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Abstract: The regulation of the immune environment within the tumor microenvironment has
provided new opportunities for cancer treatment. However, an important microenvironment sur-
rounding cancer that is often overlooked despite its significance in cancer progression is the neural
environment surrounding the tumor. The release of neurotrophic factors from cancer cells is impli-
cated in cancer growth and metastasis by facilitating the infiltration of nerve cells into the tumor
microenvironment. This nerve–tumor interplay can elicit cancer cell proliferation, migration, and
invasion in response to neurotransmitters. Moreover, it is possible that cancer cells could establish
a network resembling that of neurons, allowing them to communicate with one another through
neurotransmitters. The expression levels of players in the neural circuits of cancers could serve
as potential biomarkers for cancer aggressiveness. Notably, the upregulation of certain players in
the neural circuit has been linked to poor prognosis in specific cancer types such as breast cancer,
pancreatic cancer, basal cell carcinoma, and stomach cancer. Targeting these players with inhibitors
holds great potential for reducing the morbidity and mortality of these carcinomas. However, the
efficacy of anti-neurogenic agents in cancer therapy remains underexplored, and further research
is necessary to evaluate their effectiveness as a novel approach for cancer treatment. This review
summarizes the current knowledge on the role of players in the neural circuits of cancers and the
potential of anti-neurogenic agents for cancer therapy.
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1. Introduction

The tumor tissue of cancer patients is composed of cancer cells and the surrounding
microenvironment of neighboring cells. Immunotherapies that regulate the immune milieu
within the tumor ecosystem have paved the way for cancer treatment. They present
an essential example of controlling the tumor microenvironment in anticancer therapy.
However, one often overlooked microenvironment surrounding a cancer is the neural
milieu surrounding the tumor.

Tumors can stimulate nerve growth in their vicinity by releasing factors such as
lymphangiogenesis and neoangiogenesis, a phenomenon known as neoneurogenesis.
This neoneurogenesis may facilitate the development of new tumors, as nerve endings
that infiltrate the tumor can release neurotransmitters that promote tumor progression
and metastasis [1]. The presence of nerve cell markers in tumor tissue is a predictor
of cancer progression, and emerging evidence suggests that the neurotransmitter nore-
pinephrine can enhance cancer dissemination in preclinical models [2]. Although the
exact mechanisms underlying neoneurogenesis and its effects on cancer remain incom-
pletely understood, targeting this process represents a promising approach for cancer
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therapy. This review provides an overview of neoneurogenesis in cancer and its potential
role as a therapeutic target.

2. Neurogenesis and Neoneurogenesis
2.1. Neurogenesis of Nerve Stem Cells (NSCs)

Neurogenesis is a complex and highly regulated process that can be divided into six
distinct stages [3]. NSCs have two essential properties: self-renewal and multipotency. They
can divide and generate more stem cells (self-renewal) while also being able to differentiate
into various cell types within the nervous system (multipotency). NSCs can give rise
to neurons, astrocytes, and oligodendrocytes [4]. NSCs can differentiate into neuronal
progenitor cells (NPCs) at the beginning of hippocampal neurogenesis [5]. Stage 1, known
as the proliferation phase, occurs within 1–3 days after birth in mice, during which NPCs
can proliferate and differentiate. The differentiation phase (Stages 2–4) follows, beginning
approximately 1 week after birth, during which neuronal progenitors cease dividing and
become committed to the neuronal lineage. After commitment, the immature neurons
enter the migration phase (Stage 5), reaching their destination between 2 and 3 weeks
after birth. At this point, post-mitotic neurons extend axonal projections, and dendritic
growth commences. The final stage of adult neurogenesis (Stage 6) occurs around 4 weeks
after birth, during which newly generated neurons establish synaptic contacts within pre-
existing circuits [6,7]. The full integration and incorporation of adult-born neurons into the
hippocampal circuits takes approximately 2–4 months [8,9]. All stages are regulated by
several main transcription factors and epigenetic regulators [10]. Figure 1 illustrates these
stages and epigenetic regulators.

2.2. Prognostic Importance of Neoneurogenesis in Cancer

The presence of nerve cells within tumors has been increasingly recognized as a
potential factor influencing cancer outcome. This phenomenon is particularly prevalent
in cancers of highly innervated organs, including almost all pancreatic cancers, 80%
of head and neck cancers, 75% of prostate cancers, and one third of cancers in other
organs [11]. The role of nerves in cancer progression is not fully understood, but some
studies have suggested that denervation may reduce tumor growth [12–14].

The discovery of neoneurogenesis in prostate cancer was among the earliest docu-
mented [15]. Moreover, the stimulation of sympathetic nerves in breast cancer has been
shown to increase its growth and progression, while the stimulation of parasympathetic
nerves has the opposite effect [16,17]. These results suggest that sympathetic and parasym-
pathetic nerve innervation play distinct roles in cancer development. Autonomic nerve
development contributes to prostate cancer progression [18] and lung cancer [19], while
neurogenesis in colorectal cancer contributes to poor outcome [20].

In addition to the parasympathetic and sympathetic nerves, sensory nerves have
also been implicated in tumor progression. For instance, sensory nerves can trigger
inflammation and accelerate the development of pancreatic cancer through neurogenic
mechanisms [21,22]. During the early stages of pancreatic cancer, there is a shift in the
expression of pancreatic neurotrophic factors and an increase in sensory innervation.
Furthermore, in one study, nerve growth factor (NGF) knockdown effectively suppressed
Panc-1 cells and tumor progression in three pancreatic tumor models, including a subcuta-
neous model, an orthotopic model, and a patient-derived xenograft model [23]. Later on,
cells of pancreatic origin can migrate to the sensory ganglia and spinal cord, indicating
that sensory nerves are involved in all stages of pancreatic cancer, from tumorigenesis to
progression [24].

Sensory neurons have also been shown to play a direct role in tumor formation
in basal cell carcinoma [25]. In the stomach, vagotomy or the pharmacological den-
ervation of the portion containing both parasympathetic and sensory axons reduced
tumor progression and improved survival when performed in the later stages of the
disease [26]. This denervation specifically attenuated gastric tumors and enhanced the
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effects of chemotherapy [27]. Additionally, enteric nerves are implicated in gastric cancer
initiation and progression [28,29].
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Figure 1. This diagram illustrates the key steps involved in neurogenesis, as well as the role of
transcription factors and epigenetic mechanisms in regulating this process. Additionally, it depicts
the expression patterns of major epigenetic regulators involved in adult neurogenesis, which play a
critical role in determining the fate of neurons during neurogenesis.

