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Abstract: Mesenchymal stromal cells nowadays emerge as a major player in the field of regenerative
medicine and translational research. They constitute, with their derived products, the most frequently
used cell type in different therapies. However, their heterogeneity, including different subpopulations,
the anatomic source of isolation, and high donor-to-donor variability, constitutes a major controversial
issue that affects their use in clinical applications. Furthermore, the intrinsic and extrinsic molecular
mechanisms underlying their self-renewal and fate specification are still not completely elucidated.
This review dissects the different heterogeneity aspects of the tissue source associated with a distinct
developmental origin that need to be considered when generating homogenous products before their
usage for clinical applications.
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1. Introduction

Mesenchymal cells were first discovered almost 60 years ago by Friedenstein et al.
in the bone marrow of guinea pigs and were first described as in vitro colony-forming
fibroblasts (CFU-Fs) [1]. These were characterized by their high replicative capacity and
their ability to give rise to different cells of the non-hematopoietic lineage and to form
osseous tissue in vivo. The term “mesenchymal” was adopted in the 1990s based on their
multi-lineage differentiation capacities into mesodermal cell lineages both at population and
clonal levels [2]. Maureen et al. suggested using the term “stromal stem cells” to distinguish
them from histogenetically distinct hematopoietic and endothelial cells and to underline
their capacity to maintain hematopoietic stem cells (HSCs) in the bone marrow [3]. The
International Society for Cellular Therapy (ISCT) recommended the term “mesenchymal
stromal cells” to avoid potential confusion, since the commonly used term “stem cell”
should be reserved for the subset of cells possessing stem cell activity, designated by
stringent and generally accepted criteria [4]. Bianco et al. elucidated in a large review the
definition and functional identification of a mesenchymal stem cell-based on functional
assays [5]. The main marker for the identification of a mesenchymal stromal cell was
defined as the in vivo generation of heterotopic “ossicles” [5].

Due to their self-renewing capacity, their highly proliferative state, and their differenti-
ation potential into cells of mesenchymal tissues including bone, fat, and cartilage, MSCs
have gained growing attention in the last decade in the fields of tissue engineering and
cell therapy (Figure 1). They became an attractive source in clinical applications for the
regeneration of damaged tissues and the treatment of a broad range of human diseases [6].

Soon after their first isolation, MSCs became one of the most controversial areas in
the field of stem cell biology. This is due to the complexity of their anatomical identity,
heterogeneity, phenotype diversity, tissue distribution, lineage, and function. Nowadays,
two different definitions of “MSCs” can be found in the literature. One that considers
“MSCs” as cultured bone marrow stromal cells, which are progenitors specific to the bone
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marrow and not found elsewhere, characterized by their multipotency to exclusively form
cells of the skeletal tissue and by their self-renewing capacity [5]. An important function
of this progenitor cell is the maintenance and regulation of hematopoiesis, thus forming
the hematopoietic stem cell niche in the bone marrow, which additionally gives structural
support, facilitates migration, and regulates endocrine function [5,7]. The second definition
considers “MSCs” as a range of progenitor cells that can differentiate into different lineages
in vitro and reside beyond the bone marrow and the skeletal tissues [6,8,9].
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Figure 1. In vitro differentiation of hBM-MSCs. (A,B) Safranin O staining of a hBM-MSC chondrogenic 
pellet at day 21 of in vitro differentiation; (C) In vitro osteogenic differentiation of hBM-MSCs; (D) 
Alizarin Red S staining of hBM-MSCs at day 14 of in vitro osteogenic differentiation; (E) In vitro adi-
pogenic differentiation of human hBM-MSCs; (F) Oil Red O staining of hBM-MSCs at day 21 of in vitro 
adipogenic differentiation. hBM-MSCs: Human bone marrow-derived mesenchymal stromal cells. 
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MSCs can be harvested without major ethical concerns and have been shown to pro-
mote endogenous tissue repair and regeneration. This is largely related to their paracrine 
and immunosuppressive activities resulting in the alteration of the host immune response 
upon transplantation [10]. In consequence, various experiments and trials emerged show-
ing the efficacy and effectiveness of MSCs as a promising alternative to conventional im-
mune suppressants for the reduction of the progression of the graft-versus-host disease 
(GvHD), for example in the case of hematopoietic stem cell transplantation or in patients 
with severe treatment-resistant GvHD of the gut and liver [11].  

Bone marrow-derived MSCs (BM-MSCs) were shown to modulate innate and adap-
tive immune responses [12]. Generally, several studies demonstrated the ability of MSCs 
to suppress T cell proliferation and pro-inflammatory cytokine secretion [13], dendritic 
cell maturation and their differentiation from monocytes through secretion of prostaglan-
din E2 (PGE2) and interleukin 6 (IL-6) [14,15]. Moreover, BM-MSCs were shown to inter-
act with natural killer cell (NK cells) by inhibiting interleukin 2 (IL-2) induced prolifera-
tion of resting NK cells and partially inhibiting NK cell proliferation thus increasing their 
cytotoxicity [16]. Others reported that MSCs can interact with macrophages, thus increas-
ing their adhesion to T cells and indoleamine 2,3-dioxygenase (IDO) expression and re-
sulting in increased immunosuppressive capacities [17]. B cell proliferation can also be 
modulated by MSCs [18], which were shown to inhibit B cell terminal differentiation [19] 

Figure 1. In vitro differentiation of hBM-MSCs. (A,B) Safranin O staining of a hBM-MSC chondro-
genic pellet at day 21 of in vitro differentiation; (C) In vitro osteogenic differentiation of hBM-MSCs;
(D) Alizarin Red S staining of hBM-MSCs at day 14 of in vitro osteogenic differentiation; (E) In vitro
adipogenic differentiation of human hBM-MSCs; (F) Oil Red O staining of hBM-MSCs at day 21
of in vitro adipogenic differentiation. hBM-MSCs: Human bone marrow-derived mesenchymal
stromal cells.

