregu-
lation of cardiac inflammation markers, improved heart rate, left ventricular end-systolic
pressure, and ejection fraction measurements during reperfusion [35]. Administration of
E2 during reperfusion yielded similar benefits, which include conserved coronary artery
flow [37]. In contrast, gonadectomized female animals experienced reduced LV function
and larger infarct size than control females [30,37].

E2 and ERs were found to regulate calcium ion levels and, consequently, mitochondrial
permeability. In female cardiomyocytes, E2 was found to subvert intracellular calcium
overload during reoxygenation after hypoxia [37–39]. Additionally, E2 was found to in-
fluence mitochondrial tolerance to rapid Ca2+ influxes by increasing Na+-dependent Ca2+

efflux at high E2 concentrations while increasing anti-apoptotic Bcl-2 proteins [40]. E2
mainly exerts protective effects on mitochondrial function via ERα and GPR30 [36]. GPR30
activation was found to cause cardioprotection during IRI by inhibiting the opening of
the mPTP, as well as preserving mitochondrial integrity and reducing ROS production
and mitophagy [41,42]. Enrichment of mitochondria-related genes was observed in car-
diomyocytes from female GPR30 knockout mice versus WT mice, but not in male mice [43].
Additionally, E2, via mitochondrial p38β kinase activation, is involved in the upregulation
of manganese superoxide dismutase, which is an enzyme that can reduce ROS generation,
attenuate apoptosis, and diminish left ventricular infarct size when overexpressed during
reperfusion [44]. In accordance with these findings, the p38β isoform was shown to activate
pro-survival signaling pathways during cardiac ischemia [45]. Furthermore, E2 decreases
cardiomyocyte apoptosis by increasing baseline expression of ARC levels and lowering
the ratio of pro-apoptotic Bax to anti-apoptotic Bcl-2 gene expression in female rabbits
compared with males [30].
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Ovariectomy in rats was shown to promote cardiac inflammatory cell infiltration
upon myocardial IRI, which was inhibited by E2 [39]. The production of proinflammatory
cytokines tumor necrosis factor α and Interleukins-1β and -6 was shown to be inhibited by
E2 and to improve cardiac function after IRI [46,47]. E2 exerted these effects via p38 MAPK,
as well as GPR30. Interestingly, the enrichment of inflammatory genes was observed
in cardiomyocytes from male GPR30 knockout mice versus WT mice, but not in female
mice [43].

E2 signaling also plays multiple roles in cardiac metabolism [48]. It was demonstrated
in rats that ERα is required to maintain cardiac glucose uptake [49]. Furthermore, E2
promotes mitochondrial basal respiration, ATP production, and respiration capacity in car-
diomyocytes [50]. E2 also regulates cardiac lipid metabolism. E2 promotes the expression
of Lipoprotein lipase, which is an enzyme that degrades triglycerides, in mouse hearts
via direct genomic interaction through ERα and ERβ [51]. Myosin regulatory light chain
interacting protein, which also functions as an inducible degrader of the LDL receptor, was
induced by E2 in explanted cardiac tissue of male human donors, but not in cardiac tissue
from female donors [52]. Lastly, E2 skews cardiac arachidonic acid to be metabolized to
epoxyeicosanoids in women, while androgens skew arachidonic acid metabolism to hy-
droxyeicosatetraenoic acid (HETE) in males [48]. HETEs were recently shown to aggravate
myocardial IRI in mice by promoting cardiomyocyte apoptosis and ferroptosis [53,54].

While ovariectomized animals are currently the most widely used model for menopause-
related studies, it is thought that the 4-vinylcyclohexene diepoxide (VCD) mouse, which
is a follicle-depleted ovary-intact model, more closely resembles the natural progression
through perimenopause and postmenopause in humans [55]. A recent study showed that
the hearts of menopausal mice were more sensitive to myocardial IRI than the hearts of
premenopausal or perimenopausal mice, as the infarct size was approximately twofold
larger during menopause [56]. No difference in infarct size was observed in pre- and
perimenopausal animals [56].

Despite promising experimental studies, some clinical studies showed that estrogen
replacement therapy after menopause may have varying effects on cardiovascular outcomes.
Indeed, estrogen replacement therapy has been associated with a greater incidence of CAD
events and thromboembolisms in postmenopausal women, but also with a lower frequency
of atrial fibrillation after an MI, lower LDL, and higher HDL in postmenopausal women
with previously diagnosed coronary disease [35,36]. Additionally, estrogen replacement
was also reported to not significantly impact cardiovascular mortality or reinfarction in
postmenopausal women with a history of MI [35,36]. One explanation for these varying
outcomes is the timing of estrogen therapy initiation with respect to the start of menopause.
The critical window of hormone therapy [57] hypothesizes that hormone replacement
therapy is more effective when started early after menopause [58].