3. The Relationship between Neurogenesis and Cancer

In recent years, the interaction between cancer cells and neurons within the tumor
microenvironment has been recognized. Specifically, the effects of “cancer on neurons”,
“neurons on cancer”, and “neurons on tumor microenvironment” have been a focus of
investigation. These relationships suggest that neoneurogenesis may play a critical role in
regulating certain hallmarks of cancer (see Figure 2).
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Figure 2. Effects of neoneurogenesis on cancer progression. This illustration encompasses four experi-
mentally determined effects of neoneurogenesis on the hallmarks of cancer: neoneurogenesis has been
found to sustain proliferative signaling in prostate cancer [18], skin cancer [30], breast cancer [31], and
brain cancer [32]; activate invasion and metastasis in prostate cancer [18], brain cancer [33], and lung
cancer [34]; induce angiogenesis in breast cancer [35], gastric cancer [36], and prostate cancer [37]; and
evade immune destruction in breast cancer [38] and pancreatic cancer [39]. The separate hallmarks of
cancer are depicted in differently colored fields.

3.1. The Effects of Cancer on Nerves

Cancer cells can engage in neoneurogenesis and recruit new axons into tumor tissue,
which is a process similar to cancer angiogenesis. This process is called neoneurogenesis,
also known as innervation, and is a complex biological phenomenon that is not yet fully
understood [40]. Neoneurogenesis arising from different nerves may play different or even
opposite roles in different types of tumors.

Compellingly, some cancer stem cells (CSCs) obtained from individuals with gastric
and colorectal carcinoma were found to be capable of generating neurons that contribute
to tumor neurogenesis and tumor growth [41]. By isolating a single cancer stem cell and
creating a clone, researchers demonstrated that this clone could generate various types
of neurons, such as sympathetic and parasympathetic neurons, which become part of
the nervous system within cancerous tissues [41]. When the capacity of these CSCs to
produce neural cells was suppressed, the growth of xenograft tumors in a mouse model
was inhibited [41]. These findings support that new neurons could be generated by cancer.

The peripheral nervous system (PNS), which includes sympathetic and parasym-
pathetic nerves, helps to maintain the body’s homeostasis. The neurotransmitter of the
sympathetic nerves is norepinephrine, while that of the parasympathetic nerves is acetyl-
choline, both of which play crucial roles in cellular communication. These interconnected
systems regulate the body’s internal pressures [42]. Sympathetic and parasympathetic
nerves often have opposing effects on a given tissue, increasing the activity of one system
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while decreasing the activity of the other. Neoneurogenesis in tumors has been linked to
the PNS, which includes both sympathetic and parasympathetic nerves, responding to
changes in the microenvironment [43].

Neural progenitors expressing (DCX+) from the central nervous system infiltrate
prostate tumors and metastases, initiating neurogenesis [44]. In mouse models of prostate
cancer, oscillations of DCX+ neural progenitors in the subventricular zone (a neurogenic
area) disrupt the blood–brain barrier, allowing DCX+ cells to enter circulation. These
cells then infiltrate the tumor, generating new adrenergic neurons. Genetically removing
DCX+ cells inhibits early tumor development in mouse models, while transplanting DCX+
neural progenitors promotes tumor growth and metastasis [44]. In humans, the density of
DCX+ neural progenitors strongly correlates with the aggressiveness and recurrence of
prostate adenocarcinoma. [44]. These findings demonstrate a unique interaction between
the central nervous system and prostate tumors, providing potential neural targets for
cancer treatment.

Recent findings suggest that newly formed adrenergic nerve fibers in head and neck
cancers are derived from sensory neurons and are not infiltrations of existing adrenergic
nerves [45]. Thus, signals that stimulate tumor growth are regulated by newly formed
adrenergic nerve fibers instead of pre-existing ones [45]. In one study, MiR-34a released
in extracellular vesicles impeded neuron filament generation and was downregulated
by p53 loss [45]. MiR-34a prevents somatic cell programming, neuronal differentiation,
and development [46–48]. The reprogramming of sensory nerves caused by a lack of
miR-34a in p53 null head and neck cancer-derived exosomes has been found to lead to
tumor progression [45]. Blocking adrenergic receptors through sensory denervation or
pharmacological means suppresses tumor growth, while the chemical sympathectomy
of preexisting adrenergic nerves does not [45]. The research indicates that cancer cells
drive neuron reprogramming to promote tumor progression. However, the potential
role of neuron reprogramming induced by cancer cells in other types of tumors remains
to be determined.

3.2. The Effects of Nerves on Cancer

The crosstalk between cancer cells and nerves in the tumor microenvironment has
been identified as an important factor in tumor progression. In this section, we focus on
the impacts of the “nerves on cancer” relationship, which can be broadly categorized into
two primary modes: paracrine signaling and chemical synapses.

3.2.1. Paracrine Signaling

Paracrine signaling is the methods by which cells communicate with nearby cells
through signaling molecules that bind to and activate surrounding cells [49]. Neurons and
Schwann cells can regulate cancer cell behavior and impact tumor progression through
paracrine signaling using neuroactive substances. The neuroactive substances secreted by
nerves can be broadly categorized into three groups: (i) neurotrophic factors, including
nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and other factors;
(ii) axon guidance molecules, such as CCL2, CX3CL1, and others; and (iii) neurotransmitters
like acetylcholine (Ach), glutamate, glycine, and others [50,51]. These molecules interact
with receptors expressed by cancer cells, such as TrkA, TrkB, and NGFR.

In prostate cancer, for example, adrenergic fibers newly extended from nerves regulate
β2- and β3-adrenergic receptors in cancer, while cholinergic fibers act through cholinergic
receptors [18]. The genetic deletion of sympathetic β2- and β3-adrenergic receptors in stro-
mal cells has been found to prevent early tumor progression. In contrast, parasympathetic
stimulation contributes to later tumor progression, invasion, and metastasis through the
pharmacological or genetic disruption of the muscarinic 1 receptor [18,52]. In skin and
breast cancers, adrenergic antagonists have been shown to have a suppressive effect on
cancer development [30,31,53].
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Nerves that stimulate the release of ACh through cholinergic stimulation can enhance
the expression of NGF in the gastric epithelium, leading to the advancement of cancer [29].
β-blockers can also increase the rate of survival in prostate cancer patients undergoing
high-risk or metastatic treatment [54].

3.2.2. Chemical Synapse

Chemical synapses are identified as biological junctions, which are referred to as
the synaptic cleft, between the plasma membranes of the interconnected cells [55]. The
transfer of information between the presynaptic and postsynaptic cells of neurons or
non-neuronal cells (muscles or glands) is facilitated by a molecule called the neurotrans-
mitter [55]. Chemical synapses allow neurons to form circuits within the central nervous
system [56]. The chemical synapse also forms crosstalk between tumors and nerves in which
adjacent neurons communicate through neurotransmitters such as glutamate [57]. Evidence
of functional synapses between presynaptic neurons and postsynaptic tumor cells has
been observed in glioma [58,59] and breast-to-brain metastasis [33]. These neurogliomal
synapses may be functional, as excitatory postsynaptic potentials have been recorded in
glioma cells [58,59]. Studies have shown that the AMPA receptor promotes the depolar-
ization of glioma cells, while the NMDA receptor promotes the growth of cancer cells in
the brain [32,60]. High levels of the NMDA receptor subunit GLuN2B were observed in
breast-to-brain metastasis (B2BM), and after NMDAR activation, currents and calcium
transients were recorded [33,61,62]. The knockdown of GLuN2B resulted in smaller brain
tumors and longer survival times in mice, suggesting that NMDAR synapses promote the
growth of cancer cells in the brain [33]. However, it is still unknown whether other solid
tumors form synapses with nerves.