MSCs can be harvested without major ethical concerns and have been shown to pro-
mote endogenous tissue repair and regeneration. This is largely related to their paracrine
and immunosuppressive activities resulting in the alteration of the host immune response
upon transplantation [10]. In consequence, various experiments and trials emerged show-
ing the efficacy and effectiveness of MSCs as a promising alternative to conventional
immune suppressants for the reduction of the progression of the graft-versus-host disease
(GvHD), for example in the case of hematopoietic stem cell transplantation or in patients
with severe treatment-resistant GvHD of the gut and liver [11].

Bone marrow-derived MSCs (BM-MSCs) were shown to modulate innate and adaptive
immune responses [12]. Generally, several studies demonstrated the ability of MSCs to
suppress T cell proliferation and pro-inflammatory cytokine secretion [13], dendritic cell
maturation and their differentiation from monocytes through secretion of prostaglandin
E2 (PGE2) and interleukin 6 (IL-6) [14,15]. Moreover, BM-MSCs were shown to interact
with natural killer cell (NK cells) by inhibiting interleukin 2 (IL-2) induced proliferation of
resting NK cells and partially inhibiting NK cell proliferation thus increasing their cyto-
toxicity [16]. Others reported that MSCs can interact with macrophages, thus increasing
their adhesion to T cells and indoleamine 2,3-dioxygenase (IDO) expression and resulting
in increased immunosuppressive capacities [17]. B cell proliferation can also be modulated
by MSCs [18], which were shown to inhibit B cell terminal differentiation [19] and apop-
tosis [20]. However, the exact underlying mechanisms of action supporting the control of
aberrant immunosuppressive responses remain to be elucidated.

MSCs were also used for stem cell therapy of heart diseases such as myocardial
infarction [21], pulmonary arterial hypertension [22] and coronary heart disease [23], as
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transplanted MSCs are able to engraft and differentiate into cells of the cardiac tissue e.g.,
cardiomyocytes and vascular cells. This is confirmed by an increased expression of the
cardiac marker troponin T [24]. Moreover, they secrete paracrine factors that benefit cardiac
repair by their immunomodulatory [25] and anti-fibrotic effects [26], but also through
promotion of neovascularization [27].

In this comprehensive review, we aim to address several aspects of MSC heterogeneity,
which forestalls their full exploitation in clinical application. Examples of current MSC
advances and applications in clinical trials are presented.

2. Donor-to-Donor Heterogeneity

MSCs have been shown to display a high donor-to-donor biological heterogeneity,
which should be taken into consideration for large-scale expansion. MSCs derived from
17 healthy bone marrow donors showed discrepancies in various aspects including os-
teogenic potential capacity, expression of alkaline phosphatase and growth rate [28]. These
differences might additionally be enhanced by distinct factors including donor age, sam-
pling bias during marrow aspiration and cell expansion conditions [29]. Donor-dependent
heterogeneity is also related to the difficulty of the identification of MSCs, which is caused
by the lack of unique and distinct cell features and the broad range of morphological prop-
erties. The subpopulations with distinct morphologies might also differ in their intrinsic
properties. Given this heterogeneity within the same species, tissue, population and donor,
which is partially responsible for the incongruence of the MSC-based clinical data, the
ISCT additionally defined minimal criteria to characterize MSCs and minimize differences
between laboratories worldwide. They were defined by their ability to adhere to plastic
under standard culture conditions, by the expression of following surface markers: CD44,
CD90, CD105, CD73 and by the lack of expression of the hematopoietic markers CD11b,
CD14, CD19, CD34, CD45, CD79 and HLA-DR surface markers (Table 1) [9]. Furthermore,
MSCs must possess the in vitro differentiation ability into chondrocytes, osteocytes and
adipocytes [9].

Table 1. Positive and negative markers of MSCs.

Positive Markers Physiological Function

CD44 Hyaluronic receptor, surface adhesion, migration
CD73 Lymphocyte-vascular adhesion protein 2 (Ecto-5’-nucleotidase)
CD90 Cell adhesion, migration, apoptosis, fibrosis, T cell activation
CD105 Activation and proliferation of endothelial cells
CD106 Vascular cell adhesion molecule-1 (VCAM-1)
CD146 Melanoma cell adhesion molecule (MCAM)

Negative Markers Physiological Function

CD11b Integrin αM subunit, NK Cells, neutrophils, monocytes, macrophages
CD14 Lipopolysaccharide receptor, macrophages, monocytes
CD19 B cell lymphocytes
CD34 Adhesion molecule, hematopoietic stem cell
CD45 B cell lymphocyte receptor complex
CD79 B cell lymphocyte and B cell neoplasms