Compared with estrogens, less attention has been directed to the effect of androgens
on myocardial IRI. Testosterone seems to have paradoxical effects on myocardial IRI [59]. It
was found that testosterone can promote cardiac rupture, infarct size and expansion rate,
myocardial neutrophil infiltration, proinflammatory cytokine production, and LV dysfunc-
tion after an MI in rodents [29,60]. These pathological parameters were demonstrated to be
significantly enhanced in gonad-intact males compared with castrated controls, as well as
in testosterone-treated females versus untreated controls [34]. Furthermore, in rats upon
IRI, testosterone promoted the upregulation of the androgen receptor in the heart, as well
as the receptor for advanced glycation end products, and downregulated anti-apoptotic
Bcl-xL, resulting in a skewed balance between autophagy and apoptosis, thus aggravating
IRI [29]. In contrast, other studies showed that infarct size, contractility, and mitochondrial
function were impaired in castrated rats upon IRI compared with gonad-intact rats and
that testosterone replacement attenuated these impairments [61]. Interestingly, testosterone
treatment improved cardiac contractile function and reduced the infarct size in a more
pronounced manner in aged male rats, while having no effects on the hearts of young adult
rats, indicating a role of aging [62]. These conflicting experimental reports reflect clinical
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data wherein patients with prostate cancer undergoing androgen deprivation therapy ex-
hibited enhanced incident MI and shorter times to fatal MI, while other studies showed no
significant effects of androgen deprivation therapy [63]. In contrast, testosterone therapy in
men with low testosterone seemed to increase the risk of MI [64]. However, recent studies
disproved these results [65,66].

It was hypothesized that besides estrogen depletion itself, an imbalance between
estrogens and androgens during menopause may underlie the loss of ischemic tolerance
in postmenopausal women. The estrogen concentration decreases abruptly in the post-
menopausal period, while the concentration of androgen steadily decreases over time. This
leads to an increased androgen/estrogen ratio [67]. Indeed, it was reported that in post-
menopausal women, a higher testosterone/estradiol ratio was associated with an elevated
risk of incident CVD, CHD, and HF events [68,69].

2.3. Roles of Sex Chromosomes

The sex chromosome complement also impacts IRI outcome, independent of sex hor-
mone differences [70]. An invaluable study tool is the four core genotypes (FCGs) mouse
model wherein gonad development is independent of the sex chromosomes, thus gen-
erating four sex genotypes: XX and XY mice with either ovaries or testes [70]. XX mice
were shown to be more vulnerable to myocardial IRI than XY mice, who had a markedly
higher capacity for mitochondrial calcium ions, smaller infarct size, and more comprehen-
sive recovery of cardiovascular function [71]. Gonadally identified male mice with two
X chromosomes had a significantly larger infarct size and less effective recovery from MI
than male mice with only one X chromosome [71]. While the exact pathophysiological
mechanism remains understudied, the presence of two X chromosomes, independent of
the presence of a Y chromosome, leads to larger infarct sizes after IRI [71]. One explanation
may be the process of X-inactivation [72]. While theoretically transcriptional inactivation
of one X chromosome is done to balance the number of genes between XX and XY cells,
genomic data shows that X-inactivation is incomplete [70]. Nearly 20% of X chromosome
genes elude inactivation and have augmented expression in XX individuals compared with
their XY counterparts. These X escapee genes may affect myocardial IRI and were shown
to comprise, among others, kdm5c/kdm6a, which regulate pro-inflammatory cytokine
production [73]; usp9x, which is implicated in cell death pathways; and bmx and sts, which
promote fibroblast activation [74].

3. Sex Differences in Current MI Pharmacological Therapies

It is yet unclear whether sex differences in MI outcomes and mortality in particular
are a result of treatment disparities and dissimilarities in clinical characteristics, such as
comorbidities between men and women, or related to sex-based biological and pathophys-
iological distinctions, leading to different treatment responses (Figure 1). It is likely that
each of these factors contributes to sex differences in MI outcomes to a certain degree.

3.1. Sex Differences in Drug Responses

The pharmacokinetics, pharmacodynamics, and pharmacogenetics of several drugs
are subject to sex differences. This includes cardiovascular drugs that are prescribed after
an MI to preserve cardiac function, such as β-blockers, renin–angiotensin–aldosterone
inhibitors, and antithrombotics, which have become a cornerstone in the pharmacological
treatment for acute MI [75].

Physiological differences between males and females may affect drug metabolism.
Men exhibit faster absorption, processing, and excretion of most drugs compared with
women. Furthermore, differences exist in the accumulation and distribution of hydrophilic
and lipophilic drugs between the sexes, as women tend to have a higher percentage of body
fat and lower plasma volume [76]. A study of 86 different FDA-approved drugs revealed
that 76 of those exhibited prolonged elimination times and increased blood concentrations
in women [77]. Of those drugs, 96% were associated with higher incidences of adverse
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drug reactions (ADRs) in women [77]. Indeed, women tend to experience ADRs more fre-
quently than men. For example, women report more ADRs from diuretics, ACE inhibitors,
anticoagulants, statins, and antiarrhythmic drugs [78]. Women are reported to have an
increased risk of severe bleeding from Aspirin, GPIIb/IIIa inhibitors, anticoagulants, and
antiplatelet drugs [76,79]. The enhanced reduction in heart rate and blood pressure due
to β-blockers is more common in women compared with men, as well as higher rates of
hypo-osmolarity, hypokalaemia, and hyponatremia from diuretics [79].