In summary, the impacts of nerves on tumors are complex and multi-faceted and
involve both the paracrine mode and the chemical synapse. Understanding the mecha-
nisms of these interactions is important for the development of new therapeutic strategies
for cancer.

3.3. The Effects of Nerves on the Tumor Microenvironment

Beyond the well-established effects of neurons on cancer development via paracrine
signaling and chemical synapses, emerging evidence suggests that neurons can also signifi-
cantly impact cancer progression by manipulating the tumor microenvironment. Studies
have shown that neurons can promote angiogenesis [35–37,63,64] and modulate tumor im-
mune environments to create a more favorable environment for breast, lung, and pancreatic
cancer growth [34,38,39] and lung cancer metastasis [34].

3.3.1. The Effects of Nerves on Angiogenesis

Angiogenesis, the process by which new blood vessels grow from existing vasculature,
is critical for tumor growth and metastasis [65,66]. Tumors require their own sources of
oxygen and nutrients to sustain cell proliferation and tumor growth. The degree of angio-
genesis reflects the severity of a tumor, and its presence has been linked to the outcomes of
tumors [67,68]. The neurotransmitters and neurotrophic factors released by nerves play a
role in angiogenesis by binding to receptors and triggering the migration of endothelial
cells. Examples of these factors include catecholamines, acetylcholine, dopamine, nerve
growth factor, and brain-derived neurotrophic factor [35,36,63]. Studies have shown that
adrenergic nerves regulate angiogenesis in the prostate cancer microenvironment by al-
tering the metabolism of blood vessel endothelial cells, leading to tumor growth through
angiogenesis [37]. The regulation of angiogenesis and neoneurogenesis share similari-
ties, including being controlled by the same transmitters and neurotrophic factors and
using similar receptors [64]. These findings highlight the close relationship between the
regulation of angiogenesis and neurogenesis.
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3.3.2. The Effects of Nerves on the Immune System

The nervous system interacts with the immune system within the tumor microenvi-
ronment (TME) to promote tumor progression through inflammation [69]. Neuroendocrine
and neuronal pathways play a role in controlling immune responses [70]. For example,
adrenergic innervation in the spleen stimulates the production of ACh in T cells that express
the β2-adrenergic receptor (β2-AR) [71]. Recent research has revealed that ACh produced
by T cells has a significant impact on the regulation of immunity, including cancer immunity.
This ACh can inhibit the production of tumor necrosis factor (TNF) by cytokine-producing
macrophages through the α7 nicotinic acetylcholine receptor [72]. ACh also binds back
onto the nicotinic and muscarinic receptors on lung cancer cells, which leads to an accelera-
tion in cell proliferation, migration, and invasion [34]. Choline acetyltransferase catalyzes
the synthesis of ACh from choline, which is strongly induced in both CD4+ and CD8+ T
cells through IL-21 to regulate T-cell migration and immune functions [73]. This research
highlights how the autonomic nervous system can directly regulate the immune system.

The infiltration and activation of tumor lymphocytes are critical processes for in-
hibiting tumor growth and progression [74]. However, tumor cells can evade immuno-
surveillance by activating immune checkpoint pathways that suppress antitumor immune
responses [75]. A retrospective analysis of breast cancer patients revealed that sympathetic
and parasympathetic nerve density correlates with the expression of immune checkpoint
molecules (PD-1, PD-L1, and FOXP3) and clinical outcomes [38].

Tumor-associated macrophages (TAMs) play critical roles in regulating pancreatic
tumor development and progression as essential components of the cancer microenviron-
ment [76]. TAMs can also modify tumor cell resistance to chemotherapy through their
impact on the TME [77]. The recruitment of TAMs is also regulated by both cholinergic
and adrenergic signaling, which are related to nerves. In pancreatic cancer, adrenergic
signaling promotes tumor growth and reduces survival through TAM recruitment, while
cholinergic signaling has the opposite effects [39]. One study showed that vagotomy pro-
moted pancreatic cancer growth and reduced survival time by mediating TNFα secretion
by TAMs [78]. Similar results have been observed in breast cancer [78]. Stress-induced
neuroendocrine activation also causes breast cancer metastasis, and this can be reversed
by a beta antagonist [79]. Endoneural macrophages participate in tumor metastasis, and
blocking certain pathways can inhibit brain metastasis [80]. The elimination or inhibition
of microglia function results in a good antitumor metastasis effect. The blocking of any
of the CCL2, STAT3, CSF-1R, and PI3K pathways of macrophages could inhibit brain
metastasis [81–83]. In summary, nerves can impact tumor progression by regulating the
behavior of immune cells.

4. The Neural Circuit of Cancer

Mounting evidence suggests that neural factors may play a role in promoting cancer
development. To support this idea, studies have found that many neuron receptors, their
ligands, and proteins highly expressed in neurons are also significantly expressed in cancer
cells. Moreover, these proteins have been found to be involved in similar functions in both
neurons and cancer, suggesting that cancer cells may acquire the properties of neuronal
cells, potentially explaining the similarities in behavior between these neurons and cancer.
This phenomenon is discussed below and illustrated in Figure 3.

This phenomenon has led to the hypothesis that tumor cells may undergo a transfor-
mation into neuron-like cells and establish a neural circuit, allowing cancer cells to com-
municate with neuron cells and other cancer cells and mimic the survival and metastatic
properties of neurons. This idea is supported by the upregulation of neuronal receptors
such as AMAPR, NMDAR, GFRα1, GFRα2, GFRα3, AChR, L1-CAM, and NCAM and their
ligands, including glutamine, GDNF, NRTN, ARTN, and Ach, in cancers (Figure 3).
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4.1. Receptors in the Neural Circuit of Cancers

In recent studies, it has been discovered that certain tumor types show a high level
of expression of neuron receptors such as Trks, NGFR, GFRα, L1CAM, NCAM, AchRs,
AMPARs, NMDAR, and dopamine receptors. This discovery provides an explanation for
the connection between neurons and cancer (Figure 3A) and suggests there is a cancer
network, allowing cancer cells to be capable of communicating with one another in a way
that is similar to neurons communicating in a neuronal circuit.
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Figure 3. Illustration of the characteristics shared between neurons and cancer cells. (A) This
diagram highlights the importance of reciprocal signaling between the two cell types for neurogenesis,
axonogenesis, and perineural invasion. (B) The ROS/PI3K/AKT/mTOR pathway is involved in
proliferation in neurons and cancer cells.