HLA-DR MHC class II cell surface receptor

Donor age is an important parameter that affects the functionality of MSCs, including
their differentiation potential, self-renewal capacity, immunomodulatory properties, and
tissue repair capacities if MSCs are harvested from the bone marrow. MSCs collected
from older donors are characterized by a high amount of senescent and apoptotic cells,
correlating with slow proliferation rates and population doubling times [9]. In addition,
donor age negatively influences the ability of MSCs to form osteoblasts and weakens their
repair capacity through the reduction of the immunomodulatory effects and the response to
oxidative stress in comparison to cells harvested from younger donors. Kanawa et al. found



Cells 2023, 12, 2039 4 of 19

that human BM-MSCs harvested from older donors showed a decreased chondrogenic
potential along with a decreased expression of glycosaminoglycans (GAG), Sox9, collagen II,
and aggrecan but did not affect the osteogenic or adipogenic potentials [30]. Other groups
reported a decreased adipogenic and osteogenic potential of BM-MSCs with increasing
donor age, with no changes in the chondrogenic differentiation potential [31,32].

Siegel et al. compared human BM-MSCs isolated from 53 different donors (25 female,
28 male; age: 13 to 80 years) and showed differences in phenotypes, with higher levels
of CD71+, CD90+, CD106+, CD140b+, CD146+, CD166+, and CD274+ subpopulations in
samples from younger donors [32]. These markers, however, did not correlate to donor
age on the transcriptional level [32,33]. No correlation of donor age with the multi-lineage
differentiation potential of the BM-MSCs could be confirmed [32].

Mareschi et al. isolated and expanded MSCs from the bone marrow of pediatric and
adult donors to compare their replicative capacity [34]. They showed no differences in
morphology, whereas the cell growth was strictly dependent on the donor´s age, with
a twice higher population doubling time in the pediatric population compared to the
adult cells. Psaroudis et al. compared the levels of expression of the senescence marker
CD26, also known as adenosine deaminase complexing protein 2, in MSCs isolated from
the adipose tissue of adult and pediatric donors [35]. This showed that CD26 expression
and, accordingly, senescence levels were higher in early passage adult MSCs compared
to pediatric MSCs. Moreover, enrichment of CD26 was shown to correlate with impaired
immunopotency, i.e., MSC inhibition of proliferating T cells.

In addition to donor age, health status, and functional deficiencies, basic treatment
(with, e.g., corticoids) of patients can also affect the efficacy of autologous or allogeneic
MSC treatment.

MSCs harvested from multiple sclerosis patients showed similar osteogenic and adi-
pogenic differentiation in vitro. This, however, comes with higher senescence, low secretion
levels of anti-inflammatory cytokines including interleukin 10 (IL-10) and the transform-
ing growth factor β (TGF-β), modulation of the fibroblast growth factor (FGF) and the
hepatocyte growth factor (HGF) signaling pathways. Moreover, they showed decreased
inhibition of T cell proliferation compared to healthy individuals [36]. These alterations
could not be reversed by autologous hematopoietic stem cell transplantation [36]. Bone
marrow-derived cells isolated from patients with myelodysplastic syndrome displayed
reduced clonality and growth, elevated senescence, altered osteogenic and adipogenic
differentiation potentials, and also abnormal phenotypical characteristics such as higher
expression rates of CD29 and CD166 in comparison to healthy MSCs [37]. Adipose-derived
MSCs from obese patients showed altered plasticity, manifesting itself in a changed pattern
of surface markers both before and after differentiation, including the higher expression
of CD106 and HLA-II, the lower expression of CD29, and a decreased cell proliferation
and differentiation potential compared to MSCs isolated from lean donors [38]. This might
result from the latent effects of the obesity-related hypoxia environment [38].

A similar pattern in terms of altered multipotency was observed in experiments with
obese mice, thus supporting the hypothesis that this might be regulated by the increased
systemic levels of free fatty acids and further obesity-related cytokines [39].

MSCs derived from the bone marrow of osteoporosis patients revealed a similar
morphology and surface markers compared to cells isolated from healthy individuals
and, at the same time, lower proliferation rates in response to insulin-like growth factor-1
(IGF1) and a deficient osteogenic potential due to an upregulated expression of alkaline
phosphatase and calcium phosphate deposition [40]. MSCs derived from osteoporotic
donors were characterized by impaired expression and maintenance of collagen type I in
the extracellular matrix; there were up to 50% fewer cells compared to healthy donors,
combined with higher levels of gelatinolytic activity and decreased expression of TGF-β1,
thus leading to a stronger adipogenic differentiation potential [41].

Donor gender-related differences were also reported, i.e., female BM-MSCs were
found to have higher population doubling times than male BM-MSCs, with a significant
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correlation between doubling time and donor age in contrast to cells isolated from male
donors [42]. Additionally to differences in the proliferation capacity and cell yields, a study
conducted with human MSCs isolated from Wharton´s jelly (WJ-MSCs) showed gender-
related differences in the gene expression patterns in terms of a decreased expression of
the tumor necrosis factor receptor 1 (TNFR1) and the pro-inflammatory cytokines tumor
necrosis factor α (TNFα) and interleukin-1 β (IL-1β) in the female cells [43]. Other groups
suggested that female MSCs secrete more anti-inflammatory and pro-angiogenic factors
in comparison to male MSCs and thus have a greater therapeutic capacity for vascular
remodeling and reducing neonatal hyperoxia-induced lung inflammation [44]. Moreover,
female BM-MSCs revealed decreased adipogenic differentiation potential with increasing
donor age in comparison to their male counterparts [42]. These findings indicate the
necessity of considering donor characteristics, in particular age and gender bias, when
selecting MSCs for allogeneic transplantation for meaningful therapeutic outcomes.