Women are reported to have higher gastric pH and a lower small intestinal fluid
volume [76]. As such, drugs that require an acidic environment for absorption, such as
the β-blocker Metoprolol or the calcium channel blocker Verapamil, may have lower oral
bioavailability in women, and formulations intended for duodenal absorption, including
enteric-coated aspirin, may show reduced or delayed absorption in women [79]. Glomerular
filtration rate and tubular secretion, which are important factors in the renal clearance of
drugs, are reported to be lower in women than in men [80]. Indeed, Verapamil, Metoprolol,
and Propranolol exhibit slower renal clearance in women [78]. The hepatic metabolism
also differs between the sexes, especially the cytochrome P450 (CYP) family of catalyzing
enzymes. Higher CYP1A2, 2D6, and 2E1 activities in men were reported by multiple
studies, while CYP3A4 and 2B6 activities are higher in women [76]. Up to 50% of drugs
currently used are CYP3A4 substrates and women are reported to exhibit ~25% higher
clearance of these drugs than men [81]. Furthermore, endogenous estrogen, as well as oral
contraceptives, interact with CYP450 enzymes. Both estrogen and progesterone compete
with drugs for degradation via CYP450 enzymes. Additionally, steroid hormones activate
the expression of CYP3A4, and ERa is reported to modulate CYP1B1 expression [82,83]. In
the intestine, the efflux membrane transporter P-glycoprotein (P-gp) extrudes and limits the
cellular uptake of toxins and xenobiotics [84,85]. Several cardiovascular drugs, including
the β-blockers Labetalol and Propranolol, the calcium channel blocker Verapamil, the ARB
inhibitor Losartan, and the antiplatelet Ticagrelor, are transported by P-gp but also act as
a P-gp inhibitor, thus achieving enhanced drug bioavailability and uptake [84,85]. P-gp
expression is reported to be higher in men and to be sensitive to modulation by both
estrogen and testosterone [80,86].

3.2. Sex Differences in Clinical Characteristics

Multiple reports suggest differential clinical characteristics between male and female
MI patients with a higher prevalence of comorbidities and cardiovascular risk factors
being observed among female patients [10,14,87]. In addition, presentation with atypical
symptoms of MI other than classic chest pain was reported more commonly in women,
which may lead to an increased risk for misinterpretation of their clinical symptoms by
healthcare providers [88].

Major bleeding complications after a PCI are one factor contributing to worse out-
comes among female patients [89] and studies consistently linked the female sex with an
elevated risk of bleeding and vascular complications during a PCI [13]. This highlights
the importance of taking into account significant biological differences, such as smaller
vessel size and higher prevalence of MI with non-obstructive coronary arteries (MINOCA)
among women, which may limit the therapeutic benefits of PCI in some cases [90]. These
pathophysiological and biological differences may also impact the efficacy of standard
drugs for the treatment of MI. A previous report on the lack of significant improvement
in long-term clinical outcomes with dual antiplatelet therapy in MINOCA patients serves
as one example [91]. Furthermore, while heparin is the recommended drug of choice for
peri-procedural and adjunctive anticoagulation to reperfusion therapy [92], evidence sug-
gests that anticoagulation with unfractionated heparin poses a particularly high bleeding
risk among women. Even when administered weight-adjusted doses, women undergoing
treatment with unfractionated heparin for MI experience greater activation of partial throm-
boplastin time than men, putting them at a greater risk for bleeding complications [93].
This increased sensitivity to heparin may be a reason to opt for a different anticoagulation
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strategy in female patients. Subgroup analysis of the VALIDATE-SWEDEHEART trial
showed a significant reduction in major bleeding events after a PCI in female MI patients
who received Bivalirudin as an anticoagulant medication instead of unfractionated heparin,
while no significant benefit was observed among male patients [94].

3.3. Sex Differences in Standard of Care

It is notable that the standard of care differs between male and female MI patients,
partly due to the less timely coronary reperfusion through PCI and a longer ischemic
time among women [95,96]. Aside from this delay in treatment, women are also less
likely to even receive coronary reperfusion therapy, either in the form of pharmacological
fibrinolysis or invasive coronary revascularization via PCI [97]. Furthermore, previous
studies showed that the likelihood of receiving early Aspirin and β-blocker treatment was
lower among women. While receiving diuretics more often, prescriptions for β-blockers;
antiplatelet drugs, such as Aspirin; and potent P2Y12 inhibitors, ACE inhibitors, and statins
were less frequent for female compared with male patients during hospitalization [10,98,99].
In addition, significant sex disparities exist in secondary prevention in MI patients, as the
rates of referral, enrollment, and completion of cardiac rehabilitation are lower in women
compared with men [100,101].

These reports indicate that women that present with MI are less likely to receive
standard evidence-based care in accordance with clinical guideline recommendations.

4. Ongoing Clinical Trials for Drugs against Myocardial IRI: Potential Sex Differences

Numerous clinical trials are currently ongoing testing the efficacy of new drug in-
terventions against myocardial IRI. On www.clinicaltrials.gov (17 April 2023), the filters
‘myocardial infarction’, ‘reperfusion injury’, ‘myocardial’, ‘status recruiting’, ‘age 18–65+’,
and ‘intervention: drug’ yield several trials targeting oxidative stress, inflammation, throm-
bosis, and lipid and glucose metabolism in myocardial IRI. Potential sex differences may
underlie the efficacy of these interventions (Table 1).

Table 1. Ongoing clinical trials researching new pharmacological strategies against myocardial
ischemia-reperfusion injury. E2: 17β-estradiol, eNOS: endothelial nitric oxide synthase, F: female,
GPR30: G-protein-coupled estrogen receptor, GPx: glutathione peroxidase, HF: heart failure,
i.v.: intravenous, ICU: intensive care unit, LDL-C: low density lipoprotein cholesterol, LV: left ven-
tricle, M: male, MACE: major adverse cardiovascular endpoint, MMP: matric metalloprotease,
PAI: plasminogen activator inhibitor, PCI: percutaneous coronary intervention, PCSK9: propro-
tein convertase subtilisin/kexin type 9, s.c.: subcutaneous, SGLT: sodium glucose cotransporter,
SOD: superoxide dismutase, tPA: tissue plasminogen activator.