4.1.1. Neurotrophic Receptor Tyrosine Kinase (Trks)

The Trk receptor family comprises three receptors, TrkA, TrkB, and TrkC, which
are situated on the cell membrane [84]. These receptors are high-affinity neurotrophin
receptors [85] and are activated by neurotrophins [86], which are a type of growth
factor essential for proper nervous system function [87]. Trks bind to nerve growth
factors (NGFs), such as brain-derived neurotrophic factor (BDNF) and NGF, which
are secreted by nerves and cancer cells, and promote cancer cell survival, migration,
and proliferation [88]. Trk genes have been identified in several solid tumors such as
lung cancer [89]. In gastric cancer, expanded enteric nerves and increased NGF expres-
sion are associated with the NGF/Trk signaling regulation of microtubule-associated
doublecortin-like kinase 1 (DCLK1), also known as the tuft cell marker in normal tissue
or the tumor stem cell marker in cancers [29,88]. Blocking NGF signaling via NGF knock-
down or the NGF-neutralization of antibodies reduces the migration of pancreatic cancer
cells toward the dorsal root ganglia, while breast cancer cells drive axonogenesis in PC12
cells through the correlation between nerve fibers and NGF expression, a process partly
reversed by NGF blocking [90,91].

4.1.2. Nerve Growth Factor Receptor (NGFR)

The nerve growth factor receptor (NGFR), also known as p75, is a low-affinity
receptor for all known mammalian neurotrophins (i.e., proNGF, NGF, BDNF, NT-3 e
NT-4/5) [92], and it is involved in pathways that determine both the survival and death
of neurons [93]. NGFR is expressed in various cancer types, including luminal breast
cancer in rare basal-like cells that are resistant to antiestrogens [94]. NGFR inhibits p53
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activity in tumor cells via a negative feedback loop present in multiple tumor types,
which is critical for maintaining melanoma stem cells in vitro and melanoma growth
in vivo [95]. TNBC cells rely on the significant upregulation of NGFR expression to
facilitate their growth as tumor spheres in a non-adhesive environment. This elevated
expression was shown to play a crucial role in enabling the cells to evade anoikis (cell
death triggered by detachment), support the growth of the primary tumor, and enhance
metastasis in mice [96]. Thus, NGF signaling from nerves to cancer stem cells via NGFR
expression may promote cancer stem cell renewal and proliferation.

4.1.3. Glial Cell Line-Derived Family Receptor Alpha (GFRα) Family

The GFRα family, consisting of GFRα1, GFRα2, GFRα3, and GFRα4, is anchored to
the plasma membrane via Glycosylphosphatidylinositols (GPIs). GPIs serve as mem-
brane anchors for numerous eukaryotic cell surface proteins, including members of
the GFRα family [97]. Although GFRα1, GFRα2, GFRα3, and GFRα4 are structurally
similar, they determine specificity for four ligands called glial cell line-derived neu-
rotrophic factor (GDNF), neurturin (NRTN), artemin (ARTN), and persephin (PSPN),
respectively [98]. GFRα receptors, which are associated with cell growth, differen-
tiation, cell migration and tissue maturation, have been extensively linked to var-
ious cancers [97]. GFRα1 expression is significantly upregulated in human breast
cancers [99]. GFRα1 is involved in chemoresistance in osteosarcoma [100,101] and
prostate cancer [102]. GFRα2 promotes neuroblastoma cell proliferation by activat-
ing the PI3K/AKT pathway [103]. The GFRα3 promoter region has been shown to be
markedly hypermethylated in almost all gastric tumors [104]. GDNF promotes cancer
progression by binding to GDNF family receptors α1-3 and RET proto-oncogene (RET),
which initiate the downstream activation of several signaling pathways, including
RAS/ERK, MAPK, JNK, and PI3-K/Akt [105,106].

4.1.4. L1 Cell Adhesion Molecule (L1CAM)

The L1 cell adhesion molecule (L1CAM) is a cell surface receptor that plays a key
role in cell adhesion and migration during neural development. L1CAM is upregulated in
various types of tumors and enhances cancer cell invasiveness, leading to metastasis and
resistance to chemo- and radiotherapy [107,108]. Additionally, L1CAM expression, together
with CD133 expression, defines the cancer stem cell population in glioma and ovarian
cancer. In vivo ovarian cancer models have shown that L1CAM expression promotes cancer
stemness by enhancing spherogenicity, tumor take rate, self-renewal capacity, and tumor
growth [108].

4.1.5. Neural Cell Adhesion Molecule (NCAM)

Neural cell adhesion molecules (NCAMs) are a type of glycoprotein found on the
surface of cells in both the central and peripheral nervous systems [109]. They have
a wide range of isoforms due to them having at least 27 alternatively spliced NCAM
mRNAs. The three main isoforms of NCAMs vary only in their cytoplasmic domain;
they include NCAM-120kDa (GPI anchored), NCAM-140kDa (short cytoplasmic domain),
and NCAM-180kDa (long cytoplasmic domain) [110]. NCAMs are involved in a diverse
range of contact-mediated interactions among neurons, astrocytes, oligodendrocytes, and
myotubes. NCAMs have been known to be involved in lung cancer cases with poor
prognoses [111]. NCAMs have also been found to promote cell migration and invasion in
ovarian cancer [112].

4.1.6. Acetylcholine Receptors (AChRs)

Acetylcholine (ACh) is a neurotransmitter that plays various roles in the central
nervous system, peripheral nervous system, and autonomic nervous system. ACh
acts on two types of receptors—muscarinic receptors (mAChRs) and nicotinic recep-
tors (nAChRs) [113]. The family of mAChR comprises five subtypes, which are labeled
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individually as M1 to M5 and are encoded by the genes CHRM1 to CHRM5. Among
these subtypes, M1, M3, and M5 have been observed to interact with G proteins of
the Gq/11 family, whereas M2 and M4 primarily signal through the Gi/o family of G
proteins [114]. Meanwhile, nAChRs are composed of five subunits which maintain a
particular arrangement around a water-filled pore. These subunits can be classified into
two categories: alpha (α2–α7, α9, and α10) and beta (β2–β4), with the classification being
based on the presence of adjacent cysteine groups that are exclusive to the α subunits’
extracellular domain in neurons [115].

Recent studies have suggested that the overexpression of AChRs in cancer cells
contributes to cancer cell proliferation, apoptosis, angiogenesis, and even epithelial-
mesenchymal transition (EMT) [116]. In breast cancer, alpha7-nAChR and alpha9-
nAChR serve as oncogenes [116]. Moreover, non-neuronal cells, such as immune
cells [117,118] and cancer cells [119,120], are capable of synthesizing ACh, leading
to autocrine and paracrine effects in various tumor microenvironments [121].