3. Tissue Source-Dependent Heterogeneity

MSCs currently used in the field of tissue engineering or other clinical applications
can be isolated from different tissues such as the bone marrow, adipose tissue, cord blood,
umbilical cord, synovial membrane, lung periosteum, dental pulp, and others (Table 2) [45].
Depending on their source of isolation, MSCs show disparities in their phenotype, prolif-
eration, differentiation capacity, immunomodulatory properties, transcriptional profiles,
and proteomic profiles. Unfortunately, biological properties mainly in the skeletal system
are based on in vitro assays using cultures that are chemically directed towards osteogenic,
chondrogenic, and adipogenic differentiation employing strong induction [9]. Therefore,
these tests are not stringent and fail to predict the in vivo differentiation potential of
MSCs derived from different tissues. Depending on their tissue source, differentiation of
MSCs into osteogenesis, chondrogenesis, or adipogenesis might not even be the correct
biological function.

Table 2. List of the main sources for isolation of MSCs, the respective isolation technique, and culture
conditions. Yellow: adult tissues. Red: fetal/perinatal tissues.

MSC Source Isolation Technique

Bone marrow Density gradient centrifugation, Ficoll gradient or red blood cell lysis
of bone marrow aspirate

Adipose tissue Enzymatic or non-enzymatic digestion after liposuction or lipectomy

Endometrium Enzymatic digestion after scraping the myometrium of hysterectomy
samples

Synovial membrane Enzymatic digestion of synovium harvested from the inner joint side
Dental tissue Extirpation of dental pulps after decoronation
Cord blood Direct expansion

Umbilical cord Enzymatic digestion or direct expansion of umbilical cord tissue
Wharton′s jelly Vein removal, scraping and enzymatic digestion

Placenta Enzymatic digestion

Amniotic fluid Amniotic membrane perforation and tubing for fluid collection
followed by density gradient centrifugation

Isolation of MSCs from adult tissues such as the bone marrow encounters several limita-
tions, such as low cell numbers, age- and donor-dependent differences, limited donors, and
limitations to autologous use. MSCs isolated from fetal tissue have several advantages over
adult MSCs in terms of availability (higher cell numbers and frequency) and cellular prolif-
eration, with lower senescence levels and faster population doubling times [46]. Moreover,
their differentiation capacity, though heterogeneous between the different fetal sources [47], is
superior compared to adult MSCs, for example, higher basal expression of 16 osteogenic genes
in correlation with higher in vitro calcium production [46,48], colony-forming capacity [46],
and paracrine effects.
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3.1. MSCs from Adult Sources
3.1.1. Bone Marrow-Derived MSCs (BM-MSCs)

With regard to their differentiation potential, BM-MSCs are considered to have a higher
tendency to differentiate into osteoblasts [49,50] and into bone and cartilage in vivo [5,51].
This was recently confirmed by Hochmann et al. [52] and can be additionally modulated
in vitro by cell culture under hypoxic conditions [53]. In the context of tendinopathy
treatment, BM-MSCs appear to be the most suitable source since they show an increased
expression of various factors associated with tenogenesis, including collagen I, Scleraxis,
and Tenomodulin [54].

BM-MSCs are also the most studied cells in the field of cartilage regeneration. The
reason for this is the higher chondrogenic potential of cells isolated form the iliac crest and
vertebral body in comparison to cells harvested from the femoral head [55]. Hochmann et al.
investigated the molecular mechanisms underlying transcriptional stromal differentiation
networks and showed that binding sites of commonly expressed transcription factors in
the enhancer and promoter regions of ossification-related genes such as Runt and bZIP
are only accessible in BM-MSCs and not in other extra-skeletal MSCs, thus suggesting an
epigenetically organ-dependent and predetermined differentiation potential [52].

Moreover, BM-MSCs possess the shortest culture periods and the lowest proliferation
rates and population doubling time in comparison to cells from other tissues [56], which is
enhanced by the in vitro acquired culture-induced aging through gradual telomere shorten-
ing and amplified susceptibility to oxidative stress [57]. An additional major disadvantage
of BM-MSCs consists of the negative correlation of their differentiation capacity with donor
age, which could be inefficient when harvested from elderly patients [32].

BM-MSCs were shown to induce anti-fibrotic and anti-inflammatory events after trans-
plantation into the renal sub-capsular area of rats that lead to renal fibrosis reversal and
promotion of renal morphological restoration and remodeling, which is achieved by the
reduction of collagen deposition, macrophage accumulation, TNF-α reduction, increase
of IL-10 expression, Bowman’s capsule, and tubule-interstitial basal membrane morpho-
logical recovery [58]. Moreover, they were shown to significantly inhibit allogeneic T cell
proliferation through the expression of higher levels of IL-10, TGF-β1 and immunosup-
pressive cytokines [49]. Other studies also demonstrated the advantages of BM-MSCs
in their ability to secrete higher amounts of stem cell-derived factor-1 (SDF-1), which is
related to a stronger migration capacity, and HGF, which must be systematically considered
during therapeutic applications to increase the efficiency of homing towards the injury
site to induce tissue repair [59]. After transplantation in an immunodeficient mice model,
BM-MSCs were shown to initiate defect bone healing through secretion of osteopontin,
thus contributing to transient mineralized bone hard callus formation [52].