Target Clinical Trial Drug and
Administration Route Proposed Mechanism Possible Sex Differences

Oxidative stress NCT04837001 FDY-5301,
i.v. delivery before a PCI

Anti-peroxidant, promotes
the conversion of

hydrogen peroxide to
water and oxygen

↑ SOD activity in hearts of F rats [102]

↓ SOD expression after gonadectomy in both
sexes [102]

↑ Catalase activity in F rat kidneys [102–104]

↓ GPx activity in F rodents [102–104]

Estrogen phenolic hydroxyl group scavenges
free radicals [102]

E2 promotes Mn-SOD and GPx gene
expression [105]

NCT05014061 Adenosine,
i.v. delivery before a PCI

Antioxidative,
vasodilatation,

anti-inflammatory,
regulation of calcium

homeostasis

↑ Cardiac adenosine A1 receptor-induced
eNOS phosphorylation in M [106,107]

www.clinicaltrials.gov
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Table 1. Cont.

Target Clinical Trial Drug and
Administration Route Proposed Mechanism Possible Sex Differences

Inflammation NCT03508232
Doxycycline,

oral immediately after a
PCI and 7 days after a PCI

MMP-2 inhibition

↓ Activity of serum pro-MMP-2 activity in F
HF patients [108]

↑ LV MMP-2 activity in M mice after MI [60]

↑ Cardiac MMP-2 activity in healthy
ovariectomized F rats [109]

↓ Cardiac MMP-2 expression upon volume
overload in ovariectomized F rats [109]

E2 inhibits MMP-2 expression in rat cardiac
fibroblasts and cardiac inflammatory

cells [110–112]

↓ Cardiac MMP-2 expression upon volume
overload in castrated M rats [113]

NCT05211401 Ritixumab, i.v. within 3 h
of PCI

CD20 antibody, B
cell depletion,

anti-inflammatory

↑ Rituximab clearance and poorer treatment
outcomes in M DLBCL patients [114,115]

↑ Complete or partial remission following
Rituximab therapy in F nephropathy

patients [116]

↑ Baseline B-cell-activated signaling in
peripheral immune cells in F [117]

NCT05462730

Methylprednisolone,
single i.v. bolus in the

prehospital setting
before PCI

Glucocorticoid,
anti-inflammatory,

antioxidant, promoted
mitochondrial function,

regulation of
calcium homeostasis

↑ Methylprednisolone clearance in F
patients [118]

↑ Methylprednisolone clearance in M
rats [119]

Sensitivity of basophils to
methylprednisolone treatment to plasma E2

in F [118]

↑ Survival rate in ovariectomized
endotoxemic F rats treated with

dexamethasone [120]

Castration in M rats had no effect on
dexamethasone treatment of

endotoxemia [120]

↓ Length of mechanical ventilation and ICU
stay by hydrocortisone treatment only in M

septic shock patients [121]

Dexamethasone treatment in rats promotes
sex-specific glucocorticoid-regulated gene

expression in the liver [120]

Thrombosis NCT04825743

Zalunfiban,
administered by the

ambulance staff prior to
a PCI

Platelet αIIbβ3 receptor
inhibitor, inhibition of
platelet aggregation

↑ Bleeding in F after GpIIb/IIIa inhibitor
treatment [122,123]

↑ Platelet count and reactivity in F [124–127]

Menstrual cycle affects platelet
reactivity [128,129]

Contradictory effects of E2 and testosterone
on platelet activation [130–132]
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Table 1. Cont.

Target Clinical Trial Drug and
Administration Route Proposed Mechanism Possible Sex Differences

NCT05149560
Ticagrelor,

oral after PCI for
12 months

Platelet P2Y12 receptor
inhibitor, inhibition of
platelet aggregation

↑ Bleeding in F after Ticagrelor
treatment [133–136]

Less pronounced benefits of Ticagrelor on
MACE in F vs. M [133–136]

No difference in efficacy and safety of P2Y12
inhibitors between M and F [137]

NCT03998319,
NCT03335839,

and
NCT02894138

Tenecteplase or Alteplase,
intracoronary

administration
immediately following

a PCI

Recombinant tPA,
promotion of fibrinolysis

Less pronounced benefits of recombinant tPA
in M ischemic stroke patients [138]

Better functional outcomes after recombinant
tPA in M ischemic stroke patients [139]

↑ Endothelial tPA antigen release in F [140]
↑ tPA antigen, ↑ PAI-1 activity, and ↓ tPA

levels in pulmonary arteries of F PAH
patients [141]

↑ PAI-1 in F stroke with migraine patients, no
differences in tPA levels between M

and F [142]
E2 represses PAI-1 expression via ER in

vascular smooth muscle cells [143]

Lipid metabolism NCT04974814

Rosuvastatin and
Atorvastatin, single

high-dose preloading
before a PCI

Anti-inflammatory,
antioxidant, inhibition of

platelet aggregation,
improve endothelial

function

↑ Statin-induced reductions in cholesterol
levels in mice with testes than mice with

ovaries [144]

Sex chromosome complement impacts
hepatic transcriptional response to

statins [144]

NCT05284747
and

NCT04951856

Evolocumab, s.c.
immediately after a PCI

and biweekly after

PCSK9 antibody,
promotion of

revascularization

↑ Circulating PCSK9 in F [145]

PCSK9-LDLR complex internalization
inhibited by E2 and GPR30 [146,147]

PCSK9 antibodies were less effective in
lowering LDL-C in F [148–151]

Glucose
metabolism

NCT05305911,
NCT04363697,

and
NCT04509674

Dapagliflozin or
Empagliflozin, oral after a
PCI once daily for two or

six months

SGLT2 inhibitor,
promotion of cardiac
energy metabolism,

enhanced circulating
progenitor cells,

erythropoiesis, decreased
blood pressure,

anti-inflammatory

↑ SGLT2 mRNA in F rats, ↑ SGLT2 protein in
M rats [152,153]