4.1.7. AMPA, NMDA and Metabotropic Glutamate Receptors

AMPA receptors (AMPARs) are receptors for glutamate and have a type of ion
channel composed of four subunits encoded by different genes, designated as GRIA1,
GRIA2, GRIA3, and GRIA4, which combine to form tetrameric heteromeric com-
plexes [122]. AMPARs are responsible for most excitatory communication in the central
nervous system, along with other ionotropic glutamate receptors like NMDA and
kainate receptors [123]. The specific properties of AMPARs, such as their kinetics and
conductance, are determined during their formation and can be influenced by various
factors such as post-transcriptional RNA editing, splice variation, post-translational
modification, and the subunit makeup of the receptors [123]. Glioma cells express AMPA
receptors in large quantities, and these receptors play a significant role in promoting
the malignant properties of the cancer by responding to glutamate signals that facilitate
cell proliferation [124,125]. AMPA receptors have also been found in pancreatic cancer,
non-CNS cancers [126].

A NMDA receptor (NMDAR) is a receptor protein for glutamate and has an ion
channel that is activated upon binding to glycine and glutamate [127]. The receptor
is typically comprised of heterotetramers made up of two NR1 subunits and two NR2
subunits, according to reference [128]. Peripheral cancers mainly exhibit NMDA receptor
expression. Prostate cancer samples have shown moderate-to-high levels of the NR1
subunit of NMDAR, while normal prostate tissue and benign prostate hyperplasia have
very low or no expression. A similar pattern of expression has been observed in normal
vs. cancer colon specimens [129]. The presence of the NR1 subunit has also been observed
in most small-cell lung cancer samples and breast cancer samples [130]. Additionally, the
NR2B subunit has been detected in breast cancer samples [131]. Inhibiting NMDA receptors
through the use of the channel-blocking antagonist MK-801 may reduce pancreatic cell
viability [132]. Moreover, the NMDA antagonist dizocilpine can inhibit the extracellular
signal-regulated kinase 1/2 (ERK1/2) pathway, an intracellular signaling cascade that is
stimulated by growth factors and governs the proliferation of cancer cells [133]. NMDA is
involved in regulating mTOR signaling, which suggests that NDMA might regulate cancer
cell growth, division, and invasiveness [134].

Metabotropic glutamate receptors (mGluRs) belong to the group of glutamate re-
ceptors that engage in an indirect metabotropic mechanism. These receptors are clas-
sified as G-protein-coupled receptors (GPCRs) and are part of the Group C family of
GPCRs [135]. mGluRs can affect the transformation of peripheral cells and the growth of
tumors. This can occur through various mechanisms, such as the ectopic expression of
normal mGluRs, the generation of increased proliferative signals from the overexpression
of the receptors, mutations in the receptors, or the expression of polymorphic variants [136].

These receptors’ expression in cancer cells suggests that glutamate signaling might
play a vital role in cancer cell survival and proliferation.
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4.1.8. Dopamine Receptors

Dopamine receptors are a type of G-protein-coupled receptor that play a significant
role in the central nervous systems (CNSs) of vertebrates [137]. Dopamine receptors can
activate various effectors not only through G protein coupling but also by interacting
with different proteins such as dopamine-receptor-interacting proteins [138] There are
two subtypes of D1-like receptors (D1 and D5) that are linked to the G protein Gs and
activate adenylyl cyclase (AC), while the other subtypes belong to the D2-like subfamily
(D2, D3, and D4) [139]. D2-like receptors exhibit a significantly higher affinity for dopamine
compared to the D1-like receptor family, ranging from 10 to 100 times greater [140].

The activation of the D2-like receptor family typically results in the inhibition
of adenylyl cyclase (AC) activity, as well as the inhibition of protein kinase A (PKA)
and DARPP-32 [141]. Additionally, D2Rs modulate G-protein-coupled inward rectifier
potassium (GIRK) channels, which are responsible for mediating neuronal electrical
responses [142]. D2Rs also have the ability to activate pathways associated with cell
proliferation, such as the mitogen-activated protein kinase (MAPK) signaling pathway.
The activation of ERK1/2, a component of MAPK, has been observed in various cell
lines, including HEK-293 cells and COS-7 cells [141]. The stimulation of D2-like recep-
tors also triggers signaling through the Akt pathway, also known as protein kinase B
(PKB) [143,144].

DRD2 (a member of D2-like family), which is encoded by the DRD2 gene, is a receptor
for the neurotransmitter dopamine and a target for antipsychotic drugs as well as Parkinson’s
disease treatment. It is activated by dopamine and synthetic agonists such as bromocriptine,
leading to the activation of Gi and inhibition of adenylyl cyclase [145]. Additionally, DRD2 is
a key component of the dopamine signaling pathway that is involved in normal growth and
development, as well as cancer development [146]. Studies have shown that DRD2 is overex-
pressed in various types of cancer, including breast, ovarian, cervical, esophageal, and lung
cancers [146]. Furthermore, research has demonstrated that DRD2 knockdown in HCT116
cells activates the integrated stress response and reduces cell proliferation [147]. DRD2 ac-
tivation has been shown to promote self-renewal in breast cancer by activating STAT3 and
IL-6 [148].

4.2. Ligands in the Neural Circuits of Cancers

The identification of neuroactive substances such as GDNF, NRT, and glutamate being
released by cancer cells provides evidence for the notion that these cancerous cells engage
in communication through a circuitry that involves the release and reception of neuronal
signals, much like in a neuronal network (Figure 3A).

4.2.1. Brain-Derived Neurotrophic Factor (BDNF), Neurotrophin-3 (NT-3), and Nerve
Growth Factor (NGF)

NGF plays a crucial role in the growth and preservation of neurons in the peripheral
nervous system (PNS), as well as in the functional maintenance of cholinergic neurons in the
central nervous system (CNS) [149]. The nociceptive signals are transmitted through NGF
by directly activating TrkA [150]. The NGF/TrkA pathway has also been implicated in the
development and progression of breast cancer [151,152] and prostate cancer [153,154]. NGF
has been identified as a factor released by mouse sarcoma tissue, promoting the survival of
neurons and the growth of nerve extensions (neurite outgrowth) in chicken ganglia [155].