Several clinical trials using allogeneic or autologous BM-MSC injection or transplanta-
tion for treatment of various diseases (Table 3). Bolli et al. showed that transendocardial
administration of allogeneic BM-MSCs was safe and tolerated by cancer survivors with
anthracycline-induced cardiomyopathy, thus providing groundwork for future clinical
studies [60]. Moreover, the immunomodulatory effects of BM-MSCs were used for treat-
ment of patients suffering from ischemic injury in numerous clinical trials and have been
proved to be beneficiary [61]. Additionally, new treatments have emerged using BM-MSCs
for treatment of multiple sclerosis and have also been proved to be efficacious.
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Table 3. Examples of clinical trials of BM-MSCs for treatment of various conditions.

Condition MSC Phase Clinical Trial Status References

Multiple
Sclerosis

Autologous
BM-MSC Phase II NCT02166021 Completed [62]

Autologous
BM-MSC Phase II NCT02239393 Completed [63,64]

Post-traumatic
Pulp Necrosis

Allogeneic
BM-MSC Phase II/III NCT04545307 Completed -

Anthracycline-
induced

cardiomyopathy

Allogeneic
BM-MSC Phase I NCT02509156 Completed [60]

SR-aGvHD BM-MSC Phase III NCT02336230 Completed [65]

Liver Cirrhosis Autologous
BM-MSC Phase III NCT05080465 Completed -

Covid-19
Infection

Allogeneic
BM-MSC Phase I NCT04397796 Active, not

recruiting -

Chronic
Myocardial

Ischemia

Autologous
BM-MSC Phase II NCT02462330 Completed -

3.1.2. Adipose Tissue-Derived MSCs (AT-MSCs)

Adipose tissue is another alternative, less invasive source for the isolation of higher
initial yields of MSCs than from the bone marrow, with higher proliferative capacity
in vitro [57]. This was first described by Zuk et al. in 2001 [66]. AT-MSCs are isolated
from the lipoaspirate obtained during several surgical processes, such as liposuction or
lipectomy, which are considered as minimally invasive procedures [67]. They also consti-
tute up to 3% of all cells in the adipose tissue [68,69]. Similar to BM-MSCs, it has been
reported that donor age negatively affects the expansion and differentiation potential of
AT-MSCs [70]. However, AT-MSCs have also been shown to secrete several factors that
support tissue regeneration, such as vascular endothelial cell growth factor (VEGF) and
HGF, thus having beneficial effects that can be used for cell-based cardiovascular gene
therapy of ischemic tissue [71]. Todorova et al. demonstrated that AT-MSCs are more
potent immune modulators of the differentiation of monocyte-derived dendritic cells in
comparison to BM-MSCs [72], and others reported AT-MSCs to have a stronger suppressive
effect in terms of T cell formation and activation [73].

AT-MSCs have emerged as an effective treatment for Crohn´s disease (CD), a condition
characterized by chronic inflammation of the gastrointestinal tract with relapsing behavior,
no known reasons, and no effective treatments. Allogeneic AT-MSCs have been used for
the treatment of complex perianal fistulas in adult patients and are nowadays commercially
available in Europe under the name AlofiselTM [74–78].

In comparison to BM-MSCs, AT-MSCs exhibit lower chondrogenic and osteogenic
potentials [59,79]. However, they show a higher proliferative capacity [57,59,80], a later oc-
currence of cellular senescence [81], higher immunomodulatory effects, and an upregulated
expression of different cytokines, chemokines and growth factors including interferon-γ
(IFNγ), basic fibroblast growth factor (bFGF) and IGF-1 [59]. For these reasons, they are
nowadays widely used in cartilage regeneration therapies.

3.1.3. Endometrium-Derived MSCs (E-MSCs)

After its first description by Prianishnikov in 1978 [82], human endometrial tissue
has become an interesting MSC source for cell-based therapies due to its easy harvesting
techniques without analgesic requirements. Several studies investigated the chondrogenic
differentiation potential of E-MSCs for possible application in cartilage regeneration and
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showed that they could produce abundant amounts of sulfated glycosaminoglycans and
type II collagen [83–85]. E-MSCs are also characterized for their reduced immunogenic and
inflammatory properties in terms of low HLA-ABC and negative HLA-DR expression [86].
Moreover, they could inhibit proliferation, of mouse spleen lymphocytes and human
peripheral blood lymphocytes during co-culture due to potential TGF-β1 secretion [86]. A
new in vivo study conducted in mice showed that E-MSCs but not AT- or UC-MSCs, could
suppress malignant endometrial cancer through inhibition of the Wnt/β-catenin signaling
pathway by secreting high levels of Dickkopf-related protein 1 (DKK1) [87]. E-MSCs were
also shown to possibly inhibit dendritic cell maturation and proliferation through increased
expression of IL-6 and IL-10 [88].