Less pronounced benefits of SGLT2 inhibitors
on HF risk in F vs. M [154]

4.1. Drugs Targeting Oxidative Stress

FDY-5301 is a drug that contains sodium iodide, which is an inorganic halide and
elemental reducing agent that may act as a catalytic anti-peroxidant in the conversion of
hydrogen peroxide to water and oxygen [155]. A pilot study showed that i.v. delivery
of FDY-5301 in STEMI patients before re-opening the occluded artery led to decreased
infarct size and higher LVEF 3 months after an MI. Although the study was not powered
to detect statistical significance in cardiac function, FDY-5301-treated patients exhibited
significantly lower plasma levels of myeloperoxidase and NTproBNP [155]. The ongoing
trial NCT04837001, which is a larger phase III trial, aims to validate these promising
pilot results and monitor cardiovascular mortality or acute heart failure over 12 months.
Hydrogen peroxide is a relatively stable ROS formed by the antioxidant enzyme superoxide
dismutase and hydrogen peroxide is further metabolized to water and oxygen by either
catalase or glutathione peroxidase. Superoxide dismutase activity in the hearts of female
rats was found to be higher than in male rats; however, a gonadectomy led to a decrease in
superoxide dismutase levels in both sexes [102]. Catalase activity was found to be higher
only in the kidneys of female vs. male rats and GPx activity was demonstrated to be
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lower overall in females compared with males [102–104]. However, other studies did not
find sex differences in the expression or activity levels of antioxidant enzymes [102–104].
Interestingly, it was hypothesized that the greatest difference in antioxidant properties
between the sexes is likely due to estrogen. Estrogen contains a phenolic hydroxyl group,
which has free radical scavenging activity [102]. Furthermore, E2 can promote superoxide
dismutase and glutathione peroxidase gene expression by activating MAPK and NFkB
signaling [105]. Whether the anti-peroxidant action of FDY-5301 in STEMI is affected by
estrogen remains to be elucidated.

The cardioprotective effects of adenosine in myocardial IRI have been well estab-
lished and range from reductions in oxidative stress, vasodilatation, and anti-inflammatory
properties, to the regulation of calcium homeostasis [156–160]. Previous studies showed
a link between adenosine treatment and a reduction in the infarct size of ischemic and
subsequently reperfused myocardium in animal models [161], which prompted the launch
of numerous clinical trials. However, conflicting results were obtained regarding post-MI
cardiac function, which is likely explained by dissimilarities in the conditions of adenosine
administration, particularly regarding dose, time, and duration of administration [161]. A
clinical trial, namely, NCT05014061, in STEMI patients evaluating the impact of intravenous
adenosine infusion initiated prior to revascularization on the reversal of myocardial stun-
ning and on cardiac function after 48 h is ongoing. Aside from optimizing the conditions of
adenosine administration, it is also necessary to take biological sex differences that may
influence the therapeutic efficacy into account. A previous study on the cardioprotective
effects of cardiac adenosine A1 receptor activation in male and female mice revealed that
A1 receptor stimulation led to increased endothelial nitric oxide synthase phosphorylation
through the phosphoinositide 3-kinase/protein kinase B/eNOS signaling axis in male but
not in female hearts [162]. However, eNOS phosphorylation in female hearts was higher
at baseline and a prior report by the same group established a link between higher eNOS
phosphorylation and cardioprotection against myocardial IRI particularly in females [107].
These results suggest a possible redundancy between adenosine-induced cardioprotec-
tion and innate cardioprotective mechanisms in females, calling into question the added
therapeutic benefit of adenosine for female patients. On the other hand, the possibility
of different cardioprotective adenosine signaling pathways between males and females
should also be considered.

4.2. Drugs Targeting Inflammation

Inflammation and healing in myocardial IRI are closely connected via matrix metallo-
proteinases (MMPs), which are a family of proteolytic enzymes that regulate extracellular
matrix turnover and inflammatory signaling [162]. After an MI, pro-inflammatory cy-
tokines enhance MMP expression, especially MMP-2 and -9, to facilitate ECM degradation,
inflammatory cell recruitment, and cytokine processing. However, sustained MMP activa-
tion leads to adverse remodeling of the myocardium. As shown in both patient and animal
models, MMP-2 levels in the heart, as well as plasma, significantly increase within the first
24 h after an MI and upon reperfusion therapy [163,164]. MMP-2 expression and activity are
subject to sex-related differences [165]. The activity of serum pro-MMP-2 was found to be
decreased in women suffering from HF compared with men [108]. In mice, higher MMP-2
activity was observed in the LV of males vs. females after an MI [166]. Sex hormones seem
to exert dual effects on MMP-2 in the heart. MMP-2 expression is downregulated in volume-
overloaded hearts of ovariectomized rats, while enhanced MMP-2 activity was reported in
isolated healthy hearts of ovariectomized rats [109]. E2 treatment was also shown to inhibit
MMP-2 transcription and expression in rat cardiac fibroblasts and cardiac inflammatory
cells [110–112]. Testosterone also seems to affect cardiac MMP-2 expression, as castration in
male rats significantly reduced the MMP-2 expression in volume-overloaded hearts [113].
Doxycycline is the only inhibitor of MMP-2 approved for clinical use. Doxycycline is
commonly used to treat rosacea and periodontitis, and at higher doses, acts as an antibiotic.
Previously, the TIPTOP trial found that orally administering Doxycycline immediately after
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a PCI and then for 7 days after resulted in improved cardiac remodeling indices at 6 months
post-MI, together with altered levels of MMP-2 and tissue inhibitor of metalloproteinases-2
(TIMP-2) [167]. The double-blinded phase II trial NCT03508232 is ongoing to confirm these
promising pilot results.