BDNF is produced in response to noradrenergic signaling and activates axonogenesis
via TrkB receptors [156,157]. In addition to its role in axonogenesis, BDNF has been linked
to angiogenesis promotion and increased tumor cell proliferation, which may contribute
to the progression of pancreatic ductal adenocarcinoma (PDAC) [158]. Targeting BDNF
signaling pathways may hold promise as a strategy for inhibiting PDAC progression and
neural invasion. Moreover, BDNF is released from breast cancer cells [159] and promotes
breast cancer progression [159,160].
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NT-3 is most highly expressed in immature regions of the CNS [161], which is a
cystine knot growth factor by activating TrkC [162] that promotes the survival, prolifera-
tion, and differentiation of developing neurons, and is considered a potential therapy for
neurodegenerative disorders [163]. In murine xenograft models, the inhibition of NT-3
has been demonstrated to reduce PDAC growth [88]. Interestingly, NT-3 is secreted from
metastatic breast cancer in the brain as MDA-MB-361 and in triple-negative breast cancer
as MDA-MB-231 [164]. NT-3 modulates the growth of breast cancer brain metastasis and
breast cancer cells by interacting with the microenvironment [164]. In neuroblastomas, the
overexpression of NT-3 and TrkC is linked to a poor prognosis [165].

4.2.2. Glial Cell-Derived Neurotrophic Factor (GDNF), Neurturin (NRTN), and
Artemin (ARTN)

Glial cell line-derived neurotrophic factor (GDNF) is a glycosylated, disulfide-bonded
homodimer that is a distantly related member of the transforming growth factor-beta super-
family [166] GDNF is a small protein that potently promotes the survival of many types of
neurons [167]. GDNF is highly expressed in human PDAC and is strongly correlated with
neural invasion and increased pain levels [105,168]. These pathways promote cell prolifera-
tion, survival, and migration, which contribute to the spread of cancer cells. GDNF also
promotes nerve adhesion and invasion by increasing integrin expression, activating matrix
metalloproteinase (MMP)-9 and increasing nuclear factor κ B activity [169,170]. Targeting
GDNF or its receptors also may be a promising approach for inhibiting PDAC progression
and neural invasion.

Neurturin (NRTN) is a substance that helps neurons survive by activating the Ret tyro-
sine kinase when a GPI-linked coreceptor such as GFRα1 or GFRα2, is present [171]. More-
over, NRTN mRNA expression is upregulated in some cancers, such as kidney renal papillary
cell carcinoma (KIPR) and ovarian cancer (OV) from TCGA [172].

Artemin (ARTN), a new member of the GDNF family, has been discovered to be the
ligand for the GFRalpha3-RET receptor. Artemin promotes the survival of both sensory and
sympathetic neurons when cultured, and based on its pattern of expression, it is believed
to have an effect on these types of neurons in their natural setting as well [173]. The
stimulation of RET signaling promotes innervation [174] and is associated with tumor
invasiveness and nerve alterations in PDAC due to high expression levels of its ligands,
such as artemin [175–177]. Artemin is primarily detected in hypertrophic nerves using
western blotting and in PDAC tissues using immunohistochemistry [178].

4.2.3. Glutamate

Glutamate is an excitatory neurotransmitter found in different types of receptors such as
AMPA and NMDA receptors within the central nervous system, and maintaining optimal lev-
els of it in the extracellular space is crucial [179,180]. Glutamate plays a significant role in the
timing of various events, including the survival, proliferation, migration, synapse formation,
and integration of newly formed neurons into established synaptic networks [181]. Glioblas-
toma cells can release glutamate excessively [124]. Compellingly, glutamate has been found to
be released by non-CNS cancers, such as MDA-MB-231 (human breast cancer), B16F1 (mouse
melanoma), and MATLyLu (rat prostate cancer) [182,183]. Glutamate increases pancreatic
cancer cell invasion and migration via AMPA receptor activation and Kras-MAPK signaling
through AMPA [126].

4.2.4. Acetylcholine

Acetylcholine operates through two subgroups of receptors known as muscarinic
receptors (mAChRs) and nicotinic receptors (nAChRs) [116]. Additionally, human colon
cancer cells were found to release ACh, which in turn stimulated cell proliferation through
autocrine stimulation [119], and ACh was also observed to be released by lung carcinoma
(H82 cells) [120]. It is speculated that cancer cells could use ACh and AChR in neuronal
circuits to communicate with one another.
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4.2.5. Dopamine

Dopamine, also known as 3-hydroxytyramine, is part of the catecholamine group and is
primarily recognized as a neurotransmitter in the central nervous system [184]. Furthermore,
dopamine secretion was found to increase in human hepatocellular carcinomas (HCCs) such
as HepG2 [185]. According to research, some DRD2 antagonists like penfluridol, pimozide,
and fluspirilene have shown significant cancer suppression [186–188]. This indicates that
dopamine could be involved in cancer progression via binding dopamine receptors being
highly expressed in cancers.

4.3. Reactive Oxygen Species (ROS) in the Neural Circuits of Cancers

The role of reactive oxygen species (ROS) in cellular processes has been extensively
studied due to their harmful effects. Although stem cells were initially believed to maintain
low ROS levels to prevent damage, recent studies have shown that ROS can also act as
second messengers, activating normal cellular processes during neurogenesis. Moreover,
ROS plays a crucial role in cell proliferation and has been associated with poor cancer
prognoses [189,190]. These findings suggest that ROS is involved in regulating both
neurogenesis and cancer development Figure 3B.

4.3.1. The Role of ROS in Neurogenesis

The stimulation of ROS, such as H2O2, has been found to enhance neural progeni-
tor cell (NPC) proliferation and differentiation into both neuronal and oligodendrocyte
fates [191]. Self-renewing multipotent neural progenitors that share phenotypic charac-
teristics with neural stem cells (NSCs) maintain high ROS levels and exhibit heightened
responsiveness to ROS stimulation. The PI3K/Akt/mTOR signaling pathway mediates the
promotion of self-renewal and neurogenesis by ROS [192]. However, an overload of ROS
during aging impairs adult neurogenesis [193].

4.3.2. The Role of ROS in Cancer

ROS-sensitive signaling pathways are upregulated in several types of cancer, where
they play roles in cell proliferation, differentiation, protein synthesis, glucose metabolism,
cell survival, and inflammation [194]. H2O2 can regulate the activity of protein targets,
such as protein tyrosine phosphatases, protein tyrosine kinases, receptor tyrosine kinases,
and transcription factors, through reversible oxidation [194]. ROS also regulates the MAP
kinase/Erk cascade [194], PI3K/Akt-regulated signaling cascades [195,196], and the IκB
kinase (IKK)/nuclear factor κ-B (NF-κB)-activating pathways in cancers [197].

The PI3K/Akt signaling pathway Is activated by ROS generation during estrogen
metabolism or other potential mammary carcinogens in breast cancer [195,196]. Akt me-
diates cell survival through phosphorylation and the inactivation of its substrates, such
as pro-apoptotic proteins Bad and Bax and transcription factors [198–201]. EGF-generated
hydrogen peroxide activates Akt and p70 S6K1, a substrate of Akt that regulates protein
synthesis, in human ovarian cancer cells [202]. Additionally, reducing ROS levels has been
found to decrease phosphorylated (active) Akt levels and induce apoptosis in the human
pancreatic tumor cell line Panc-1 [203].