These results suggest that E-MSCs have great potential and a promising future for
clinical applications. However, only preliminary studies are available, and the lacking
mechanisms of action still need to be elucidated.

3.1.4. Synovial Membrane-Derived MSCs (SD-MSCs)

The synovial, membrane or synovium, is the connective tissue that lines the synovial
joint cavity. Bari et al. characterized, in 2001, MSCs isolated from the synovial membrane
of human knee joints and reported their multi-lineage differentiation potential and in vitro
expansion over at least 10 passages with limited cell senescence independently of donor
age [89]. SD-MSCs are more accessible and can be extracted during knee surgery or joint
aspiration in a minimally invasive procedure for autologous transplantation. Moreover,
they have been shown to possess high proliferation rates, reduced immunogenicity through
a reduced expression of HLA-DR in comparison to BM-MSCs, and a high chondrogenic
potential in comparison with MSCs from other sources [90]. For this, they are studied
for possible applications in osteoarthritis therapy by intra-articular injection [91] and in
cartilage and meniscus regeneration. The promising potential of SM-MSCs in the treatment
of osteoarthritis, which is caused by joint degradation with increasing age and has a higher
incidence in females, has increased in the last decade [92]. Several studies reported a
reversed osteoarthritis process, improvement of joint motility, cartilage quality, and pain
relief [93–96].

3.1.5. Dental Tissue-Derived MSCs (D-MSCs)

MSCs were first isolated from dental pulp but can also be derived from several other
adult dental tissues, including exfoliated deciduous teeth, periodontal ligament, apical
papilla, gingiva, dental follicle, tooth germ, and alveolar bone. In addition to their ability to
control the odontogenic differentiation potential, they are also known for their osteogenic,
adipogenic, and chondrogenic differentiation capacities, as well as their transdifferentiation
capacities into the ectodermal or endodermal lineages [97].

D-MSCs are increasingly being used in the field of regenerative medicine, with emerg-
ing evidence for their better and more impactful immunomodulatory properties. Previous
reports showed that D-MSCs can suppress T cell proliferation, which might be suitable for
usage during hematopoietic or solid-organ allogeneic transplantation [98]. D-MSCs also in-
hibited peripheral blood mononuclear cell (PBMNC) proliferation stimulated with mitogen
or in an allogeneic mixed lymphocyte reaction (MLR), whereas co-culture with activated
PBMNCs led to the upregulation of TGF-β, HGF, and IDO expression after stimulation with
IFNγ [99]. The application of D-MSCs in preclinical studies and clinical trials for regenera-
tive therapies for the treatment of dental diseases but also of neurodegenerative [97,100],
autoimmune [98,101], and orthopedic [102] disorders is promising.

3.2. MSCs from Fetal Sources
3.2.1. Cord Blood MSCs (CB-MSCs)

Rubinstein et al. first reported in 1993 the use of frozen stored placental blood as
an alternative source for hematopoietic stem cells for unrelated bone marrow reconsti-
tution [103]. Within the last decades, placental cord blood has been widely established
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as a valuable source for both hematopoietic stem cells and mesenchymal stromal cells.
Different groups did not succeed in isolating MSCs from cord blood in contrast to the
bone marrow [104,105]. Others described methods for the successful isolation of MSCs
from umbilical cord blood despite low cell frequency [106,107] and that could even reach
in vitro differentiation into different lineages [108]. MSCs isolated from cord blood have
been shown to have a unique chondrogenic differentiation potential in vivo and reveal
higher replicative rates compared to BM-MSCs [51,57,109].

Several studies showed that CB-MSCs, compared to BM-MSCs and AT-MSCS, have a
reduced adipogenic differentiation potential, which might be related to the vast amounts
of pre-adipocyte factor 1 (Pref-1) in cord blood plasma, which confers CB-MSCs anti-
adipogenic properties [110,111]. This can, however, be adjusted by negative regulation of
the Wnt5a/β-catenin signaling pathway through exogenous calcium treatment [68].

In addition to CB-MSCs, cord blood also contains a population of previously named
“unrestricted somatic stem cells” (USSC), which are characterized by the absence or
marginal expression of all 39 HOX-genes in contrast to CB- or BM-MSCs [112,113]. In
humans, the 39 HOX genes are located in four different clusters: A, B, C, and D, as first
described by Krumlauf in 1994 [114]. While regulated HOX expression is important during
embryonic and fetal development [115], Ackema and Charite described the HOX code
for MSCs derived from different anatomic sites [116]. Our group was able to show that
BM- and CB-MSCs expressed the HOX code in all four clusters, unlike USSCs [112]. This
reflects the fact that the USSCs originate from a different biological niche during fetal
development. Moreover, our group demonstrated that the expression levels of the δ-like
1/pre-adipocyte factor 1 (DLK-1/PREF1) also allows the distinction between USSCs and
CB-MSCs [117]. Accordingly, when DLK-1/PREF1 was constitutively expressed in CB-
MSCs, the adipogenic differentiation potential was impaired, whereas its silencing in
USSCs allowed adipogenesis [117]. Subsequently, CB-MSCs and USSCs derived from cord
blood must be clearly distinguished from umbilical cord-derived MSCs, since UC-MSCs
fail to differentiate in vitro and in vivo towards bone and cartilage and also differ in their
respective HOX expression patterns [118].

