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Glioblastoma is the most aggressive intracranial tumor. Current treatment consists of
surgery, radiotherapy, and chemotherapy (temozolomide). Resistance to radiotherapy and
chemotherapy are frequent. Temozolomide is preferably used in patients who do not ex-
press MGMT. Temozolomide induces the formation of O6-methylguanine in DNA. MGMT
repairs this DNA damage. Therefore, glioblastoma cells become resistant to temozolomide
when MGMT expression ensures the repair of damaged DNA by temozolomide. On the
contrary, if MGMT is not expressed, the DNA damage caused by temozolomide will not
be repaired, and glioblastoma cells will die, that is, glioblastoma cells will be sensitive to
temozolomide.

Lack of MGMT expression is associated with the hypermethylation of the MGMT
promoter. Therefore, in clinical practice, an immunohistochemical approach is used to
detect patients who do not express MGMT in glioblastoma biopsies, being these patients
the ones who could benefit the most from MGMT expression laboratory assays [1].

Due to chemotherapy resistance, various combinations of drugs with temozolomide
are being tested. The sensitization to temozolomide in previously resistant cells can be seen,
thanks to the intervention of a second compound [2].

Bioactive compounds are also tested in order to prove their possible inhibitory activity of
cell growth or migration in glioblastoma [3–5]. Sun et al. [3] demonstrated the antimetastatic
potential of corosolic acid in glioblastoma cells by inhibiting the JAK2/MEK/ERK axis.

Kapoor-Narula and Lenka [4] demonstrated the anticancer effect of Oltipraz, a syn-
thetic dithiolethione present in many vegetables, by decreasing the glioma cancer stem
cells content in favor of differentiating GFAP+ glioma cells, together with the suppression
of neurospheres formation. Even in vivo treatment with Oltipraz ectopically suppressed
glioblastoma tumors xenografted in mice.

Several articles have revealed a preliminary positive effect of cannabinoids against
glioblastoma [6–8]. Hohmann et al. [5] did not reach the same clear conclusions: on the one
hand, they saw that cannabinoids increased the size of glioblastoma spheroids, but on the
other hand, migration was unaffected.

Another way of intervention against glioblastoma is the direct attack of its brain tumor
stem cells, trusting that such cells are the initiators and/or maintainers of the tumor, as
well as being the cells that make the tumor resistant to chemotherapy and radiotherapy. In
this sense, there are promising findings, such as those published by Lacore et al. [9], who
blocked the M6a glycoprotein by siRNA, leading to a decrease in cell proliferation and
invasion, as well as to an increase in radiosensitivity in glioblastoma stem cells.

Also, trying to target the stem cell component of this tumor, Essien et al. [10] assayed a
combined treatment of an HDAC and an MEK inhibitor, together with radiation, detecting
a bigger decay in the expression of stem cell markers Nestin and SOX2 than with the stan-
dard treatment of temozolomide and radiation. Other studies have shown the efficacy of
epigenetically inhibiting HDAC in glioblastoma cells [11–15], even preferentially targeting
the cancer stem cell compartment [16,17].
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Tumor cell dormancy complicates cancer therapy [18]. Cells that have metastasized
to other organs remain in a quiescent state even for years, after which the cells might be
newly activated and capable of originating the true metastatic disease. Every effort to
understand the life cycle of tumor cell dormancy [19,20], the possible similarities found
between tumor dormant cells and tumor stem cells [21,22], and, even more important, the
sensitization of dormant cells to chemotherapy [23] are of great importance to overcome
metastatic disease. Glioblastoma almost never metastasizes outside of the brain. Rather,
it invades into the brain, but also develops tumor cell dormancy [20,22,24] capable of
producing recurrent tumors several months after complete surgical resection, radiother-
apy, and temozolomide treatments. Therefore, research has also been conducted on how
glioblastoma dormant cells induced by temozolomide treatment can develop stem cell
characteristics: Kubelt et al. [24] reported in this Special Issue about a possible connec-
tion between temozolomide-induced glioblastoma cell dormancy and the development of
stem-like characteristics in glioblastoma cells.

Several other articles of this Special Issue concentrate on inhibiting specific targets
with the idea of inhibiting or reducing cell proliferation, migration, and invasion. Then,
Pai et al. [25] revealed that the inhibition of FABP6 (a bile acid carrier protein) reduced
invasion and angiogenesis in glioblastoma cells by decreasing MMP-2 and VEGF. Secondly,
the expression of XRN2, a 5′-3′ exoribonuclease, was shown to be associated with cell
migration and the invasion of glioblastoma cells [26]; therefore, inhibition of XRN2 ex-
pression might be a strategy to treat glioblastoma. And thirdly [27], it was revealed that
the role of the Warburg effect in cancer cells, which turns on aerobic glycolytic processes
and methylglyoxal synthesis, finally provokes a general glycation pattern that leads to the
invasion of glioblastoma cells, a mechanism that might be disrupted by deglycating agents.

Another approach to combat glioblastoma might be the possibility of targeting specifi-
cally well-known pathways like Sonic Hedgehog, Wnt, Notch, TGFbeta, and others [28]. In
such a way, single-cell studies [29], transcriptome analysis [30], and organoid models [31]
are good approaches to define a holistic picture of glioblastoma.

Two reviews dealing about the epigenetic role of miRNA [32] and of circular RNA [33]
in relation with different pathways that promote glioblastoma lead us into the last known
category of epigenetic control, apart from histone methylation, histone acetylation, and
DNA gene promoter methylation, all of them playing a role in the genesis of glioblas-
toma [34,35].

Finally, a new way of leading glioblastoma cells to differentiation is proposed by
Hide et al. [36] based on ribosomes and ribosomal protein S6 administered to glioblastoma
cells. Those cells might then be differentiated into reprogrammed glioblastoma stem cells
with the possibility of the further differentiation of normal cells.

In summary, this second Special Issue on the Molecular and Cellular Mechanisms of
Glioblastoma presents 16 articles dealing on the biology, genetics, and possible treatments
against this devastating disease. Pathways to gliomagenesis and new targets have been
explored, together with epigenetic possibilities like the inhibition of HDAC and the role of
miRNA and circular RNA, tumor cell dormancy, cancer stem cells, and other approaches,
to try to better understand and possibly combat glioblastoma.
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