5. Modulators of the Neural Circuit as Anticancer Agents

Inhibiting neurogenesis is a potential strategy for cancer treatment, but currently, there
are only a limited number of agents available (Figure 4) that specifically target neurogenesis.
Neutralizing NGF antibodies such as tanezumab and fulranumab have been studied and
may have the potential to inhibit cancer cell migration with minimal side effects on neural
function. A clinical trial (NCT02609828) is currently underway to evaluate the efficacy of
these agents [91,204,205].

Inhibitors of tyrosine kinase, such as GW441756 and cabozantinib, have been
shown to reduce cancer cell migration with minimal impact on cognitive function. One
clinical trial (NCT02609828) has been completed, while another (NCT02219711) is still
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ongoing [91]. Furthermore, ongoing clinical trials (NCT02944201 and NCT03152786)
suggest that beta-blockers such as propranolol and carvedilol may increase prostate
survival rate and impede cancer cell growth [206,207]. Although Botulinum toxin has
been shown to increase apoptosis in cancer cells, a clinical trial with the identifier
NCT01520441 was cancelled [208].
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Figure 4. Potential agents that target neurogenesis. These agents include tanezumab, a monoclonal
antibody against nerve growth factor; cabozantinib, a medication used to treat medullary thyroid
cancer, renal cell carcinoma, and hepatocellular carcinoma; GW441756, a potent, selective inhibitor
of the NGF receptor tyrosine kinase A; propranolol, a medication of the β-blocker class used to
treat high blood pressure; carvedilol, a β-blocker medication used to treat high blood pressure,
congestive heart failure (CHF), and left ventricular dysfunction; A-DMAP, a selective muscarinic
acetylcholine receptor (mAChR) M3 antagonist; penfluridol, fluspirilene and pimozide, the first
diphenylbutylpiperidine antipsychotics; GYKI 52466, a non-competitive AMPA receptor antagonist;
CFM-2, a selective and non-competitive AMPA receptor antagonist which inhibits the ERK1/2
pathway and acts as an antiproliferative agent; and NBQX, an antagonist of the AMPA receptor
which blocks AMPA receptors in micromolar concentrations and also blocks kainate receptors.

In addition, DRD2 agonists have been found to negatively regulate reactive oxygen
species (ROS) [209,210]. Research conducted in vivo and in vitro has demonstrated that
the protective effects of D2R agonists against oxidative stress are abolished by D2R
antagonists [211]. Additionally, a derivative of trifluoperazine, A4, provoked increased
ROS, DNA damage, autophagic cell death, apoptosis, and the activation of AMP-activated
protein kinase K [212].
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Interestingly, recent studies have revealed that antipsychotics targeting the D2 re-
ceptor have the potential to suppress various types of cancer and increase the levels of
reactive oxygen species (ROS) [146]. For instance, penfluridol, a first generation diphenyl-
butylpiperidine antipsychotic and also a DRD2 antagonist, has been shown to inhibit
acute myeloid leukemia through ROS modulation [213]. Similarly, ONC201 treatment
resulted in a dose-dependent increase in ROS levels and depolarization of mitochon-
drial membranes in ovarian cancer cells. This was accompanied by the upregulation
of several markers of oxidative stress, including ATF4, CHOP, PERK, and Ero1-1α, all
of which are associated with apoptosis [214]. Furthermore, ONC201 has been found to
suppress endometrial cancer growth and generate ROS [215]. Pimozide, a DRD2 antago-
nist which is also a type of diphenylbutylpiperidine antipsychotic, has been shown to
inhibit prostate cancer cells via ROS similarly to other diphenylbutylpiperidine antipsy-
chotics [186]. Additionally, pimozide was found to suppress cancer progression through
other mechanisms [216,217]. Fluspirilene, another DRD2 antagonist, was also found to
suppress hepatocellular carcinoma by acting as a CDK2 inhibitor [187].

According to some studies, tumor growth can be inhibited by glutamate antagonists.
Antiproliferative effects have been observed on lung carcinoma (A549), astrocytoma (MOG-
GCCM), neuroblastoma (SKNAS), and rhabdomyosarcoma/medulloblastoma (TE671) cells
with AMPA receptor antagonists such as GYKI52466, CFM-2, and NBQX [60].

These agents have been studied for their potential to inhibit cancer cell migration
and hinder cancer cell growth, with limited side effects on neural function. Ongoing
clinical trials are being conducted to further evaluate the efficacy of these agents in
targeting neurogenesis in cancer treatment. Moreover, AChR antagonists have also been
shown to have a suppressive effect on cancer. Specifically, the M3 mAChR antagonist
4-DAMP has been found to inhibit H82 cell proliferation in a concentration-dependent
manner [218]. Recent research suggests that non-small-cell lung carcinoma [219] and
small-cell lung carcinoma [220] can be inhibited by ACh antagonists like pirenzepine and
darifenacin, respectively.

6. Perspectives

The overlooked neuro-microenvironment in cancer has been shown to have a signifi-
cant impact on cancer progression. Neuronal innervation plays a significant role in both
metastasis and primary tumors. Autonomic innervation contributes to the progression of
prostate cancer. Compellingly, the two divisions of the autonomic nervous system have
distinct functions in prostate cancer.

Compellingly, the two divisions of the autonomic nervous system have distinct functions
in prostate cancer. The sympathetic system supports the initial phases of prostate tumor devel-
opment, while the parasympathetic system facilitates the spread of prostate cancer [18]. Synap-
tic proximity allows NMDAR signaling to promote brain metastasis [33]. Acetylcholine signal-
ing is involved in lung cancer progression [34]. Tumors can exploit neuronal NMDAR signaling
to enhance growth and invasion [62]. Norepinephrine stimulates pancreatic cancer cell pro-
liferation, migration, and invasion through β-adrenergic receptor activation [2]. Nerve fibers
infiltrate the tumor microenvironment, which is associated with nerve growth factor production
and lymph node invasion in breast cancer [91]. Peripheral nerves participate in the paracrine
regulation of pancreatic cancer cell invasion [106]. Glutamate is implicated in the growth and
invasion of primary brain tumors and increases pancreatic cancer cell invasion through AMPA
receptor activation [125]. Glial cell line-derived neurotrophic factor (GDNF) and integrins
contribute to invasion and metastasis in human pancreatic cancer cells [126,169]. L1CAM
induces perineural invasion in pancreatic cancer cells [170].

Additionally, the neurotrophic factor artemin promotes pancreatic cancer inva-
sion [178]. Muscarinic acetylcholine receptor M1 mediates prostate cancer cell migration
and invasion via hedgehog signaling [219]. Furthermore, neurotrophin-3 modulates
breast cancer cells and the microenvironment to promote breast cancer brain metasta-
sis [164] (Figure 5).
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References for primary liver proliferation: liver tumor [185], colorectal tumor [147], ovarian
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neurotrophin-3; NGF: nerve growth factor; Glu: glutamate; ARTN: artemin; NCAM: neural cell
adhesion molecule; L1CAM: L1 cell adhesion molecule. Hh: hedgehog.