In addition to the innate immune system, the adaptive immune system also plays a
role in the immune response after an MI [168]. Experimental studies showed that B cells are
instrumental in orchestrating the inflammatory response after myocardial IRI, partially via
mobilizing inflammatory monocytes to the infarct site [169]. B cell depletion in mice using a
single dose of anti-CD20 antibody after MI led to reduced recruitment of pro-inflammatory
monocytes and reduced infarct size with improved cardiac function [169]. Rituximab is a
monoclonal antibody that targets the B cell surface protein CD20. NCT05211401 is currently
enrolling to compare the effect of a single injection of two doses of Rituximab infused within
3 h of a PCI on left ventricular systolic function after 6 months in patients who have had an
acute STEMI. A pilot study showed that Rituximab was safe and able to deplete circulating
B cells in STEMI patients [170]. Rituximab is currently used to treat certain autoimmune
diseases and cancers. Male patients with diffuse large cell lymphoma had a higher clearance
of Rituximab than female patients, together with poorer treatment outcomes and shorter
progression-free survival in males than in female patients treated with Rituximab [114].
Similar results were obtained in follicular lymphoma patients treated with Rituximab [115].
In membranous nephropathy, female patients were found to be more resilient to renal
injury and achieve complete or partial remission following Rituximab therapy compared
with men [116]. Taken together, Rituximab therapy may be more efficient in women
than men. Interestingly, single-cell sequencing of peripheral immune cells sampled from
men and women showed that females exhibited higher B-cell-activated signaling at the
transcriptional level than males already at baseline healthy conditions [117].

Glucocorticoids are potent regulators of the inflammatory response with a wide
range of actions. In the acute inflammatory phase, glucocorticoids suppress cytokine
and chemokine production and reduce leukocyte infiltration and leukocyte binding to
endothelial cells [171]. In the resolution phase of inflammation, glucocorticosteroids may
promote the clearance of apoptotic cells and promote anti-inflammatory phenotypes in
macrophages; however, glucocorticoids also reduce collagen synthesis in fibroblasts [171].
Glucocorticoids act by binding to the ubiquitously expressed glucocorticoid receptor, as
well as the mineralocorticoid receptor, and also exert non-genomic actions [172]. The non-
genomic pathway employed by glucocorticoids is induced rapidly after administration.
Indeed, glucocorticoids exert rapid effects on ROS production by modulating NO synthase;
on intracellular calcium levels by modulating SERCA2A, adenylyl cyclase, and protein
kinase A activity; and on inflammation and apoptosis by acting on MAPKs, cAMP levels,
and mitochondrial function [172,173]. As such, trial NCT05462730 is currently enrolling to
assess whether a single bolus of methylprednisolone infusion administered in the prehospi-
tal setting prior to PCI can limit reperfusion injury and reduce the final infarct size 3 months
after STEMI. However, the response to glucocorticoids may be influenced by sex-specific
pharmacokinetics and pharmacodynamics, as well as sex hormones. The clearance of
methylprednisolone was reported to be higher in women compared with men [118]. The
sensitivity of basophil trafficking to methylprednisolone treatment was found to be related
to plasma estradiol in women [118]. However, in male rats, methylprednisolone clearance
was measured to be threefold higher in males compared with females, regardless of the
estrous phase in the females [119]. A sepsis model in rats demonstrated that sex hormones
affect the anti-inflammatory actions of glucocorticoids, as there was no difference in sur-
vival between castrated and gonad-intact endotoxemic rats treated with dexamethasone.
In contrast, the survival rate of female endotoxemic rats treated with dexamethasone was
increased after an ovariectomy [120]. These data are in line with reports of adjunctive
hydrocortisone treatment in patients with septic shock leading to a significant decrease
in the length of mechanical ventilation and ICU stay only in males [121]. Interestingly,
dexamethasone treatment in rats revealed sex-specific glucocorticoid-regulated gene ex-
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pression in the liver, which is a classic glucocorticoid-responsive organ, in several canonical
pathways, such as apoptosis signaling, hypoxia signaling, and interferon and interleukin
signaling [120]. Indeed, dexamethasone treatment expands the number of sex-dimorphic
genes expressed in the liver compared with untreated rats.