3.2.2. Umbilical Cord-Derived MSCs (UC-MSCs)

Similar to CB-MSCs, UC-MSCs can also be extracted without any ethical controversies
from umbilical cord tissue after childbirth and display a four time higher proliferation
levels compared to BM-MSCs and AT-MSCs [119]. In an attempt to characterize UC-MSCs,
UC-derived primary cells with mesenchymal-like properties separated by counterflow
centrifugal elutriation displayed several subpopulations differing in their sizes and pro-
liferation potentials. These may be precursors of the mature populations or are probably
connected to the amount of senescent cells in the respective populations [120].

Although UC-MSCs have different molecular chondrogenic and osteogenic signatures
lacking substantial integrin-binding sialoprotein expression [121] and skeletal formation
in vivo [118], UC-MSCs have been extensively used in clinical research related to neurode-
generative and cerebrovascular diseases, autism, spinal cord injury, and hypoxic ischemic
encephalopathy (Table 4).

Intracerebral transplantation of UC-MSCs was shown to alleviate encephalopathy
caused by neonatal hypoxia and ischemia in rat neonates by in vitro inhibition of apoptosis
of injured neurons [122]. In hyperoxia-exposed rats, UC-MSCs lead to a greater improve-
ment of alveolarization and less macrophage infiltration compared to BM-MSCs [123].

Min et al. determined that UC-MSCs can be potentially used for therapy of de-
myelinating diseases of the central nervous system since they could promote spinal cord
re-myelination by suppressing neuro-inflammation through interaction with microphages
and suppressing microglial cell interaction, resulting in a reprogramming of the immune
response in a mouse model [124]. The exact molecular mechanism responsible for this
interaction is, however, not yet resolved [124,125]. Other groups described the application
possibilities of the re-myelination properties of UC-MSCs for the treatment of multiple
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sclerosis [125,126]. Wehbe et al. reported the usage of allogeneic UC-MSCs for the treatment
of progressive and refractory scleroderma, with a combined immunotherapy approach
resulting in a significant overall improvement [127].

Table 4. Examples of clinical trials of UC-MSCs for treatment of various conditions.

Condition MSC Phase Clinical Trial Status References

Intraventricular
Hemorrhage

Allogeneic
UC-MSC (intra-

ventricular
injection)

Phase I NCT02274428 Completed [128]

Bronchopulmonary
Dysplasia (BPD)

Allogeneic
UC-MSC

(intratracheal
injection)

Phase I NCT01632475 Active, not
re-cruiting [129]

Cerebral Palsy Allogeneic CB-
and UC-MSC Phase I/II NCT03473301 Completed -

Hypoxic-Ischemic
Encephalopathy

Allogeneic
UC-MSC Pilot phase I NCT03635450 Completed [130]

Bronchopulmonary
dysplasia (BPD) UC-MSC Phase II NCT01828957 Completed [131]

Myocardial
Infarction

Allogeneic
UC-MSC Phase I NCT03798353 Completed -

Autism
UC-MSC Phase II NCT04089579 Active, not

recruiting -

Allogeneic
UC-MSC Phase I NCT03099239 Completed [132]

3.2.3. Placenta-Derived MSCs (P-MSCs)

The placenta is a feto-maternal organ that is usually discarded post-partum, thus its
easy availability and non-invasive harvesting. Recently, it has been shown that several
parts of the placenta are rich and sustainable MSC sources unlike the bone marrow [133].
In comparison to BM-MSCs, P-MSCs showed a higher replicative capacity and broader
differentiation abilities, which are related to the placental function of supporting fetus
growth [134].

MSCs derived from the fetal tissues of the placenta have been used in animal disease
models of several disorders such as cancer, liver diseases, cardiac disorders, ulcers, bone
diseases, neurological diseases, and more recently, coronavirus (COVID-19). They are
widely available and characterized by a high secretion of paracrine effects, a low immuno-
genicity, and low risk of senescence. However, the molecular mechanisms of their specific
immunomodulatory properties are still not elucidated.

3.2.4. Amniotic Fluid-Derived MSCs (AF-MSCs)

The amniotic fluid is a rich source of fetal cells, including MSCs. It can be collected
either invasively during pregnancy by amniocentesis from second trimester amniotic fluid,
which might result in fetus infection, or during a C-section. These populations might,
however, differ in terms of potency, maturity, and plasticity since they originate from
two different pregnancy timepoints [135]. AF-MSCs harvested during C-section were
characterized by Spitzhorn et al [135]. They were shown to meet the MSC criteria described
by the ISCT. AF-MSCs were shown in various studies to express the pluripotency factor
Oct4, but this could not be confirmed by Spitzhorn et al. [135–137]. Moreover, these findings
remain controversial since the self-renewal function of Oct4 has not yet been defined in
AF-MSCs, and the studies rather focus on the expression without addressing the function
of Oct4 [135,138]. AF-MSCs were also shown to express the early embryonic glycolipid
antigens SSEA4 and c-Kit, which are necessary for the maintenance and differentiation
of the hematopoietic stem cells [135]. Analysis of AF-MSC-conditioned media revealed
the presence of several pro- and anti-angiogenic factors, i.e., vascular endothelial growth
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factor (VEGF), interleukin 8 (IL-8), and IFNγ [139]. Moreover, Mirabella et al. showed that
AF-MSCs do not directly contribute to bone formation but do contribute to the vascular
modeling of the engineered bone [139]. The underlying mechanisms are still not elucidated.