Moreover, the fact that cancer cells themselves share similar characteristics to neural
cells is also noteworthy. Specifically, cancer cells can acquire neuron-like characteristics
such as migration, invasion, and proliferation, possibly due to the high expression of many
of the same neuroactive substances, neuronal receptors, and proteins, which are involved
in normal neurogenesis and cancer progression, explaining why cancer development
can be promoted by neuroactive substances released by neurons. Some tumors, such
as breast cancer, prostate cancer, lung cancer, and pancreatic cancer, can generate their
neuroactive supply through the secretion of some neurotransmitters, such as glutamate
and acetylcholine, which promote metastasis and progression (Table 1).

We have suggested that some cancer cell types tend to form similar neural networks
to interconnect with one another and transmit signals for cancer cell progression by their
own neuroactive substances, aside from the receiving stimulus derived from neurons. Nev-
ertheless, this hypothesis needs more evidence in other cell lines to support it. Based on
this hypothesis, we surmised that some drugs, which could inhibit neuronal signals such as
anti-psychotic drugs, could be great candidates in cancer treatment as they are able to disrupt
neural circuits in cancer by blocking dopamine receptors, AMPA receptors, and acetylcholine
receptors. However, this strategy should include measures to minimize the impact on non-
cancerous tissues, particularly the CNS. This suggests that we could harness drugs that have
a great effect on neuronal targets but find it hard to pass through the blood–brain barrier. It
could be useful to mitigate side effects and repurpose some drugs.

The similarity between some of the highly expressed proteins and ROS in both neurons
and cancer should be taken into account. It could be that the downstream signals of the
complex between neuron receptors and their ligands promote the survival, migration and
invasion of both neurons and cancer. For example, the ROS/PI3K/Akt/mTOR signaling
pathway is involved in both neurogenesis and cancer progression. ROS inducers or antioxi-
dants could be effective inhibitors of neurogenesis in cancer. Antipsychotics targeting the
DRD2 receptor, such as penfluridol, pimozide, and ONC201, have been shown to inhibit
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cancer via ROS induction. It is suggested that ROS/AKT/mTOR could play an important
role in neoneurogenesis and could be a potential target for antipsychotic drugs for cancer
treatment (Figure 6).

Table 1. Overview of tumor types, including receptor expression, ligands, innervation, and therapeu-
tic insights. NA: not available.

Receptors Ligand Type of Innervation Therapeutic Options

Lung cancer

GFRα [97] ARTN [97]

Sympathetic innervation [19]
Cholinergic innervation [121] NTRK inhibitor [89]

mAChRs [117] ACh [120]

NMDARs [130] NA

DRD2 [146] NA

Trks [89] NA

NCAM [111] Small molecules [111]

Pancreatic
cancer

GFRα [97] ARTN [97,178], GDNF
[97,105,168] NRTN [97]

Sensory innervation [23,24]

Beta blocker [2,39]
NGF knockdown [23,88]

Anti-NT3 [88]
DRD2 blocker [221]

DRD2 [221] NA

Trks [88,90] BDNF, NT-3, NT-4/5
[88]

AMPARs [126],
NMDARs [132] Glutamate [126]

Prostate
cancer

GFRα1 [97,102] GDNF [97] Sympathetic innervation [18]
parasympathetic innervation

[18]

Beta blocker [54,207]
β2 and β3 receptor

deletion[18]
DRD2 blocker [186]

NMDAR [129,183] Glutamate [183]

Trks [88] NT-3, BDNF, NGF [88]

Breast cancer

DRD2 [146] NA

Sympathetic innervation
[38,79] Sensory innervation

[91]

Surgical denervation [17]
Beta blockers [31,53]

NMDA [131] Glutamate [182,183]

Trks [89] BDNF [159], NT-3 [164]

GFRα [97,99] GDNF [97]

NGFR [94,96] NGF [91]

L1CAM [107] NA

AChRs [116] NA

Gastric cancer
L1CAM [107] Small molecules [107] Cholinergic innervation [29]

Vagal innervation [27]

Acetylcholine blocker
(botulinum toxin A) [27]
Surgical denervation [27]

GFRα [97,104] NA

Trks [29,88] NGF [29]

Head and
neck cancer Trks [89] NA

Autonomic innervation
derived from sensory nerves

[45]
NA

Skin cancer
Trks [89] NA

NA Beta blocker [30]
L1CAM [107] Small molecules [107]

Ovarian
cancer

DRD2 [146] NA
NA NAL1CAM [108] NA

NCAM [112] NA

Leukemia
DRD2 [146] NA

NA DRD2 blocker [213]
GFRα [97] ARTN, NRTN [97]
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Table 1. Cont.

Receptors Ligand Type of Innervation Therapeutic Options

Colorectal
cancer

GFRα [97] GDNF [97]

Autonomic innervation [20] NANA Ach [119]

NMDARs [129] NA

Trks [89] NA

Cervical
cancer DRD2 [116] NA NA NA

Esophageal
cancer DRD2 [116] NA NA NA

Liver cancer
L1CAM [107] Small molecules [107]

NA
DRD1 blocker [185]
DRD2 blocker [187]DRD1 [185] Dopamine [185]

Brain cancer

AMPARs [124,125] Glutamate [124]

NA NADRD2 [146] Dopamine [146]

Trks [150,160,165] NGF [150], NT-3 [165]

GFRα [97] GDNF [97]
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Figure 6. The proposed mechanism by which antipsychotics suppress cancer progression via the
DRD2/ROS/PI3K/AKT pathway. Antipsychotics, such as penfluridol and ONC201, target the
dopamine receptor D2 (DRD2) and increase ROS levels, which activate the PI3K/AKT pathway.
This leads to inhibition of mTOR and the subsequent upregulation of pro-apoptotic proteins such as
BAK. Ultimately, this pathway is hypothesized to inhibit cancer self-innervation and prevent cancer
progression. DRD2, dopamine receptor D2; ROS, reactive oxygen species; PI3K, phosphoinositide
3-kinases; Akt, Akt serine/threonine kinase; mTOR, mammalian target of rapamycin; BAK, Bcl-2
homologous antagonist/killer.

In conclusion, our review suggests that targeting neurogenesis could be a potential
avenue for anti-cancer treatment. In particular, we introduced the potential mechanism
of neural circuit establishment in cancer as a means for cancer crosstalk and suggested
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that cancer might respond to neuroactive substances like neurons in order to activate some
highly expressed proteins, which can promote neuron and cancer development. Based
on that hypothesis, repurposing neuro-targeting drugs and ROS inducers or antioxidants
as anti-cancer agents may provide a new strategy for inhibiting neurogenesis in cancer.
Future research in this area will expand our understanding of the relationship between
neurogenesis and cancer and provide new opportunities for cancer treatment.
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