4.3. Drugs Targeting Thrombosis

Thrombus formation is a hallmark of occluded coronary arteries in MI, but can also
manifest as in-stent thrombosis after a PCI [18]. Thrombosis is driven by platelet activation
and aggregation and antiplatelet agents have become the mainstay antithrombotic therapy
after an MI or PCI [174]. Platelets in damaged vessels release dense granules containing
substances that cause the recruitment of circulating platelets to the injury site and further
platelet activation [175]. Adenosine diphosphate is one of these substances. ADP binds
the P2Y12 receptors on platelets, and downstream signaling ultimately leads to integrin
αIIbβ3, also known as GPIIb/IIIa, to adopt a high-affinity state for fibrinogen and other
ligands [175,176]. This promotes signaling cascades that drive key platelet functions such
as spreading, aggregation, and thrombus consolidation [176]. As such, integrin αIIbβ3
and the P2Y12 receptor play a central role in platelet biology and arterial thrombosis.
Zalunfiban is a novel small molecule inhibitor of the platelet αIIbβ3 receptor specifically
designed for the first medical contact therapy of STEMI patients. Trial NCT04825743 is
currently recruiting to assess the effects of a single weight-based dose of subcutaneous
Zalunfiban administered by the ambulance staff prior to a PCI on acute stent thrombosis,
MI recurrence, new-onset HF, and all-cause death 30 days after MI. The drug Ticagrelor
inhibits platelet aggregation by antagonizing the P2Y12 receptor. NCT05149560 is currently
assessing twice-daily treatment with oral Ticagrelor following PCI on stent thrombosis, MI
recurrence, and the composite of cardiac death 3 months post-MI. While no sex-specific
effects of Zalunfiban have yet been reported, treatment with other GpIIb/IIIa inhibitors is
reported to result in bleeding more often in women than men [122,123]. After undergoing
PCI, women are reported to benefit less from Ticagrelor treatment in terms of major adverse
cardiovascular outcomes (MACE) and cardiovascular death than men and are at greater
risk of major bleeding [133–136]. However, a meta-analysis of clinical trials that included
a total of 63,346 men and 24,494 women with CAD reported that both the efficacy and
safety of P2Y12 inhibitors appeared to be similar between the sexes [177]. Differences in
function between men and women were reported from platelet counts, expression of surface
receptors, and functional reactivity. Both animal models and studies in humans showed
that platelets in females are more reactive than platelets in males when and that women
have higher platelet counts [124–127]. However, the exact mechanism underlying sex
differences in platelet biology and responses to antithrombotic therapy is yet unclear. It was
reported that the menstrual cycle affects platelet reactivity, alluding to an effect caused by
sex hormones [128,129]. However, conflicting reports regarding the effects of E2 on platelet
activation were published, with E2 both promoting and inhibiting platelet aggregation and
thrombus formation in mice [130]. Similar contradictory results were found in multiple
studies on the effect of estrogen therapy on platelet activation in menopausal women [130].
Additionally, testosterone promotes aggregation of both male and female platelets equally
and both low levels of circulating testosterone, as well as abuse of anabolic androgenic
steroids, have been linked to thrombotic events [131,132].

The plasminogen system, which comprises tissue-type plasminogen activator (tPA),
urokinase-type plasminogen activator, and their inhibitor plasminogen activator inhibitor
(PAI-1), plays a major role in fibrinolysis of thrombi and tissue remodeling. Impaired
fibrinolytic capacity has been associated with an increased risk of MI [177]. While PCI is
deemed safer, fibrinolysis may be used in MI patients where PCI is not possible [178,179].
Clinical trials NCT03998319, NCT03335839, and NCT02894138 are assessing the effects of
adjunctive intracoronary tPA administration immediately following PCI on final infarct
size, rehospitalization, and cardiovascular death 1–24 months post-MI. In patients that
had an acute ischemic stroke, women were reported to benefit more from therapy with
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recombinant tPA [138]. However, a recent study showed that 3 months after a stroke and
treatment with recombinant tPA, men showed better functional outcomes than women.
Sex differences exist in the fibrinolytic system [139]. In healthy middle-aged subjects,
women were found to release more endothelial tPA antigen than men [140]. Female
pulmonary hypertension patients suffering from thrombosis in the pulmonary vessels
exhibit elevated tPA antigen levels and lower tPA levels and higher PAI-1 activity, leading to
an antifibrinolytic/prothrombotic state compared with male patients [141]. In a systematic
review of 24 studies, no differences in tPA levels were found between male and female
stroke patients suffering from migraine, while PAI-1 was elevated in females [142]. Sex
hormones may affect the fibrinolytic system, as hormonal contraceptives have long been
associated with reduced tPA levels and elevated levels of thrombin-activated fibrinolysis
inhibitor [180]. In contrast, E2 was recently shown to repress the expression of PAI-1
in an ER-mediated manner in vascular smooth muscle cells, resulting in enhanced tPA
activity [143].

4.4. Drugs Targeting Lipid Metabolism

Studies on the FCG mouse model showed that cholesterol levels are higher in mice
with testes than in mice with ovaries, independent of the XX or XY chromosome comple-
ment [144]. Statins inhibit cholesterol biosynthesis and lower plasma cholesterol levels by
functioning as potent competitive inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A
(HMG-CoA) reductase, which is the enzyme that catalyzes the rate-limiting step in choles-
terol synthesis [181]. Interestingly, statin-induced reductions in cholesterol levels were
larger in mice with testes than in mice with ovaries [144]. The central organ for cholesterol
synthesis and action of statins is the liver. Gonadal and chromosomal sex independently
affect the liver transcriptome in hypercholesterolemia, and chromosomal sex in particular
seems to impact the hepatic transcriptional response to statin treatment [144]. For instance,
statin treatment leads to a compensatory upregulation of HMG-CoA reductase, which
may reduce statin drug efficacy, and it is suggested that this response is driven by the XY
chromosome complement [144]. By lowering plasma cholesterol, statins lower the risk
of CVD. Interestingly, evidence suggests that independent of their lipid-lowering effects,
statins exert anti-inflammatory, antioxidant, and platelet anti-aggregation functions as
well as improve endothelial function [182]. Both the pathophysiology of CAD itself, as
well as angioplasty and PCI, induce platelet activation, thrombosis, and inflammation [18].
As such, several clinical trials investigated whether in addition to the long-term benefits
associated with lipid-lowering, preloading with a single statin dose prior to a PCI also
may play a beneficial role early after a PCI, reporting promising results. Currently, trial
NCT04974814 is comparing different statin subtypes. Whether sex differences in statin
anti-inflammatory and antiplatelet effects exist remains to be discovered.

Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a major player in cholesterol
homeostasis. PCSK9 binds to and disrupts endocytic recycling of LDL receptors to the cell
surface and promotes subsequent LDLR degradation in the lysosomes [182]. This process
inhibits LDL cholesterol (LDL-C) uptake by cells, leading to hypercholesterolemia. PCSK9
inhibitors added to statin therapy were found to significantly reduce LDL-C, as well as
lowering MACE [183]. Sex differences in LDL-C and PCSK9 metabolism were previously
reported. LDL-C levels in women increase after midlife and several real-world registries
reported that in patients starting PCSK9 inhibitors, LDL-C was significantly higher in
women than men [148–151]. Furthermore, levels of circulating PCSK9 were consistently
shown to be higher in women versus men in several studies [145]. Estrogen is thought to
regulate PCSK9 via genomic and non-genomic mechanisms. Both ERα and GPER activation
were shown to repress PCSK9 expression and promoter activity [146,184]. Additionally,
internalization of the PCSK9-LDLR complex was shown to be inhibited by E2 and GPR30
activation through the decreased phosphorylation of PCSK9 [146,147]. Interestingly, several
recent studies reported that PCSK9 monoclonal antibodies are less effective in lowering
LDL-C levels in females compared with males and that after confounder correction, sex is a
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significant predictor of the therapeutic response to PCSK9 antibodies [148–151]. Ongoing
trials NCT05284747 and NCT04951856 aim to assess the effects of monoclonal PCSK9
antibody Evolocumab on a composite of MI, revascularization, and all-cause death when
administered to MI patients before undergoing PCI and subsequently added to standard
lipid management. Whether sex differences are also observed in the efficacy of PCSK9
antibody treatment against MI injury remains to be concluded from the outcomes of the
ongoing clinical trials.

4.5. Drugs Targeting Glucose Metabolism

Several inhibitors targeting the sodium glucose co-transporter 2 (SGLT2) have been
developed to treat hyperglycemia in type 2 diabetes patients. SGLT2 inhibitors act by
inhibiting glucose reabsorption in the kidney’s proximal tube. Interestingly, multiple trials
showed that SGLT2 inhibitors also decrease MACE in type 2 diabetes patients, however to
a far lesser extent in women compared with men [185,186]. However, there are also reports
of similar protection against cardiovascular events between the sexes with SGLT2 inhibitor
use [187–190]. SGLT2 expression patterns may explain the observed sex differences in
the clinical setting. In rats, it was shown that while SGLT2 is expressed in multiple
organs, including the heart, the expression of SGLT mRNA is higher in females than
in males, especially in the kidney [152,153]. In contrast, SGLT2 protein expression was
reported to be higher in the kidneys of male rats [152,153]. Additionally, a hormonal
upregulation of SGLT2 takes place after puberty in female rats but not in male rats [152,153].
Several trials involving HF patients showed that SGLT2 inhibitors also significantly reduce
MACE regardless of diabetic status [154,188,189]. However, the exact mechanism by
which SGLT2 inhibitors exert these protective effects is yet unclear. It is hypothesized that
SGLT2 inhibitors promote cardiac energy metabolism, circulating progenitor cells, and
erythropoiesis, while also decreasing blood pressure, inflammation, and adverse cardiac
remodeling [191]. A systematic review of five clinical trials involving 21,947 HF patients
showed that SGLT2 inhibitors reduce the risk of primary composite HF in both men and
women, but that the benefits are less pronounced in women [154]. Trials NCT05305911,
NCT04363697, and NCT04509674 are currently ongoing to assess the effects of the in-
hospital initiation of SGLT2 inhibitors Dapagliflozin and Empagliflozin in addition to a
standard therapeutic regimen after an MI on the outcome of HF hospitalizations, MACE,
and all-cause mortality. Whether sex differences are also observed in the effects of SGLT2
inhibitors in MI patients remains to be elucidated upon the conclusion of these clinical trials.

5. Conclusions

Despite enormous pre-clinical efforts to develop innovative therapies against my-
ocardial IRI and the high numbers of clinical studies that have been conducted thus far,
unfortunately, only a few clinically effective therapies exist. This can be partially attributed
to the complexity of the disease pathology. Processes like reoxygenation, inflammation,
and fibrosis are a double-edged sword in myocardial IRI in which a balance needs to be
achieved in a timely manner for an optimal healing response [21]. The many sex differ-
ences that exist in the several pathological processes involved in myocardial IRI further
complicate finding an optimal treatment strategy.

Experimental models have overwhelmingly demonstrated a female-dominant tol-
erance against myocardial IRI. However recent studies show that women experience
worsened outcomes after a PCI. There is a dire need to fill the knowledge gaps underlying
this seeming disparity between experimental studies and clinical outcomes. It is distressing
that women are reported to benefit less from current guideline-based therapies and that
long-term follow-up studies show that outcome disparities between the sexes have not
narrowed over time. Historically, women have often been excluded from clinical phar-
maceutical trials, leading to knowledge gaps regarding sex-related differences. Based on
current literature, it is evident that sex-based differences in efficacy and safety of phar-
macotherapies for patients should be considered when investigating novel therapies for
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myocardial IRI. For instance, it may be necessary to reassess drug dosages and consider sex-
specific adjustments since there are well-known sex differences in drug pharmacokinetics
and pharmacodynamics of cardiovascular medications. Additionally, a sex-based approach
to clinical trials assessing novel therapeutic strategies against an MI and subsequent IRI
could possibly eliminate the sex-dimorphic outcomes in the future.
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