4. Culture Conditions-Dependent Heterogeneity

In addition, donor variations and differences in the sources of isolation, MSC hetero-
geneity is also strongly dependent on their culture conditions. Hereby, several factors must
be considered, including culture medium, O2 tension, mechanical stimuli, inflammatory
stimuli, and mechanical cues [140].

4.1. Culture Medium

MSCs cultured in vitro can undergo morphological, phenotypical, and genetic changes
with increasing passage numbers. This can be additionally modulated by the composition
of the culture medium, which was shown to influence senescence levels and differentiation
capacity [141]. Nowadays, several culture media and technologies are used for the expan-
sion of MSCs, such as fetal bovine serum (FBS) or xeno-free or chemically defined media,
to avoid FBS batch-to-batch differences.

4.2. O2 Tension

MSCs are generally cultured in vitro under normoxic conditions, despite the fact that
biological niches such as the adipose or the bone marrow niches are adapted to hypoxic O2
tensions. Our group and several others showed O2 tension-dependent differences in the
proliferative capacities, surface marker expression profiles, and differentiation capacities of
different types of MSCs [142–145]. In addition to this, the hypoxic environment offers pro-
tection against replicative senescence and damaging factors [146]. It has also been reported
that low oxygen levels can also facilitate the release of trophic factors and angiogenesis
growth factors, thus contributing to the improvement of ischemic injuries [140,147,148].

5. Human Induced Pluripotent Stem Cell (iPSC)-Derived MSCs (iMSCs)

A robust expansion of therapeutic numbers of MSCs is frequently hard to achieve
in an autologous setting due to higher senescence, DNA damage accumulation, genome
instability, and oxidative stress. These factors challenge the manufacturing possibilities of
homogenous and large numbers of MSC products, both for research and for the develop-
ment of cell-based therapies. iPSCs derived from MSCs have been proposed as a clinically
relevant alternative to bypass these limitations by suppressing the existing mechanical
memory, which stores epigenetic and transcriptional information from the past environ-
ment that biases the cell fate [149]. Additionally, they are theoretically unlimited in supply
and are more convenient for genetic modulation, scale-up production, and quality control.
iPSCs with different tissue and reprogramming backgrounds could be differentiated into
different types of somatic cells, including mesenchymal progenitors that have similar prop-
erties to somatic tissue-derived MSCs [150]. In the last decade, human iMSCs have been
successfully used for improvement of bone regeneration in mice and mini-pigs [151–153],
promotion of mucosal healing in mouse models of inflammatory bowel disease [154], and
treatment of skin ischemia in mouse models [155].

A simple one-step protocol for the generation of MSCs from iPSCs exhibiting MSC
characteristics, including expression of surface markers and trilineage differentiation poten-
tial, has been suggested by Zhou et al [156]. These results support the potential application
for industrial-scale production of iMSCs. Zhou et al. showed that iMSCs were similar in
their morphology, immune phenotype, in vitro differentiation potential, DNA methylation
patterns, prevention of bone loss, and promotion of bone repair to BM-MSCs [73]. However,
their tumorigenic capacity increased, although their proliferation rate was higher. Fur-
thermore, their transplantation into rats with osteonecrosis of the femoral head effectively
led to the promotion of bone repair and the prevention of bone loss. Eto et al. showed
that MSCs derived from iPSCs could suppress cartilage degeneration and improve joint
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destruction in an osteoarthritis model [155]. Ozay et al. reported that administration of
iMSCs in a humanized mouse model of GvHD led to reduced disease severity and pro-
longed survival [157]. The mechanisms of action are, however, not yet clearly elucidated.
Bloor et al. conducted a Phase I trial using iPSC-derived MSCs (NCT02923375) in subjects
with steroid-resistant acute GvHD to investigate their safety and tolerability [158]. They
were shown to be safe and well tolerated by all patients, which is a great advantage for
possible applications in diverse other inflammatory diseases.

6. Conclusions and Future Perspectives

This review summarizes two of the factors that mainly affect MSC heterogeneity,
namely donor and tissue source, thus constituting a limiting factor inhibiting the exploita-
tion of their full potential in therapeutical applications and industrialization. Growing
evidence emerged in the last decade supporting the immunomodulatory features of MSCs,
and various clinical trials with different experimental settings showed that administration
of MSCs is in fact beneficial. For this, further research needs to be developed to establish
new methods to eliminate or control this inherent heterogeneity and standardize MSC
production for clinical applications. For clinical application, MSC potency needs to be
determined and is defined by the therapeutical activity of a cell/cell population as indi-
cated by appropriate laboratory tests or adequately developed and controlled clinical data.
This potency is independent from the classical criteria of MSC to form bone, cartilage,
and adipose tissue but is instead based on paracrine effects, cytokine release, surface and
homing markers, as well as various other mechanisms as documented and granted by the
US FDA for the treatment of neurological conditions in children. In contrast to paracrine
mechanisms for neurological disorders, bone and cartilage formation requires a distinct
cellular repertoire and signature for regeneration in vivo, as described by our group [51]
and Hochmann et al. [52].
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